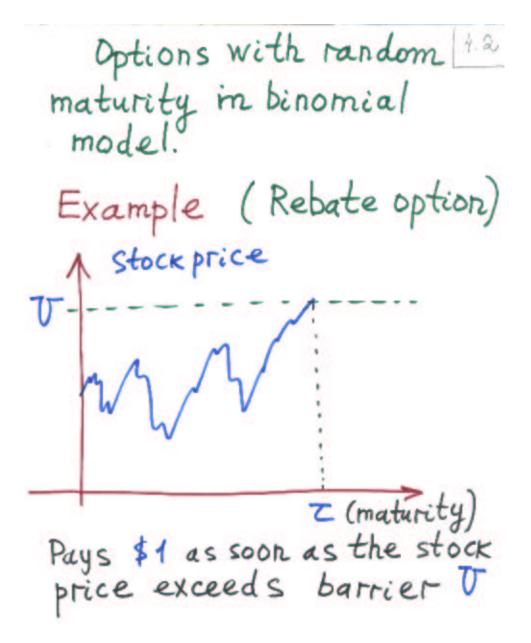
4.1

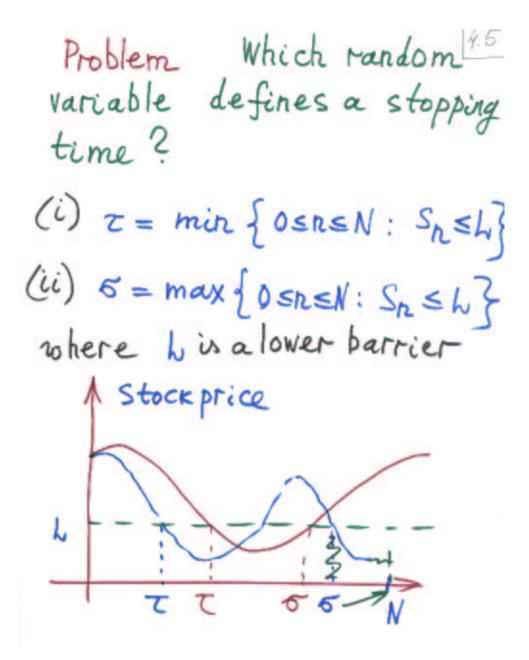
Plan: 4.3. Options with random maturity in binomial model 4.4. American options in binomial model



General definition:

$$\tau = \tau(\omega)$$
: random maturity
 $V_z = V_z(\omega_1...\omega_z)$: payoff
at τ
A random maturity is for -
mally defined as a
stopping time.

Definition A 4.4 random variable T= T(w) is called a stopping time if (i) T= T(w) takes values in {0,1,2,..., N} $(\leq) \sum_{i=1}^{N} I(\tau(\omega) = k) = 1)$ (ii) Vo≤n≤N the set {w: - (w) = n } is determined by {wi...wn} (=) $X_n = \sum_{k=0}^{n} I(z=k)$, OsheN, k=0 is adapted)



Arbitrage-free pricing . 146 Consider a European option with random maturity $\tau = \tau(\omega)$ and payoff T_{τ} AFP - Replication Goal: construct a replication strategy : $\longrightarrow X_z = I_z$ Xo (Known) (unknown)

