1. Review of AFP 4.1
a) Rollback operator
b) State processes
2. Basic design of $c f /$ library: classes IModel and slice
3. Implementation
of financial models with identical state processes. Classes Similar aud
I Rollback Density

Rollback (pricing) operator

$$
\begin{aligned}
V_{s} & =\Omega\left(V_{t} s\right) \\
1 & V_{t} \\
& t
\end{aligned}
$$

V_{t} : random variable that defines a payment at t

$$
V_{s}=R\left(V_{t}, s\right): A F P \text { (valence) }
$$

of the payment V_{t} at times (capital of replication strategy ats)
Question: How to compute R ?

Rollback in terms of $4 .:$ money-market measure. $r_{t}=r_{t}(\omega)$: short-term merest rate

$$
B_{t}=e \int_{0}^{\int_{0} t_{u} \text { count }}
$$

\mathbb{P}^{*} : money-market
martingale measure
Def: \mathbb{P}^{*} is such a t measure that

$$
\frac{X_{t}^{\mathbb{P}^{*}}}{B_{t}}=X_{t} e^{-\int_{0} r_{u} d u}, 0 s t=
$$

is \mathbb{P}^{*} - martingale for ane wealth process X,
that is,

$$
\begin{gathered}
X_{s} e^{-\int_{0}^{S} r u d u}=\mathbb{E}_{s}^{*}\left[x_{t} e^{-\int_{0}^{t} r r d u}\right] \\
\mathbb{V}_{s}^{*}=\mathbb{E}_{s}^{*}\left[x_{t} e^{-\int_{s}^{t} r u d u}\right]
\end{gathered}
$$

Here
$\mathbb{E}_{S}^{*}[$.$] : operator of condi$ tional expectation under\mathbb{P}^{*} given mformation at
s.

Theorem $\forall \mathrm{s}<t: 14.5$

$$
\mathcal{R}\left(V_{t}, s\right)=\mathbb{E}_{s}^{*}\left[V_{t} e^{-\int_{s}^{t} u_{u} d u}\right]
$$

Proof Follows from the definition of \mathbb{P}^{*} and the fact that

$$
\text { AF }=\begin{aligned}
& \text { (initial) wealth } \\
& \text { of replication } \\
& \text { strategy }
\end{aligned}
$$

Remark
4.6
computation comp-
of $R(i s) \Leftrightarrow$ tation of $\mathbb{E}_{s}^{*}[]$
We need to implement the operator of conditiohal expectation under a risk-neutral measure!

Rollback in terms $\quad 4.7$ of forward measures. $B(s, t)$: priceat s of zero-coupon bond with face value $\$ 1$ and maturity t \mathbb{P}^{t} : forward martingale measure for maturity
Def: \mathbb{P}^{t} is such a measure, $\frac{X s}{B(s, t)}, 0 \leq s \leq t$,
is \mathbb{P}^{t}-martingale for any wealth process X,
that is,

$$
\begin{aligned}
& \frac{X_{s}}{B(s, t)}=\mathbb{E}_{s}^{t}\left[X_{t}\right] \\
& X_{s}=B(s, t) \mathbb{E}_{s}^{t}\left[X_{t}\right]
\end{aligned}
$$

$\mathbb{E}_{S}^{t}[:]$: operator of conditional expectation under \mathbb{P}^{t} given information at s

Theorem $\forall s<t: \$ 4.9$

$$
R\left(V_{t}, s\right)=\mathbb{E}_{s}^{t}\left[V_{t}\right] B(s, t)
$$

Proof
Replication + definition of forward measure.

Question: Why $\mathbb{p}^{t} 4 \times k$ is called forward martingale measure for maturity t ?
$\boldsymbol{F}(s, t)$: forward price
$\xlongequal{7}$ delivery
time
Consider long position:

$$
\begin{aligned}
& X_{s}=0: \text { valence at } s \\
& X_{t}=S_{t}-F(s, t): \\
& \text { value at } t
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{0}_{X_{s}}=\underbrace{B(s, t)}_{\mathbb{W}} \mathbb{E}_{s}^{t}[\underbrace{S_{t}^{-F(s, t)]}}_{X_{t}} \underset{F(s, t)=\mathbb{E}_{s}^{t}\left[s_{t}\right]}{ }
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \text { Hence) } \\
& (F(s, t))_{0 \leq s \leq t} \mathbb{P}_{- \text {martin- }}^{\text {gale }}
\end{aligned}
$$

