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1. Hilbert spaces and operators

We begin with a review of the basic properties of operators on a Hilbert
space. Throughout we letH denote a complex infinite-dimensional separable
Hilbert space, and we let (en) be an orthonormal basis for H. For ξ, η ∈ H,
we denote their inner product by (ξ|η). We recall that

(η|ξ) = (ξ|η)

and
‖ξ‖ =

√
(ξ|ξ).

The Cauchy–Schwartz inequality says that

|(ξ|η)| ≤ ‖ξ‖‖η‖.

Example 1.1. The space

`2 = `2(N) =
{
α = (αk)k∈N : αk ∈ C, ‖α‖2 =

∑
|αk|2 <∞

}
is a Hilbert space under the inner product (α|β) =

∑
αkβk. If we define en

by enk = δnk (the Kronecker’s δ), (en) is an orthonormal basis for `2. For
any α ∈ `2, α =

∑
αne

n.

Any Hilbert space has an orthonormal basis, and this can be used to prove
that all separable infinite-dimensional Hilbert spaces are isomorphic. More-
over, any two infinite-dimensional Hilbert spaces with the same character
density (the minimal cardinality of a dense subset) are isomorphic.

Example 1.2. If (X,µ) is a σ-finite measure space,

L2(X,µ) =
{
f : X → C measurable : ‖f‖2 =

∫
|f |2dµ <∞

}
/{f : f = 0 a.e.}

is a Hilbert space under the inner product (f |g) =
∫
fgdµ.

We will let a, b, . . . denote linear operators H → H. We recall that

‖a‖ = sup{‖aξ‖ : ξ ∈ H, ‖ξ‖ = 1}.

If ‖a‖ <∞, we say a is bounded. An operator is bounded iff it is continuous.
We denote the algebra of all bounded operators onH by B(H) (some authors
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use L(H)), and will assume all operators are bounded. We define the adjoint
a∗ of a to be the unique operator satisfying

(aξ|η) = (ξ|a∗η)
for all ξ, η ∈ H. Note that since an element of H is determined by its inner
products with all other elements of H (e.g., take an orthonormal basis), an
operator a is determined by the values of (aξ|η) for all ξ, η.

Lemma 1.3. For all a, b we have
(1) (a∗)∗ = a
(2) (ab)∗ = b∗a∗

(3) ‖a‖ = ‖a∗‖
(4) ‖ab‖ ≤ ‖a‖ · ‖b‖
(5) ‖a∗a‖ = ‖a‖2

Proof. These are all easy calculations. For example, for (5), for ‖ξ‖ = 1,

‖aξ‖2 = (aξ|aξ) = (ξ|a∗aξ) ≤ ‖a∗a‖,
the inequality holding by Cauchy–Schwartz. Taking the sup over all ξ, we
obtain ‖a‖2 ≤ ‖a∗a‖. Conversely,

‖a∗a‖ ≤ ‖a∗‖‖a‖ = ‖a‖2

by (3) and (4). �

The first four parts of this say that B(H) is a Banach *-algebra, and (5)
(sometimes called the C∗-equality) says that B(H) is a C∗-algebra.

1.1. Normal operators and the spectral theorem.

Example 1.4. Assume (X,µ) is a σ-finite measure space. If H = L2(X,µ)
and f : X → C is bounded and measurable, then

H 3 g 7→ mf (g) = fg ∈ H
is a bounded linear operator. We have ‖mf‖ = ‖f‖∞ and

m∗
f = mf̄ .

Hence m∗
fmf = mfm

∗
f = m|f |2. We call operators of this form multiplica-

tion operators.

If Φ: H1 → H2 is an isomorphism between Hilbert spaces, then

a 7→ AdΦ(a) = ΦaΦ−1

is an isomorphism between B(H1) and B(H2). The operator AdΦ(a) is just
a with its domain and range identified with H2 via Φ.

An operator a is normal if aa∗ = a∗a. These are the operators that have
a nice structure theory, which is summarized in the following theorem.

Theorem 1.5 (Spectral Theorem). If a is a normal operator then there is
a finite measure space (X,µ), a measurable function f on X, and a Hilbert
space isomorphism Φ: L2(X,µ) → H such that AdΦ(mf ) = a.
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Proof. For an elegant proof using Corollary 2.12 see [9, Theorem 2.4.5]. �

That is, every normal operator is a multiplication operator for some iden-
tification of H with an L2 space. Conversely, every multiplication operator
is clearly normal. If X is discrete and µ is counting measure, the character-
istic functions of the points of X form an orthonormal basis for L2(X,µ) and
the spectral theorem says that a is diagonalized by this basis. In general,
the spectral theorem says that normal operators are “measurably diagonal-
izable”.

Our stating of the Spectral Theorem is rather premature in the formal
sense since we are going to introduce some of the key notions used in its
proof later on, in §1.2 and §2.3. This was motivated by the insight that the
Spectral Theorem provides to theory of C∗-algebras.

An operator a is self-adjoint if a = a∗. Self-adjoint operators are obviously
normal. For any b ∈ B(H), the “real” and “imaginary” parts of b, b0 =
(b+ b∗)/2 and b1 = (b− b∗)/2i are self-adjoint and satisfy b = b0 + ib1. Thus
any operator is a linear combination of self-adjoint operators. It is easy to
check that an operator is normal iff its real and imaginary parts commute,
so the normal operators are exactly the linear combinations of commuting
self-adjoint operators.