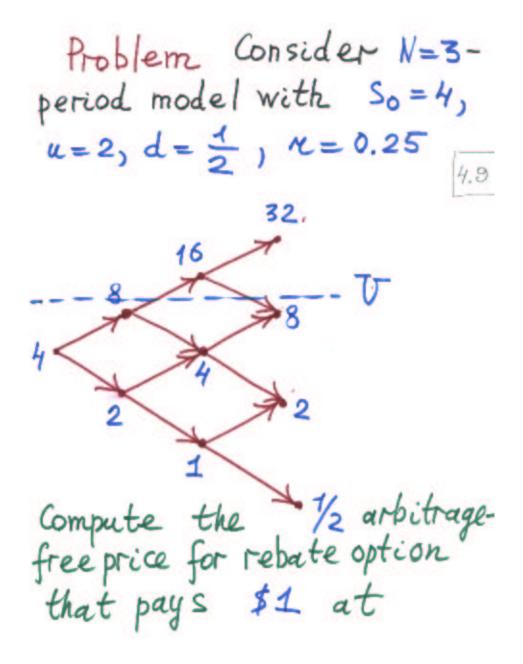
Key idea: think
"conditionally"!
Denote

$$N_n = X_n (v_1...v_n): capital
of replication strategy at
time $n \notin under$ the condi-
tion that $\{r \ge n\}$$$

Backward moduction: time N: on $\{\tau = N\}$ $X_N = \overline{V_N}$

Assume that Xn+1 is computed

time n: on $\{\tau \ge n\}$ (a) if $\{\tau = n\}$, then $\chi_n = V_n$ (b) if $\{\tau > n\}$, then $\chi_n = \frac{1}{\tau + \tau} \left[\widetilde{p} \chi_{n+1}(\omega_1 \dots \omega_n H) + \widetilde{q} \chi_{n+1}(\omega_{n+1} = \tau) \right]$



 $\tau = \min \left\{ n : S_n \ge U \right\}^{\frac{1}{4.10}}$ where U=9. (If the barrer is not crossed, then payoff is zero).

411 Solution $\tilde{p} = \frac{1+r-d}{u-d} = \frac{1}{2} \quad \tilde{q} = \frac{1}{2}$ Xn: capital of replicating strategy if TZR LOOK FOR (XR)DENEN in the form $X_n = f_n(S_n), o \le n \le N,$ where fn=fn(x) is a deterministic function Backward induction :

Time N: on
$$\{\tau = N\}^{\frac{4}{2}}$$

 $J_N = J(S_N \ge h)$
i
time $h: on \{\tau \ge h\}$
(a) if $\{S_h \ge h\} = \{\tau = n\}$
then
 $J_n = 1$
(b) else $(\tau > h)$
 $X_h = \frac{1}{1+\tau} \left[pX_{h+1}(\omega_{h+1} = H) - \frac{1}{2}\right]$

time N:

$$f_{N}(x) = I(x \ge h)$$

$$\vdots$$
time n:

$$f_{n}(x) = \frac{1}{1+x} \left[\widetilde{p} f_{n+1}(ux) + \widetilde{q} f_{n+1}(dx) \right] I(x < h)$$

$$+ I(x \ge h)$$

For our concrete example
we have:

$$f_{444}$$

time 3:
 $f_3(32) = 1$
 $f_3(8) = f_3(2) = f_3(\frac{1}{2}) = 0$
time 2:
 $f_2(16) = 1$
 $f_2(4) = \frac{2}{5}(f_3(8) + f_3(2)) = 0$
 $f_2(1) = 0$
time 1:
 $f_1(8) = \frac{2}{5} \quad f_1(2) = 0$
time 0: $f_0(4) = 0.16$

4.15 American options in binomial model Example (American put) an owner of the option can exercise it at any time before maturity. If he exercises at time n, then he receives $G_n = max(K-S_n, 0)$ strike

General description: 416 G=(Gn)o≤n≤N: payment process (adapted process) Gn = Gn (Q.... Qn) : " mtrinsic" value at time n Exercise policy: any stopping time T=T(w) Questions: (a) Optimal - *? (b) Arbitrage-free price Vo 2