State processes 4.12
Idea: efficient storage for relevent random variables.
Example (Binomial model) r : one-step meterest rate
 u: relative change" "up" d: - 1 - down" $^{\prime}$
$n \quad n+1$

Consider payment $\quad 4.13$

$$
V_{n+1}=T_{n+1}\left(\omega_{1} \ldots \omega_{n+1}\right)
$$

at time $n+1$
Rollback operator:

$$
\begin{aligned}
& V_{n} \stackrel{\text { rollback }}{\leftarrow} V_{n+1} \\
& \mathcal{R}^{\prime \prime}\left(V_{n+1} n\right) \\
& \frac{1}{1+r}\left[\widetilde{p} V_{n+1}\left(\omega_{n+1}=H\right)+\right. \\
& \left.\widetilde{q} V_{n+1}\left(\omega_{n+1}=T\right)\right]
\end{aligned}
$$

$\tilde{p} \& \bar{q}:$ one-step riskneutral probabilities
"Naive" storage scheme: 4.14 record values of

$$
V_{n}=V_{n}\left(\omega_{1} \ldots \omega_{n}\right)
$$

for any $\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$

$$
\begin{aligned}
\# \text { of records } & =2^{12} \\
& (\text { too big })
\end{aligned}
$$

However, to price standard options we reed to operate with random variables in the form:

$$
V_{n}=f_{n}\left(S_{n}\right)
$$

$$
\begin{aligned}
& \text { where } f_{n}=f_{n}(x) \text { is a } 44.15 \\
& \text { deterministic function } \\
& \text { \# of records } \\
& \text { for "standard" }=n+1 \\
& \text { storage scheme } \quad 1 \\
& \text { practical } \\
& \text { (S. } S_{n} \leq n \leq N \text { is an example } \\
& \text { of a state process. }
\end{aligned}
$$

Definition A stochastic process $\left(X_{t}\right)_{0 \leq t \leq T}$ is 4.16 called a state process if $\forall s \leqslant t$ and deterministic function

$$
f=f(x)
$$

\exists deterministic function

$$
g=g(x)
$$

such that

$$
\begin{aligned}
& g\left(x_{s}\right) \leftarrow \text { rollback } f\left(x_{t}\right) \\
& \left.R\left(x_{t}\right) s\right)
\end{aligned}
$$

Remark For astate ${ }^{44.17}$
process $X=\left(X_{t}\right)_{0 \leq t \leq T}$
denote by

$$
\mathscr{R}\left(x_{t}\right)=\left\{f\left(x_{t}\right): f \text { is } \text { deter }\right\}
$$

the family of function
random variables determined by (measurable w.r.t) X_{t}.

Then
(a) for particular time t the family $\nVdash\left(x_{t}\right)$ is closed under any arithmetic and functional operation
(b) for two times $s<t$ and any 4.18

$$
\begin{aligned}
& \xi \in x\left(x_{t}\right) \\
& \left(\xi=f\left(x_{t}\right)\right)
\end{aligned}
$$

the result of rollback operator between t and s belongs to $\mathcal{X}\left(X_{S}\right)$:

$$
g\left(f\left(x_{t}\right), s\right)=g\left(x_{s}\right)
$$

for some deterministic

$$
g=g(x)
$$

Recall Slice I!!

Implementation of 4.19
a financial model consists of
(a) specification of a
state process X
(b) implementation of necessary operations

$$
\begin{aligned}
& \text { for random variables } \\
& \text { from } \quad \begin{array}{l}
f=f\left(X_{t}\right)=\left\{f\left(x_{t}\right):\right. \\
\\
\\
\\
\\
\text { determ. } \\
\text { function }
\end{array}
\end{aligned}
$$

