Quantifier Elimination For Valued Fields

Yimu Yin Department of Philosophy Carnegie Mellon University

September 19, 2006

Real Closed (Ordered) Fields (RCF)

The language of ordered rings: $0, 1, +, -, \times, <$ The axioms:

1. The axioms for fields.

2. (a)
$$x > 0 \land y > 0 \to x + y > 0;$$

(b)
$$x = 0 \lor x > 0 \lor -x > 0;$$

(c)
$$\neg (x > 0 \land -x > 0);$$

(d)
$$x > 0 \land y > 0 \rightarrow xy > 0$$
.

3. (a)
$$\exists y \ (x = y^2 \lor -x = y^2);$$

(b) $\exists y \ x_n y^n + \ldots + x_1 y + y_0 = 0$ for $n \ge 1$
odd.

1

QE stands for quantifier elimination.

Theorem. 1 (Tarski). *RCF admits QE in the language of ordered rings.*

Tarski's original proof is syntactical, hence yields a recursive procedure for QE (but not practical). There are several model-theoretic QE tests that can be used to give a model-theoretic proof of Tarski's theorem. For example,

Definition. 2. A theory T has the van den **Dries property** if and only if

- 1. For any model N, if there exists a model $M \models T$ such that $N \subseteq M$, then there is a T-closure N^* of N, that is, a model $N^* \models T$ such that $N \subseteq N^*$ and N^* can be embedded over N into any T-extension of N;
- 2. If $N, M \models T$ and $N \subsetneq M$, then there is an $a \in |M| \setminus |N|$ such that N + a can be embedded into an elementary extension of N over N, where N + a is the smallest submodel of M that contains $|N| \cup \{a\}$.

Every ordered field K admits a maximal algebraic order-preserving field extension (in its algebraic closure). This is called the *real closure* of K.

For a model-theoretic proof of Tarski's theorem, the following is the key:

Theorem. 3. Any two real closures of an ordered field K are isomorphic over K.

We shall develop an analogue of this theorem for the p-adically closed fields (to be defined).

Theorem. 4 (Macintyre, McKenna, and van den Dries). Let K be an ordered field. If Th(K) in the language of ordered rings admits QE, then K is real closed.

The idea of the proof: If a polynomial of degree n (odd) fails to have a root in K, then certain subset of K^n can be defined such that it is dense and codense in the Zariski topology.

Valued Fields

Let K be a field and Γ an ordered abelian group with a top element ∞ . A valuation of K is a map

 $v:K\longrightarrow \mathsf{\Gamma}$

such that

1.
$$v(x) = \infty$$
 iff $x = 0$,

2.
$$v(xy) = v(x) + v(y)$$
,

3. $v(x+y) \ge \min(v(x), v(y))$.

6

Accordingly we get a ring (the valuation ring of v)

$$O = \{x \in K : v(x) \ge 0\},\$$

and a maximal ideal of the ring

$$M = \left\{ x \in K : v(x) > 0 \right\},\$$

and a residue field

$$\bar{K} = O/M.$$

Example: The *p*-adic number field \mathbb{Q}_p .

Fix a prime number p. Any nonzero rational number x can be written as

$$p^a \frac{m}{n}$$

where $a, m, n \in \mathbb{Z}$ and m, n prime to p. Define

 $\operatorname{ord}_p(x) = a.$

Then

$$\mathsf{ord}_p:\mathbb{Q}\longrightarrow\mathbb{Z}\cup\{\infty\}$$

is a valuation.

This valuation induces a (non-Archimedean) norm $| |_p$ on \mathbb{Q} :

$$|x|_p = \begin{cases} \frac{1}{p^{\operatorname{ord}_p(x)}} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

The completion of \mathbb{Q} with respect to the metric associated with this norm is our *p*-adic number field \mathbb{Q}_p .

Let $\mathbb{Z}_p \subseteq \mathbb{Q}_p$ be the valuation ring. This is also called the ring of *p*-adic integers.

Some basic facts about \mathbb{Q}_p :

- 1. $\operatorname{ord}_p(p)$ is the minimal positive element in the value group, namely 1.
- 2. The residue field is $\mathbb{Z}/p\mathbb{Z}$, which is finite and has characteristic p.
- 3. Each element $b \in \mathbb{Q}_p$ has a unique expansion of the form $\frac{b_{-m}}{p^m} + \frac{b_{-m+1}}{p^{m-1}} + \ldots + b_0 + b_1 p + b_2 p^2 + \ldots$ where $b_i \in \mathbb{Z}/p\mathbb{Z}$ for all $i \ge -m$ and $\operatorname{ord}_p(a) = -m$.
- 4. If K is a finite (or just algebraic) field extension of \mathbb{Q}_p , then there is a unique valuation on K that extends ord_p .

5. In 4, if we let $O_K, M_K \subseteq K$ be the valuation ring and its unique maximal ideal respectively, then O_K is the integral closure of \mathbb{Z}_p in K.