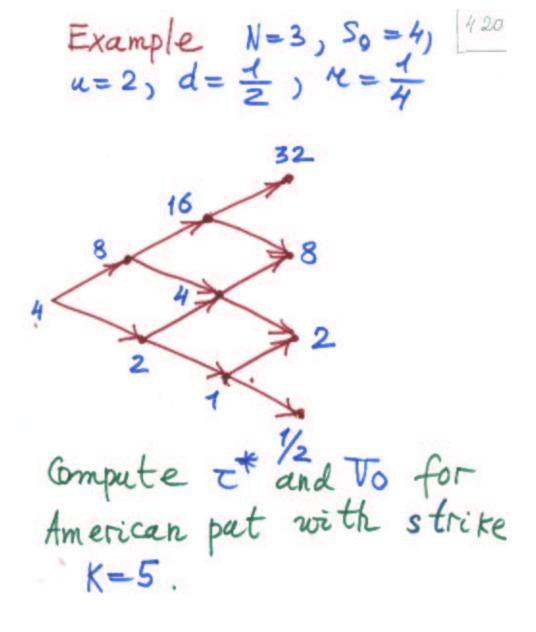
Key idea: think
"conditionally"!
Denote

$$V_n = V_n(\omega_1...\omega_n)$$
: price of
the option under the
condition $\{\tau \ge n\}$
(option has not been exercised
before)
Backward mduction:
time N:
 $V_n = G_{nr}$

time R:
stop

$$V_{h} = G_{h}$$
 (value to stop)
 $V_{h}^{cont} = \frac{1}{1+r_{c}} \left[p V_{h+1} (\omega_{h+1} = H) + q V_{n+1} (\omega_{h+1} = T) \right]$
(value to continue)
 $V_{h} = \max (V_{h}^{stop} - V_{h}^{cont})$
 \vdots

First optimal exercise 40 time: $\tau^* = \min \{ 0 \le n \le N : V_n = G_n \}$



Solution Since

$$G_n = g_n (S_n) where
 $g(x) = max(K-x_0)$
we look for
 $V_n = V_n (\omega_1 \dots \omega_n) : the value
of the option at n if
 $\{z \ge n\}$
in the form:
 $V_n = v_n (S_n), o \le n \le N$,
where $v_n = v_n (x)$ are deter-
ministic functions.$$$

Backward mduction: $\frac{14.22}{100}$ time N: $\sigma_N(x) = g(6c) = max(x-K, 0)$: time n:

$$\begin{aligned}
& \nabla_n(x) = \max\left(q(x), \\
& \frac{1}{1+r}\left[\widetilde{p} \, \nabla_{n+1}(ux) + \widetilde{q} \, \nabla_{n+1}(dx)\right]\right)
\end{aligned}$$

4.23 For our concrete example: time 3: $v_2(32) = v_3(8) = 0$ $v_3(2) = 3$ $v_3(\frac{1}{2}) = 4\frac{1}{2}$ time 2: $\left(\widetilde{p} = \widetilde{q} = \frac{1}{2} \quad \frac{\widetilde{p}}{4\pi} = \frac{2}{5}\right)$ $v_2(16) = \max(0, \frac{2}{5}(0+0)) = 0$ $v_2(4) = max(1, \frac{2}{5}(0+3)) = 1.2$ $\mathcal{V}_2(1) = \max(4) \stackrel{2}{=} (3+4.5) = 4$ time 1: $T_1(8) = max(0, \frac{2}{5}(0+1.2)) = \frac{12}{25}$

 $v_1(2) = \max(3) \stackrel{2}{=} (4+1.2) = 3$ time 0 : $v_0(4) = \max(1, \frac{2}{5}(\frac{12}{12}+3))$ = 1.392 Optimal stopping: time 0: g(4)=1 < Jo(4) 1.392 continue time 1: $\omega_1 = H$ $g(8) = 0 < U_1(8) = \frac{12}{25}$ continue $\omega_1 = T \quad g(1) = 34 = v_1(1)$ stop

time 2:

$$\omega_1 \omega_2 = HT$$

 $g(4) = 1 < \sigma(4) = 1.2$
 $continue$
 $\omega_1 \omega_2 = HH$
 $g(8) = 0 = \sigma(8)$
 $stop or continue$