Example 1.6. The real and imaginary parts of a multiplication operator
mf are mRe f and mIm f . A multiplication operator mf is self-adjoint iff f
is real (a.e.). By the spectral theorem, all self-adjoint operators are of this
form.

Lemma 1.7 (Polarization). For any a ∈ B(H) and ξ, η ∈ H,

(aξ|η) =
1
4

3∑
k=0

ik(a(ξ + ikη)|ξ + ikη).

Proof. An easy calculation. �

Proposition 1.8. An operator a is self-adjoint iff (aξ|ξ) is real for all ξ.

Proof. First, note that

((a− a∗)ξ|ξ) = (aξ|ξ)− (a∗ξ|ξ) = (aξ|ξ)− (ξ|aξ) = (aξ|ξ)− (aξ|ξ).
Thus (aξ|ξ) is real for all ξ iff ((a−a∗)ξ|ξ) = 0 for all ξ. But by polarization,
the operator a−a∗ is entirely determined by the values ((a−a∗)ξ|ξ), so this
is equivalent to a− a∗ = 0. �

An operator b such that (bξ|ξ) ≥ 0 for all ξ ∈ H is positive, and we write
b ≥ 0. By Proposition 1.8, positive operators are self-adjoint.

Example 1.9. A multiplication operator mf is positive iff f ≥ 0 (a.e.). By
the spectral theorem, all positive operators are of the form mf .

Exercise 1.10. For any self-adjoint a ∈ B(H) we can write a = a0−a1 for
some positive operators a0 and a1. (Hint: Use the spectral theorem.)
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Proposition 1.11. b is positive iff b = a∗a for some (non-unique) a. This
a may be chosen to be positive.

Proof. (⇐) (a∗aξ|ξ) = (aξ|aξ) = ‖aξ‖2 ≥ 0.
(⇒) If b is positive, by the spectral theorem we may assume b = mf for

f ≥ 0. Let a = m√
f . �

We say that p ∈ B(H) is a projection if p2 = p∗ = p.

Lemma 1.12. p is a projection iff it is the orthogonal projection onto a
closed subspace of H.

Proof. Any linear projection p onto a closed subspace of H satisfies p =
p2, and orthogonal projections are exactly those that also satisfy p = p∗.
Conversely, suppose p is a projection. Then p is self-adjoint, so we can write
p = mf for f : X → C, and we have f = f2 = f̄ . Hence f(x) ∈ {0, 1} for
(almost) all x. We then set A = f−1({1}), and it is easy to see that p is the
orthogonal projection onto the closed subspace L2(A) ⊆ L2(X). �

If E ⊆ H is a closed subspace, we denote the projection onto E by projE .
We denote the identity operator on H by I (some authors use 1). An

operator u is unitary if uu∗ = u∗u = I. This is equivalent to u being
invertible and satisfying

(ξ|η) = (u∗uξ|η) = (uξ|uη)
for all ξ, η ∈ H. That is, an operator is unitary iff it is a Hilbert space
automorphism of H. Unitary operators are obviously normal.

Example 1.13. A multiplication operator mf is unitary iff ff̄ = |f |2 = 1
(a.e.). By the spectral theorem, all unitaries are of this form.

An operator v is a partial isometry if

p = vv∗ and q = v∗v

are both projections. Partial isometries are essentially isomorphisms (isome-
tries) between closed subspaces of H: For every partial isometry v there is
a closed subspace H0 of H such that v � H0 is an isometry and v � H⊥

0 ≡ 0.
However, as the following example shows, partial isometries need not be
normal.

Example 1.14. Let (en) be an orthonormal basis of H. We define the
unilateral shift S by S(en) = en+1 for all n. Then S∗(en+1) = en and
S∗(e0) = 0. We have S∗S = I but SS∗ = projspan{en}n≥1

.

Any complex number z can be written as z = reiθ for r ≥ 0 and |eiθ| = 1.
Considering C as the set of operators on a one-dimensional Hilbert space,
there is an analogue of this on an arbitrary Hilbert space.

Theorem 1.15 (Polar Decomposition). Any a ∈ B(H) can be written as
a = bv where b is positive and v is a partial isometry.
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Proof. See e.g., [27, Theorem 3.2.17 and Remark 3.2.18]. �

However, this has less value as a structure theorem than than one might
think, since b and v may not commute. While positive operators and partial
isometries are both fairly easy to understand, polar decomposition does not
always make arbitrary operators easy to understand. For example, it is easy
to show that positive operators and partial isometries always have nontrivial
closed invariant subspaces, but it is a famous open problem whether this is
true for all operators.

1.2. The spectrum of an operator.

Definition 1.16. The spectrum of an operator a is

σ(a) = {λ ∈ C : a− λI is not invertible}.
For a finite-dimensional matrix, the spectrum is the set of eigenvalues.

Example 1.17. A multiplication operator mf is invertible iff there is some
ε > 0 such that |f | > ε (a.e.). Thus since mf − λI = mf−λ, σ(mf ) is the
essential range of f (the set of λ ∈ C such that for every neighborhood U of
λ, f−1(U) has positive measure).

Lemma 1.18. If ‖a‖ < 1 then I − a is invertible in C∗(a, I).

Proof. The series b =
∑∞

n=0 a
n is convergent and hence in C∗(a, I). By

considering partial sums one sees that (I − a)b = b(I − a) = I. �

The following Lemma is an immediate consequence of the Spectral The-
orem. However, since its assertions (1) is used in the proof of the latter, we
provide its proof.