Let Γ_K be the value group of K. The **ram**ification index of K is

$$e(K/\mathbb{Q}_p) = [\Gamma : \mathbb{Z}].$$

The residue degree of K is

$$f(K/\mathbb{Q}_p) = [O_K/M_K : \mathbb{Z}/p\mathbb{Z}].$$

If $[K : \mathbb{Q}_p] = n$ then we have

$$ef = n$$
.

If e = 1 then K is unramified. if e = n then K is totally ramified.

p-Valued Fields of $p\text{-}\text{Rank}\ d$

p is a fixed prime number and d is a fixed natural number. (K, v) is a p-valued fields of p-rank d if

- 1. $\operatorname{char}(\overline{K}) = p$ and $\operatorname{char}(K) = 0$;
- 2. O/(p) as a natural $\mathbb{Z}/p\mathbb{Z}$ -module satisfies $\dim_{\mathbb{Z}/p\mathbb{Z}}(O/(p)) = d.$

Let $\pi \in M$ and i a natural number be such that $v(\pi)$ is the positive minimal element in Γ and

$$iv(\pi) = v(p).$$

Let

$$f = [\bar{K} : \mathbb{Z}/p\mathbb{Z}].$$

Then

$$d = if.$$

Henselianness

1. The valuation of (K, v) has a unique extension to any algebraic extension of K.

2. (Hensel's Lemma) Let $f(X) \in O[X]$. Suppose for some $a \in O$

$$\overline{f}(\overline{a}) = 0$$
 and $\overline{f}'(\overline{a}) \neq 0$.

Then there is an $a^* \in O$ such that

$$f(a^*) = 0$$
 and $v(a^* - a) > 0$.

3. (Newton's Lemma) Let $f(X) \in O[X]$. Suppose for some $a \in O$ and some $\alpha \in \Gamma$

$$vf(a) > 2\alpha$$
 and $vf'(a) \leq \alpha$.

Then there is an $a^* \in O$ such that

$$f(a^*) = 0$$
 and $v(a^* - a) > vf'(a)$.

13

Henselization

Any valued field (K, v) admits a unique minimal smallest Henselian field extension K^h , which is called the Henselization of K. we have :

1.
$$vK = vK^{h};$$

2.
$$\overline{K} = \overline{K^h}$$
.

In particular if K is a p-valued field of p-rank d then K^h is also a p-valued field of p-rank d.

The Fundamental Equality of Valuation Theory

Let L be a finite extension of (K, v). Let v_1, \ldots, v_r be all the prolongations of v to L. Let e_1, \ldots, e_r and f_1, \ldots, f_r be the corresponding ramification indices and residue degrees. Then

$$[L:K] = \sum_{i=1}^{r} e_i f_i d_i,$$

where d_i is a power of p if $char(\bar{K}) = p$, otherwise $d_i = 1$.

If $vK = \mathbb{Z}$ and L is a separable extension, then $d_i = 1$.

A Characterization of Finite Extensions of the Same *p*-Ranks

Let L/K be a finite extension. Suppose that (K, v) is a Henselian *p*-valued field of *p*-rank *d*. Then

$$\frac{d_L}{d_K} = \frac{i_L[\bar{L} : \mathbb{Z}/p\mathbb{Z}]}{i_K[\bar{K} : \mathbb{Z}/p\mathbb{Z}]}$$
$$= [\mathbb{Z}_L : \mathbb{Z}_K][\bar{L} : \bar{K}]$$

By the fundamental equality we have

$$[L:K] = [vL/\mathbb{Z}_L : vK/\mathbb{Z}_K][L^o : K^o],$$

where L^o, K^o are the core fields of (L, v), (K, v)respectively. Apply the fundamental equality to $[L^o : K^o]$ we get

 $[L:K] = [vL/\mathbb{Z}_L : vK/\mathbb{Z}_K][\mathbb{Z}_L : \mathbb{Z}_K][\bar{L}:\bar{K}].$ Hence if $d_L = d_K$ then

 $[L:K] = [vL/\mathbb{Z}_L : vK/\mathbb{Z}_K] =^* [vL:vK].$

16

p-Adically Closed Fields

p, d are fixed.

Definition. 5. *K* is called a *p*-adically closed **field** iff *K* does not have any proper *p*-valued algebraic extension of the same rank.

Theorem. 6. *K* is a *p*-adically closed field iff *K* is Henselian and vK/\mathbb{Z}_K is divisible (i.e. vK is elementarily equivalent to \mathbb{Z} as an ordered group, i.e. vK is a model of ordered Presburger arithemetic).

K admits a unique $p\text{-}\mathsf{adic}$ closure iff vK/\mathbb{Z}_K is divisible.

Let $f_K = [\overline{K} : \mathbb{Z}/p\mathbb{Z}]$ and $q = p^{f_K}$. The so called **Teichmüller representatives** are the roots of the polynomial

$$X^q - X.$$

Let $i_K = v(p)$. Choose an element $\pi \in O$ such that $v(\pi)$ is minimal positive. For each natural number $m = j + ki_K$ set

$$\omega_m = \pi^j p^k.$$

Then each element $a \in O$ admits an unique expansion of the form

$$t_0 + t_1\omega_1 + t_2\omega_2 + \ldots + t_m\omega_m + A_m$$

for each m, where each t_i is a Teichmüller representative.

