Assumptions: Z is a subset of the powerset of λ; I is a subset of $P(Z)$

<table>
<thead>
<tr>
<th>Ideal Property</th>
<th>Generic Ultrapower Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitous</td>
<td>Ultrapower is well-founded</td>
</tr>
<tr>
<td>I is normal and fine</td>
<td>$P(\lambda)$ is a subset of M</td>
</tr>
<tr>
<td></td>
<td>$j \upharpoonright \lambda$ is in M</td>
</tr>
<tr>
<td>I is normal and fine, and λ^+ saturated:</td>
<td>Ultrapower I well-founded and closed under λ-sequences from $V[G]$.</td>
</tr>
<tr>
<td>Weak saturation/Presaturation</td>
<td>implies various amount of closure of M, depending on parameters.</td>
</tr>
<tr>
<td>Disjointing property and local versions</td>
<td>combinatorial intermediary between saturation and the closure of the ultrapower.</td>
</tr>
<tr>
<td>I is kappa-complete</td>
<td>the critical point of the generic elementary embedding is at least κ.</td>
</tr>
</tbody>
</table>