Lemma 1.19. Let a ∈ B(H).
(1) σ(a) is a compact subset of C.
(2) σ(a∗) = {λ : λ ∈ σ(a)}.
(3) If a is normal, then a is self-adjoint iff σ(a) ⊆ R.
(4) If a is normal, then a is positive iff σ(a) ⊆ [0,∞).

Proof. (1) If |λ| > ‖a‖ then a−λ ·I = λ( 1
λa−I) is invertible by Lemma 1.18,

and therefore σ(a) is bounded.
We shall now show that the set of invertible elements is open. Fix an

invertible a. Since the multiplication is continuous, we can find ε > 0 such
that for every b in the ε-ball centered at a there is c such that both ‖I −
bc‖ < 1 and ‖I − cb‖ < 1. By Lemma 1.18 there are d1 and d2 such that
bcd1 = d2cb = I. Then we have

cd1 = I · cd1 = d2cbcd1 = d2c · I = d2c

and therefore cd1 = d2c is the inverse of b.
Let a be an arbitrary operator. If λ /∈ σ(a) then by the above there is an

ε > 0 such that every b in the ε-ball centered at a − λ · I is invertible. In
particular, if |λ′ − λ| < ε then λ′ ∈ σ(a), concluding the proof that σ(a) is
compact. �
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2. C∗-algebras

Definition 2.1. A concrete C∗-algebra is a norm-closed *-subalgebra of
B(H). If X ⊆ B(H), we write C∗(X) for the C∗-algebra generated by X.

When talking about C∗-algebras, we will always assume everything is
“*”: subalgebras are *-subalgebras (i.e. closed under involution), homomor-
phisms are *-homomorphisms (i.e. preserve the involution), etc.

Definition 2.2. An (abstract) C∗-algebra is a Banach algebra with involu-
tion that satisfies ‖aa∗‖ = ‖a‖2 for all a. That is, it is a Banach space with
a product and involution satisfying Lemma 1.3.

A C∗-algebra is unital if it has a unit (multiplicative identity). For unital
C∗-algebras, we can talk about the spectrum of an element.

Lemma 2.3. Every C∗-algebra A is contained in a unital C∗-algebra Ã ∼=
A⊕ C.

Proof. On A × C define the operations as follows: (a, λ)(b, ξ) = (ab + λb +
ξa, λξ), (a, λ)∗ = (a∗, λ̄) and ‖(a, λ)‖ = sup‖b‖≤1 ‖ab + λb‖ and check that
this is still a C∗-algebra.

A straightforward calculation shows that (0, 1) is the unit of Ã and that
A 3 a 7→ (a, 0) ∈ Ã is an isomorphic embedding. �

We call Ã the unitization of A. By passing to the unitization, we can talk
about the spectrum of an element of a nonunital C∗-algebra. The unitization
retains many of the properties of the algebra A, and many results are proved
by first considering the unitization. However, some caution is advised; for
example, the unitization is never a simple algebra.

If A and B are unital and A ⊆ B we say A is a unital subalgebra of B if
the unit of B belongs to A (that is, B has the same unit as A).

Almost all of our definitions (normal, self-adjoint, projections, etc.) make
sense in any C∗-algebra. More precisely, for an operator a in a C*-algebra
A we say that

(1) a is normal if aa∗ = a∗a,
(2) a is self-adjoint (or hermitian) if a = a∗,
(3) a is a projection if a2 = a∗ = a,
(4) a is positive (or a ≥ 0) if a = b∗b for some b,
(5) If A is unital then a is unitary if aa∗ = a∗a = I.

Note that a positive element is automatically self-adjoint. For self-adjoint
elements a and b write a ≤ b if b− a is positive.

The following result says that the spectrum of an element of a C∗-algebra
doesn’t really depend on the C∗-algebra itself, as long as we don’t change
the unit.

Lemma 2.4. Suppose A is a unital subalgebra of B and a ∈ A is normal.
Then σA(a) = σB(a), where σA(a) and σB(a) denote the spectra of a as an
element of A and B, respectively.
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Proof. See e.g., [27, Corollary 4.3.16] or [9, Corollary 2 on p. 49]. �

2.1. Some examples of C∗-algebras.

2.1.1. C0(X). Let X be a locally compact Hausdorff space. Then

C0(X) = {f : X → C : f is continuous and vanishes at ∞}
is a C∗-algebra with the involution f∗ = f . Here “vanishes at∞” means that
f extends continuously to the one-point compactification of X such that the
extension vanishes at ∞. Equivalently, for any ε > 0, there is a compact set
K ⊆ X such that |f(x)| < ε for x 6∈ K. In particular, if X itself is compact,
all continuous functions vanish at ∞, and we write C0(X) = C(X).
C0(X) is abelian, so in particular every element is normal. C0(X) is unital

iff X is compact (iff the constant function 1 vanishes at ∞). The unitization
of C0(X) is C(X∗), where X∗ is the one-point compactification of X. For
f ∈ C0(X), we have:

f is self-adjoint iff range(f) ⊆ R.
f is positive iff range(f) ⊆ [0,∞).

f is a projection iff f2(x) = f(x) = f(x)
iff range(f) ⊆ {0, 1}
iff f = χU for a clopen U ⊆ X.