How such expansions are used:

Lemma. 7. Let L|K be a *p*-valued extension. Suppose that *K* is algebraically closed in *L*. If $\overline{L} = \overline{K}$ then $\mathbb{Z}_L = \mathbb{Z}_K$.

Proof. Look at the expansion of π^{i_L}/p . Construct a suitable Eisenstein polynomial

 $f(X) = X^{i_L} - pg(X) \in K[X]$

such that $g(\pi) + A_m = \pi^{i_L}/p$ for sufficiently large m and hence

$$vf(\pi) > 2vf'(\pi).$$

Algebraically Closed Subfield is *p*-Adically Closed

Theorem. 8. Let L be a p-adically closed field. Suppose that K is a sub-value-field. If K is algebraically closed in L then K is also p-adically closed and is of the same rank as L.

This follows from the following:

1. $\bar{K} = \bar{L};$

2. *K* contains an element of *L* of the minimal positive value, i.e. $\mathbb{Z}_K = \mathbb{Z}_L$;

3. the factor group vL/vK is torsion free.

The Special Embedding Theorem

Let L|K be any field extension. Define the radical group (a subgroup of L^{\times})

 $J_{L|K} = \{t \in L : t^n \in K \text{ for some } n\}.$

Theorem. 9 (Radical Structure Theorem). Let L|K be an algebraic extension of the same rank. Suppose that K is Henselian. Then

$$L = K(J_{L|K}).$$

In fact the valuation map $v : J_{L|K} \longrightarrow vL$ induces an isomorphism:

$$J_{L|K}/K^{\times} \cong vL/vK.$$

Hence if L|K is a finite extension then

$$[J_{L|K} : K^{\times}] = [L : K]$$

and

$$L = K[X_1, \ldots, X_r]/I = K(t_1, \ldots, t_r)$$

where the ideal I is generated by

$$X_i^{n_i} - c_i, \quad 1 \le i \le r.$$

Theorem. 10 (Special Embedding Theorem). Let L|K be a Henselian algebraic extension of the same rank. Let L'|K be an arbitrary Henselian valued field extension. TFAE

1. L can be embedded into L' over K.

2. $K \cap L^n \subseteq K \cap L'^n$ for all n.

Corollary. 11. If L'|K is also a Henselian algebraic extension of the same rank, then L, L' are isomorphic over K iff $K \cap L^n = K \cap L'^n$ for all n.

The General Embedding Theorem

Theorem. 12 (General Embedding Theorem). Let L|K be a Henselian extension of the same rank. Let L'|K be a *p*-adically closed extension. Suppose that L' is sufficiently saturated. TFAE

- 1. L can be embedded into L' over K.
- 2. $K \cap L^n \subseteq K \cap L'^n$ for all n.

For $2 \Rightarrow 1$ we have the following reductions:

First reduction: We may replace 2 by "K is algebraically closed in L". This is equivalent to: K is Henselian and vL/vK is torsion free.

Second reduction: We may assume that L|K is of transcendence degree 1.

Third reduction: We may assume that L|K is finitely generated.

Fourth reduction: We may assume that L|K is K(X), i.e. a rational function field in one variable.

The last reduction has two cases:

Case A: vK(X) = vK.

Case B: vK(X)/vK is infinitely cyclic with generator $v(X) + vK = \xi + vK$, i.e.

 $vK(X) = vK \oplus \xi\mathbb{Z}.$

Quantifier Elimination for p-Adically Closed Fields of p-Rank d (VCF(p, d))

The two-sorted language:

1. The field sort (K):

(a) 0, 1, +, -, ×, /;
(b) new constants u₁,..., u_d;
(c) a unary nth power predicate P_n for each n.

- 2. The value group sort (Γ):
- (a) $0, +, -, <, \infty$; (b) a unary divisibility predicate D_n for each n.
- 3. A valuation function $v: K \longrightarrow \Gamma$.

The axioms:

1. All the standard axioms that guarantee the following: K is a field; Γ is an abelian group with a discrete ordering; v is a valuation.

2.
$$\forall x \ (P_n(x) \leftrightarrow \exists y \ (x = y^n))$$
 for each n .

3. $\forall x \ (D_n(x) \leftrightarrow \exists y \ (x = ny)) \text{ and } \forall x \ (D_n(x) \lor D_n(x+1) \lor \ldots \lor D_n(x+n-1)) \text{ for each } n.$

4. K is Henselian.

5. u_1, \ldots, u_d form a basis for the $\mathbb{Z}/p\mathbb{Z}$ -module O/(p).

Now using a suitable modified model-theoretic QE test (e.g. van den Dries property) for many-sorted languages and the General Embedding Theorem we obtain:

Theorem. 13 (Quantifier Elimination). For each p and each d, VCF(p,d) admits QE.

Question. 14. For any valued field K, suppose that K satisfies all the axioms of VCF(p,d) except Henselianness and Th(K) has QE in the language of VCF(p,d), does this imply that K is Henselian?