(c) for given time t all arithmetic \& functional
(ii) between two times $\sqrt{4.20}$ $s<t$ - rollback

$$
g\left(x_{s}\right)=R\left(f\left(x_{t}\right), s\right)
$$

Examples:

$$
\exp \left(x_{t}\right), I\left(x_{t} \geq k\right)
$$

Characterisation $\quad 4.21$ of state processes as Markov processes.
Recall that a stochastic process $X=\left(X_{t}\right)_{0 \leq t \leq T}$ is called Markov process if for any $s<t$ and any \& $f=f(x)$ $\exists g=g(x)$ such that

$$
g\left(x_{s}\right)=\mathbb{E}_{s}\left[f\left(x_{t}\right)\right]
$$

Theorem
(i) X is a state process
※
(ii) for any time t
(a) $\left(X_{s}\right)_{0 s s \in t}$ is a Markov process under \mathbb{P}^{t}
(b) discount factor wits maturity t is determined
by (measurable w.r.t.) $\chi_{\frac{1}{8}}$:

$$
B(s, t)=f\left(X_{s}\right)
$$

for some $f=f(x)$.

Proof Follows from the formula for rollback operator:

$$
R(\cdot, s)=B(s, t) \mathbb{E}_{s}^{t}[\cdot]
$$

A model in efl library
Basic components:
(a) state process

$$
X=\underbrace{\left(X^{d-1}\right)}_{d \text {-dimensional }}
$$

(b) vector of event times

$$
\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
t_{0} & t_{1} & \cdots & t_{N}
\end{array}
$$

We can use only random variables in the form:

class I Model 4.2

1. Virtual destructor!
2. event Times sorted vector <double> first time $=$ mitial time
3. number of States
returns the number of state processes
4. number Of Nodes

Slice $\longleftrightarrow f\left(x_{t_{k}}^{i_{1}}, \ldots, x_{t_{k}}^{i_{m}}\right)$
(i, $, \ldots, i_{m}$) : vector of mdexes for state processes that "support" given random

Returns the number of 4.24 to double used to represent Slice object in computer's memory.

$$
\begin{equation*}
\text { Slice } \hookrightarrow 1 \tag{1}
\end{equation*}
$$

Slice $\longleftrightarrow \operatorname{spot}\left(\frac{1}{2}\right)_{K}$ \square
5. origin

Returns initial value for state process.
G. state

$$
\text { Slice } \longleftrightarrow
$$

7. add Dependence 4.28 Problem: implement + for two slices

$$
\text { slice } 1 \longleftrightarrow f\left(x^{i_{1}}, x^{i_{2}}, \ldots, x^{i_{m}}\right)
$$

$$
\text { Slice } 2 \longleftrightarrow g\left(X^{j_{1}}, \ldots, x^{j_{n}}\right)
$$

Easy case: $\left(i^{1}, \ldots, i^{m}\right)=\left(j_{1} \ldots j_{n}\right)$ Slices are in "agreement"

Difficult case:

$$
\left(i^{1}, \ldots, i^{m}\right) \neq\left(j^{1}, \ldots, j^{m}\right)
$$

slice 1
slicer
Storage schemes are different. What to do?
Solution Clearly,
Slice1+Slice 2 roil depend on state processes with ibexes

$$
\left(k_{1}, \ldots k_{e}\right)=\left(i_{1} \ldots i_{m}\right) \cup\left(j_{1} \ldots j_{n}\right)
$$

We then "add dependence" to Slice 1 and slice 2 or change their storage 4.30 schemes to that of Slice 1 t Slice 2 . add Dependence

$$
\begin{aligned}
& \text { Slice } 1 \longrightarrow \text { Slice }^{\prime} \\
& \underset{f\left(x^{i_{1}} \ldots x^{i_{m}}\right)}{\downarrow}=f^{\prime}\left(x^{k_{1}} \ldots x^{K_{e}}\right) \\
& \text { Slice } 2 \xrightarrow{\text { add Dependence }} \text { Spice } 2^{\prime} \\
& \underset{g\left(x^{j+} \ldots x^{j_{n}}\right)}{g^{\prime}\left(x^{k_{1}} \ldots x^{k} l\right)}
\end{aligned}
$$

We are back to 4.31 "easy" case

| 1 | 1 | slicer' |
| :--- | :--- | :--- | :--- |
| | | |
| Slice 2' | | |

9 mdicator
1 ellice $\longleftrightarrow f\left(X_{t_{k}}\right)$
d Barrier $\longleftrightarrow K$
returns $I\left(f\left(x_{k}\right)>k\right)$

| -2 | -1 | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | rSlice

d Barrier $=0.5$

| 0 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | | "naive" |
| :---: |
| indicator |

$$
\begin{aligned}
& \text { class slice } \\
& \text { Slice } \longleftrightarrow f\left(x_{t_{k}}^{i,} \ldots x_{t_{k}}^{i m}\right)
\end{aligned}
$$