For any f ∈ C0(X), σ(f) = range(f).

2.1.2. Full matrix algebras. Mn, the set of n×n complex matrices is a unital
C∗-algebra. In fact, Mn

∼= B(`2(n)), where `2(n) is an n-dimensional Hilbert
space.

adjoint, unitary: the usual meaning.
self-adjoint: hermitian.

positive: positively definite.
σ(a): the set of eigenvalues.

The spectral theorem on Mn is the spectral theorem of elementary linear
algebra: normal matrices are diagonalizable.

2.1.3. The algebra of compact operators. It is equal to1

K(H) =C∗({a ∈ B(H) : a[H] is finite-dimensional})
={a ∈ B(H) : a[unit ball] is precompact}
={a ∈ B(H) : a[unit ball] is compact}.

(Note that K(H) is denoted by C(H) in [26] and by B0(H) in [27], by
analogy with C0(X).) We write rn = projspan{ej |j≤n} for a fixed basis {en}
of H. Then for a ∈ B(H), the following are equivalent:

(1) a ∈ K(H),
(2) limn ‖a(I − rn)‖ = 0,
(3) limn ‖(I − rn)a‖ = 0.

1The second equality is a nontrivial fact specific to the Hilbert space; see [27, Theo-
rem 3.3.3 (iii)]



SET THEORY AND OPERATOR ALGEBRAS 9

Note that if a is self-adjoint then

‖a(I − rn)‖ = ‖(a(I − rn))∗‖ = ‖(I − rn)a‖.
It is not hard to see that K(H) is a (two-sided) ideal of B(H).

2.2. L∞(X,µ). If (X,µ) is a σ-finite measure space, then the space L∞(X,µ)
of all essentially bounded µ-measurable functions onX can be identified with
the space of all multiplication operators (see Example 1.4). Then L∞(X,µ)
is concrete C∗-algebra acting on L2(X,µ). It can be shown that ‖mf‖ is
equal to the essential supremum of f ,

‖f‖∞ = sup{t ≥ 0 : µ{x : |f(x)| > t} > 0}.

2.2.1. The Calkin algebra. This is an example of an abstract C∗-algebra.
The quotient C(H) = B(H)/K(H) is called the Calkin algebra. It is some-
times denoted by Q or Q(H). We write π : B(H) → C(H) for the quotient
map. The norm on C(H) is the usual quotient norm for Banach spaces:

‖π(a)‖ = inf{‖b‖ : π(a) = π(b)}
The Calkin algebra turns out to be a very “set-theoretic” C∗-algebra, anal-
ogous to the Boolean algebra P(N)/Fin.

2.2.2. Direct limits.

Definition 2.5. If Ω is a directed set, Ai, i ∈ Ω are C∗-algebras and

ϕi,j : Ai → Aj for i < j

is a commuting family of homomorphisms, we define the direct limit (also
called the inductive limit) A = lim−→i

Ai by taking the algebraic direct limit
and completing it. We define a norm on A by saying that if a ∈ Ai,

‖a‖A = lim
j
‖ϕi,j(a)‖Aj .

This limit makes sense because the ϕi,j are all contractions by Lemma 2.10.

2.2.3. UHF (uniformly hyperfinite) algebras. For each n, define Φn : M2n →
M2n+1 by

Φn(a) =
(
a 0
0 a

)
.

We then define the CAR (Canonical Anticommutation Relations) algebra
(aka the Fermion algebra, aka M2∞ UHF algebra) as the direct limit M2∞ =
lim−→(M2n ,Φn). Alternatively, M2∞ =

⊗
n∈NM2, since M2n+1 = M2n ⊗M2

for each n and Φn(a) = a⊗ 1M2 .
Note Φn maps diagonal matrices to diagonal matrices, so we can talk

about the diagonal elements of M2∞ . These turn out to be isomorphic to
the algebra C(K), where K is the Cantor set. Thus we can think of M2∞

as a “noncommutative Cantor set.”
It is not difficult to see that for m and n in N there is a unital homo-

morphism from Mm into Mn if and only if m divides n. If it exists, then
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this map is unique up to conjugacy. Direct limits of full matrix algebra are
called UHF algebras and they were classified by Glimm (the unital case) and
Dixmier (the general case) in the 1960s. This was the start of the Elliott
classification program of separable unital C∗-algebras (see [30], [15]).

Exercise 2.6. Fix x ∈ 2N and let Dx = {y ∈ 2N : (∀∞n)y(n) = x(n)}.
Enumerate a basis of H as ξy, y ∈ Dx. Let s, t range over functions from
a finite subset of N into {0, 1}. For such s define a partial isometry of H
as follows. If y(m) 6= s(m) for some m ∈ dom(s) then let us(ξy) = 0.
Otherwise, if y � dom(s) = s, then let z ∈ 2N be such that z(n) = 1 − y(n)
for n ∈ dom(s) and z(n) = y(n) for n /∈ dom(s) and set us(ξy) = ξz.

(1) Prove that u∗s = us̄, where dom(s̄) = dom(s) and s̄(n) = 1− s(n) for
all n ∈ dom(s).

(2) Prove that usu∗s is the projection to span{ξy : y � dom(s) = s̄} and
u∗sus is the projection to span{ξy : y � dom(s) = s}.

(3) Let Ax be the C∗-algebra generated by us as defined above. Prove
that Ax is isomorphic to M2∞.

(4) Show that the intersection of Ax with the atomic masa (see §4.1)
diagonalized by ξy, y ∈ Dx, consists of all operators of the form∑

y αyξy where y 7→ αy is a continuous function.
(5) Show that for x and y in 2N there is a unitary v of H such that

Ad v sends Ax to Ay if and only if (∀∞n)x(n) = y(n). (Hint: cf.
Example 3.19.)

2.3. Automatic continuity and the Gelfand transform.

Lemma 2.7. If a is normal then ‖a2n‖ = ‖a‖2n
for all n ∈ N.

Proof. Using the C∗-equality and normality of a we have

‖a2‖ = (‖(a∗)2a2‖)1/2 = (‖(a∗a)∗(a∗a)‖)1/2 = ‖a∗a‖ = ‖a‖2.

Lemma now follows by a straightforward induction. �

Exercise 2.8. Find a ∈ B(H) such that ‖a‖ = 1 and a2 = 0. (Hint: Choose
a to be a partial isometry.)

It can be proved that a C∗-algebra is abelian if and only if it contains no
nonzero element a such that a2 = 0 (see [10, II.6.4.14]).

The spectral radius of an element a of a C∗-algebra is defined as

r(a) = max{|λ| : λ ∈ σ(a)}.

Lemma 2.9. Let A be a C∗-algebra and a ∈ A be normal. Then ‖a‖ = r(a).

Sketch of a proof. It can be proved (see [9, Theorem 1.7.3], also the first line
of the proof of Lemma 1.19) that for an arbitrary a we have

lim
n
‖an‖1/n = r(a),

in particular, the limit on the left hand side exists. By Lemma 2.9, for a
normal a this limit is equal to ‖a‖. �
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Lemma 2.10. Any homomorphism Φ : A → B between C∗-algebras is a
contraction (in particular, it is continuous).

Proof. By passing to the unitizations, we may assume A and B are unital
and Φ is unital as well (i.e., Φ(I) = 1).

Note that for any a ∈ A, σ(Φ(a)) ⊆ σ(a) (by the definition of the spec-
trum). Thus for a normal, using Lemma 2.9,

‖a‖ = sup{|λ| : λ ∈ σ(a)}
≥ sup{|λ| : λ ∈ σ(Φ(a))}
= ‖Φ(a)‖.

For general a, aa∗ is normal so by the C∗-equality we have

‖a‖ =
√
‖aa∗‖ ≥

√
‖Φ(aa∗)‖ = ‖Φ(a)‖.

�

For a unital abelian C∗-algebra A consider its spectrum

X = {φ : A→ C : φ is a nonzero homomorphism}.
By Lemma 2.10 each φ ∈ X is a contraction. Also φ(I) = 1, and therefore X
is a subset of the unit ball of the Banach space dual A∗ of A. It is therefore
weak*-compact by the Banach–Alaoglu theorem.

Theorem 2.11. If A is unital and abelian C∗-algebra and X is its spectrum,
then A ∼= C(X).

Proof. For a ∈ A the map fa : X → C defined by

fa(φ) = φ(a)

is continuous in the weak*-topology. The transformation

A 3 a→ fa ∈ C(X)

is the Gelfand transform of a. An easy computation shows that the Gelfand
transform is a *-homomorphism, and therefore by Lemma 2.10 continuous.
We need to show it is an isometry.

For b ∈ A we claim that b is not invertible if and only if φ(b) = 0 for some
φ ∈ X. Only the direct implication requires a proof. Fix a non-invertible b.
The Jb = {xb : x ∈ A} is a proper (two-sided) ideal containing b. Let J ⊇ Jb
be a maximal proper two sided (not necessarily closed and not necessarily
self-adjoint) ideal. Lemma 1.18 implies that ‖I−c‖ ≥ 1 for all c ∈ J . Hence
the closure of J is still proper, and by maximality J is a closed ideal. Every
closed two-sided ideal in a C∗-algebra is automatically self-adjoint (see [8,
p.11]). Therefore the quotient map φJ from A to A/J is a *-homomorphism.
Since A is abelian, by the maximality of J the algebra A/J is a field. For any
a ∈ A/J , Lemma 2.9 implies that σ(a) is nonempty, and for any λ ∈ σ(a),
a − λI = 0 since A/J is a field. Thus A/J is generated by I and therefore
isomorphic to C, so φJ ∈ X. Clearly φJ(b) = 0.
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Therefore range(fa) = σ(a) for all a. Lemma 2.9 implies

‖a‖ = max{|λ| : λ ∈ σ(a)} = ‖fa‖.
Thus B = {fa : a ∈ A} is isometric to A. Since it separates the points
in X, by the Stone–Weierstrass theorem (e.g., [27, Theorem 4.3.4]) B is
norm-dense in C(X), and therefore equal to C(X). �

Recall that σ(a) is always a compact subset of C (Lemma 1.19). Theo-
rem 1.5 (Spectral Theorem), is a consequence of the following Corollary and
some standard manipulations; see [9, Theorem 2.4.5].

Corollary 2.12. If a ∈ B(H) is normal then C∗(a, I) ∼= C(σ(a)).