Components :
(private members)

1. array of values (disretization of $f=f\left(x^{i}, x^{4}\right)$
2. vector of dependences ($i_{1}^{*} \ldots i_{m}$)
3. (index of) event time to
4. Pimpl of IModel

Implementation of 4.37 financial models with identical state processes ("similar" models)
Consider a stochastic process

$$
X=\left(X_{t}\right)_{0 \leqslant t \leqslant T}
$$

on a filtered probability space

$$
\left(\Omega,\left(\tilde{J}_{t}\right)_{0 \leqslant t \leqslant T}, \mathbb{P}\right)
$$

Consider two financial models A and B such $4.3 x$ that they have the same maturity and for both models
X is astate process
\mathbb{P} is the forward martingale measure for maturity T We call the models A and B "similar".

Since X is a state 4.35 process we have

$$
d^{d^{A}(s, t)}=f_{s, t}\left(x_{s}\right)
$$

discount deterministic factor function for model A

$$
\underbrace{d^{B}(s, t)}=g_{s, t}\left(X_{s}\right)
$$

discount deterministic factor function

$$
\begin{aligned}
& \text { Denote } \\
& \begin{aligned}
z_{t} & =\frac{d^{A}(t, T)}{d^{B}(t, T)}=\frac{f_{t, T}\left(x_{t}\right)}{g_{t, T}(x)} \\
& :=t_{t, T}\left(x_{t}\right)
\end{aligned}
\end{aligned}
$$

We have

$$
\begin{aligned}
& R^{B}\left(\varphi\left(x_{t}\right), s\right)=\frac{1}{z_{s}} * \\
& R^{A}\left(\varphi\left(x_{t}\right) z_{t} s\right)= \\
& =\frac{1}{h_{s, T}\left(x_{s}\right)} B^{A}\left(\varphi\left(x_{t}\right) h_{t, T}\left(x_{t}\right), t\right)
\end{aligned}
$$

If we have an 4.41 implementation of model A it is very easy to implement model B.

- Random variable:
$Z_{t}=\frac{d^{A}(t, T)}{d^{B}(t, T)}$ is called the density of rollback operator for model B w.r.t. model A.

In off library this ${ }^{14.42}$ methodology for the implementation of "Similar" models is realised through classes

$$
\begin{aligned}
& \text { Similar pimp } \rightarrow \text { IRollbackten- } \\
& \text { Sity }
\end{aligned}
$$

class I RollbackDensity
Pure abstract class.

1. at
returns

$$
z_{t_{k}}=\frac{d R_{t_{k}}^{B}}{d R_{t_{k}}^{A}}
$$

the density of new model w.r.t. old model

$$
z_{t_{k}} \longleftrightarrow f\left(x_{t_{k}}\right) \quad(\longleftrightarrow \text { slice })
$$

that is,

$$
\begin{gathered}
X_{s} e^{-\int_{0}^{S} r u d u}=\mathbb{E}_{s}^{*}\left[x_{t} e^{-\int_{0}^{t} r r d u}\right] \\
\mathbb{V}_{s}^{*}=\mathbb{E}_{s}^{*}\left[x_{t} e^{-\int_{s}^{t} r u d u}\right]
\end{gathered}
$$

Here
$\mathbb{E}_{S}^{*}[$.$] : operator of condi$ tional expectation under\mathbb{P}^{*} given mformation at s.

Key example:

$$
X_{t}=\int_{0}^{t} \sigma_{u} d B_{u}
$$

$\sigma=\left(\sigma_{t}\right)_{0 \leq t \leq T}$: determines-
$B=\left(B_{t}\right)_{0 \leqslant t \leqslant T}$: standard
Brownian motion
This process is a state process for many models.
(a) Extended Black
(b) Hull-White
(c) Black-Karachinski

In efl library an ${ }^{14.46}$
"artificial"
Brownian model has been implemented where

$$
R(\cdot, s)=\mathbb{E}_{s}[\cdot]
$$

(interest rate $=0$)
Then this model was used to implement
Black and Hull White