Proof. Let C∗(a, I) ∼= C(X) as in Theorem 2.11. For any λ ∈ σ(a), a−λI is
not invertible so there exists φλ ∈ X such that φλ(a−λI) = 0, or φλ(a) = λ.
Conversely, if there is φ ∈ X such that φ(a) = λ, then φ(a − λI) = 0 so
λ ∈ σ(a). Since any nonzero homomorphism to C is unital, an element φ ∈ X
is determined entirely by φ(a). Since X has the weak* topology, φ 7→ φ(a)
is thus a continuous bijection from X to σ(a), which is a homeomorphism
since X is compact. �

Note that the isomorphism above is canonical and maps a to the identity
function on σ(a). It follows that for any polynomial p, the isomorphism
maps p(a) to the function z 7→ p(z). More generally, for any continuous
function f : σ(a) → C, we can then define f(a) ∈ C∗(a, I) as the preimage
of f under the isomorphism. For example, we can define |a| and if a is
self-adjoint then it can be written as a difference of two positive operators
as

a =
|a|+ a

2
− |a| − a

2
.

If a ≥ 0, then we can also define
√
a. Here is another application of the

“continuous functional calculus” of Corollary 2.12.

Lemma 2.13. Every a ∈ B(H) is a linear combination of unitaries.

Proof. By decomposing an arbitrary operator into the positive and negative
parts of its real and imaginary parts, it suffices to prove that each positive
operator a of norm ≤ 1 is a linear combination of two unitaries, u = a +
i
√
I − a2 and v = a − i

√
I − a2. Clearly a = 1

2(u + v). Since u = v∗ and
uv = vu = I, the conclusion follows. �

3. Positivity, states and the GNS construction

The following is a generalization of the spectral theorem to abstract C∗-
algebras:

Theorem 3.1 (Gelfand–Naimark). Every commutative C∗-algebra is iso-
morphic to C0(X) for a unique locally compact Hausdorff space X. The
algebra is unital iff X is compact.
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Proof. By Theorem 2.11, the unitization of A is isomorphic to C(Y ) for a
compact Hausdorff space Y . If φ ∈ X is the unique map whose kernel is
equal to A, then A ∼= C0(Y \ {φ}). Uniqueness of X follows from Theorem
3.13 below. �

In fact, the Gelfand–Naimark theorem is functorial: the category of com-
mutative C∗-algebras is dual to the category of locally compact Hausdorff
spaces. The space X is a natural generalization of the spectrum of a single
element of a C∗-algebra.

Recall that a ∈ A is positive if a = b∗b for some b ∈ A. It is not difficult
to see that for projections p and q we have p ≤ q if and only if pq = p if and
only if qp = p.

Exercise 3.2. Which of the following are true for projections p and q and
positive a and b?

(1) pqp ≤ p?
(2) a ≤ b implies ab = ba?
(3) p ≤ q implies pap ≤ qaq?
(4) p ≤ q implies prp ≤ qrq for a projection r?

(Hint: Only one of the above is true.)

Definition 3.3. Let A be a unital C∗-algebra. A continuous linear func-
tional ϕ : A→ C is positive if ϕ(a) ≥ 0 for all positive a ∈ A. It is a state
if it is positive and of norm 1. We denote the space of all states on A by
S(A).

Example 3.4. If ξ ∈ H is a unit vector, define a functional ωξ on B(H) by

ωξ(a) = (aξ|ξ).
Then ωξ(a) ≥ 0 for a positive a and ωξ(I) = 1; hence it is a state. We call
a state of this form a vector state.

States satisfy a Cauchy–Schwartz inequality:

|ϕ(a∗b)|2 ≤ ϕ(a∗a)ϕ(b∗b).

Lemma 3.5. If ϕ is a state on A and 0 ≤ a ≤ 1 is such that ϕ(a) = 1, then
ϕ(b) = ϕ(aba) for all b.

Proof. By Cauchy–Schwartz for states (see the paragraph before Theorem 3.7)

|ϕ((I − a)b)| ≤
√
ϕ(I − a)ϕ(b∗b) = 0.

Since b = ab + (I − a)b, we have ϕ(b) = ϕ(ab), and similarly ϕ(ab) =
ϕ(aba). �

Exercise 3.6. Prove the following.
(1) If φ is a pure state on Mn(C) then there is a rank one projection p

such that φ(a) = φ(pap) for all a.
(2) Identify Mn(C) with B(`n2 ). Show that all pure states of Mn(C) are

vector states.
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The basic reason we care about states is that they give us representations
of abstract C∗-algebras as concrete C∗-algebras.

Theorem 3.7 (The GNS construction). Let ϕ be a state on A. Then there
is a Hilbert space Hϕ, a representation πϕ : A → B(Hϕ), and a unit vector
ξ = ξϕ in Hϕ such that ϕ = ωξ ◦ πϕ.

Proof. We define an “inner product” on A by (a|b) = ϕ(b∗a). We let J =
{a : (a|a) = 0}, so that (·|·) is actually an inner product on the quotient
space A/J . We then define Hϕ to be the completion of A/J under the
induced norm. For any a ∈ A, πϕ(a) is then the operator that sends b + J
to ab+ J , and ξϕ is I + J . �

3.1. Irreducible representations and pure states.

Exercise 3.8. Assume ψ1 and ψ2 are states on A and 0 < t < 1 and let

φ = tψ1 + (1− t)ψ2.

(1) Show that φ is a state.
(2) Show that Hφ

∼= Hψ1 ⊕ Hψ2, with πφ(a) = πψ1(a) + πψ2(a), and
ξφ =

√
tξψ1 +

√
1− tξψ2. In particular, projections to Hψ1 and Hψ2

commute with π(a) for all a ∈ A.

States form a convex subset of A∗. We say that a state is pure if it is an
extreme point of S(A). That is, ϕ is pure iff

ϕ = tψ0 + (1− t)ψ1, 0 ≤ t ≤ 1

for ψ0, ψ1 ∈ S(A) implies ϕ = ψ0 or ϕ = ψ1. We denote the set of all pure
states on A by P(A).

While S(A) is not weak*-compact, the convex hull of S(A)∪{0} is, and we
can use this to show that the Krein–Milman theorem still applies to S(A).
That is, S(A) is the weak* closure of the convex hull of P(A). Since by a
form of Hahn–Banach lots of states exist, this says that lots of pure states
exist.

The space P(A) is weak*-compact only for a very restrictive class of C∗-
algebras, including K(H) and commutative algebras (see Definition 5.6).
For example, for UHF algebras the pure states form a dense subset in the
compactum of all states ([20, Theorem 2.8]).

Definition 3.9. A representation π : A → B(H) of a C∗-algebra is irre-
ducible (sometimes called irrep) if there is no nontrivial subspace H0 ⊂ H
such that π(a)H0 ⊆ H0 for all a ∈ A. Such a subspace is said to be invariant
for π[A] or reducing for π.

The easy direction of the following is Exercise 3.8.

Theorem 3.10. A state ϕ is pure iff πϕ is irreducible. Every irreducible
representation is of the form πϕ for some pure state ϕ.

Proof. See e.g., [8, Theorem 1.6.6] or [26, (i) ⇔ (vi) of Theorem 3.13.2]. �
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Example 3.11. If A = C(X), then (by the Riesz representation theorem)
states are the same as probability measures on A (writing µ(f) =

∫
fdµ).

Lemma 3.12. For a state ϕ of C(X) the following are equivalent:

(1) ϕ is pure,
(2) for a unique xϕ ∈ X we have ϕ(f) = f(xϕ)
(3) ϕ : C(X) → C is a homomorphism (ϕ is “multiplicative”).

Proof. Omitted (but see the proof of Theorem 2.11). �

Theorem 3.13. P(C(X)) ∼= X.

Proof. By (2) in Lemma 3.12, there is a natural map F : P(C(X)) → X. By
(3), it is not hard to show that F is surjective, and it follows from Urysohn’s
lemma that F is a homeomorphism. �

Proposition 3.14. For any unit vector ξ ∈ B(H), the vector state ωξ ∈
S(B(H)) is pure.

Proof. Immediate from Theorem 3.10. �

Definition 3.15. We say ϕ ∈ S(B(H)) is singular if ϕ[K(H)] = {0}.

By factoring through the quotient map π : B(H) → C(H), the space of
singular states is isomorphic to the space of states on the Calkin algebra
C(H).

Theorem 3.16. Each state of B(H) is a weak*-limit of vector states. A
pure state is singular iff it is not a vector state.

Proof. The first sentence is a special case of [19, Lemma 9] when A = B(H).
The second sentence is trivial. �

We now take a closer look at the relationship between states and repre-
sentations of a C∗-algebra.

Definition 3.17. Let A be a C∗-algebra and πi : A → B(Hi) (i = 1, 2) be
representations of A. We say π1 and π2 are (unitarily) equivalent and write
π1 ∼ π2 if there is a unitary (Hilbert space isomorphism) u : H1 → H2 such
that the following commutes:

B(H1)

Adu

��

A

π1

<<zzzzzzzzz

π2 ""DD
DD

DD
DD

D Adu(a) = uau∗

B(H2)
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Similarly, if ϕi ∈ P(A), we say ϕ1 ∼ ϕ2 if there is a unitary u ∈ Ã such
that the following commutes:

A

Adu

��

ϕ1

��?
??

??
??

C

A

ϕ2

??�������

Proposition 3.18. For ϕi ∈ P(A), ϕ1 ∼ ϕ2 iff πϕ1 ∼ πϕ2.

Proof. The direct implication is easy and the converse is a consequence of
the remarkable Kadison’s Transitivity Theorem. For the proof see e.g., [26,
the second sentence of Proposition 3.13.4]. �

3.2. On the existence of states. States on an abelian C∗-algebra C(X)
correspond to probability Borel measures on X (see Example 3.11).

Example 3.19. On M2, the following are pure states:

ϕ0 :
(
a11 a12

a21 a22

)
7→ a11

ϕ1 :
(
a11 a12

a21 a22

)
7→ a22

For any f ∈ 2N, ϕf =
⊗

n ϕf(n) is a pure state on
⊗
M2 = M2∞. Fur-

thermore, one can show that ϕf and ϕg are equivalent iff f and g differ at
only finitely many points, and that ‖ϕf − ϕg‖ = 2 for f 6= g. See [26, §6.5]
for a more general setting and proofs.

Lemma 3.20. If φ is a linear functional of norm 1 on a unital C∗-algebra
then φ is a state if and only if φ(I) = 1.

Proof. Only the converse implication requires a proof. Assume φ is not a
state and fix a ≥ 0. Algebra C∗(a, I) is abelian, and by the Riesz representa-
tion theorem the restriction of φ to this algebra is given by a Borel measure
µ on σ(a). The assumption that φ(I) = ‖φ‖ translates as |µ| = µ, hence µ is
a positive probability measure. Since a corresponds to the identity function
on σ(a) ⊆ [0,∞) we have φ(a) ≥ 0. �

Lemma 3.21. If A is a subalgebra of B, then any state of B restricts to a
state of A, and every (pure) state of A can be extended to a (pure) state of
B.

Proof. The first statement is trivial. Now assume φ is a state on A ⊆ B.
We shall extend φ to a state of B under an additional assumption that A is
a unital subalgebra of B; the general case is then a straightforward exercise
(see Lemma 2.3).
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By the Hahn–Banach theorem extend φ to a functional ψ on B of norm
1. By Lemma 3.20, ψ is a state of B.

Note that the (nonempty) set of extensions of φ to a state of B is weak*-
compact and convex. If we start with a pure state ϕ, then by Krein–Milman
the set of extensions of ϕ to B has an extreme point, which can then be
shown to be a pure state on B. �

Lemma 3.22. For every normal a ∈ A there is a state φ such that |φ(a)| =
‖a‖.

Proof. The algebra C∗(a) is by Corollary 2.12 isomorphic to C(σ(a)). Con-
sider its state φ0 defined by φ0(f) = f(λ), where λ ∈ σ(a) ia such that
‖a‖ = |λ|. This is a pure state and satisfies |φ(a)| = ‖a‖.

By Lemma 3.20 extend φ0 to a pure state φ on A. �

Exercise 3.23. Show that there is a C∗-algebra A and a ∈ A such that
|φ(a)| < ‖a‖ for every state φ of A.

(Hint: First do Exercise 3.6. Then consider
(

0 1
0 0

)
in M2(C). )

Theorem 3.24 (Gelfand–Naimark–Segal). Every C∗-algebra A is isomor-
phic to a concrete C∗-algebra.

Proof. By taking the unitization, we may assume A is unital. Each state ϕ
on A gives a representation πϕ on a Hilbert space Hϕ, and we take the prod-
uct of all these representations to get a single representation π =

⊕
ϕ∈S(A) πϕ

on H =
⊕
Hϕ.

We need to check that this representation is faithful, i.e., that ‖π(a)‖ =
‖a‖ for all a. By Lemma 2.10 we have ‖π(a)‖ ≤ ‖a‖. By Lemma 3.22 for
every self-adjoint a we have |φ(a)| = ‖a‖.

We claim that a 6= 0 implies π(a) 6= 0. For a we have that a = b + ic
for self-adjoint b and c, at least one of which is nonzero. Therefore π(a) =
π(b) + iπ(c) is nonzero. Thus A is isomorphic to its image π(A) ⊆ B(H), a
concrete C∗-algebra.

By Lemma 2.10 both π and its inverse are contractions, and therefore π
is an isometry. �

Exercise 3.25. Prove that a separable abstract C∗-algebra is isomorphic to
a separably acting concrete C∗-algebra.

4. Projections in the Calkin algebra

Recall that K(H) (see Example 2.1.3) is a (norm-closed two-sided) ideal
of B(H), and the quotient C(H) = B(H)/K(H) is the Calkin algebra (see
Example 2.2.1). We write π : B(H) → C(H) for the quotient map.

Lemma 4.1. If a ∈ C(H) is self-adjoint, then there is a self-adjoint a ∈
B(H) such that a = π(a).

Proof. Fix any a0 such that π(a0) = a. Let a = (a0 + a∗0)/2. �
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Exercise 4.2. Assume f : A→ B is a *-homomorphism between C∗-algebras
and p is a projection in the range. Is there necessarily a projection q ∈ A
such that f(q) = p? (Hint: Consider the natural *-homomorphism from
C([0, 1]) to C([0, 1/3] ∪ [2/3, 1]).)

Lemma 4.3. If p ∈ C(H) is a projection, then there is a projection p ∈
B(H) such that p = π(p).

Proof. Fix a self-adjoint a such that p = π(a). Represent a as a multiplica-
tion operator mf . Since π(f) is a projection, mf2−f ∈ K(H) Let

h(x) =

{
1, f(x) ≥ 1/2
0, f(x) < 1/2.

Then mh is a projection. Also, if (xα) is such that f(xα)2 − f(xα) → 0,
then h(xα)− f(xα) → 0. One can show that this implies that since mf2−f
is compact, so is mh−f . Hence π(mh) = π(mf ) = p. �

Thus self-adjoints and projections in C(H) are just self-adjoints and pro-
jections in C(H) modded out by compacts. However, the same is not true
for unitaries.

Example 4.4. Let S ∈ B(H) be the unilateral shift (Example 1.14). Then
S∗S = I and SS∗ = I−projspan({e0}) = I−p. Since p has finite-dimensional
range, it is compact, so π(S)∗π(S) = I = π(S)π(S∗). That is, π(S) is
unitary.

If π(a) is invertible, one can define the Fredholm index of a by

index(a) = dim ker a− dim ker a∗.

Fredholm index is (whenever defined) invariant under compact perturbations
of a ([27, Theorem 3.3.17]). Since index(u) = 0 for any unitary u and
index(S) = −1, there is no unitary u ∈ B(H) such that π(u) = π(S).

For A a unital C∗-algebra, we write P(A) for the set of projections in
A. We partially order P(A) by saying p ≤ q if pq = p. If they exist, we
denote joins and meets under this ordering by p ∨ q and p ∧ q. Note that
every p ∈ P(A) has a canonical (orthogonal) complement q = I − p such
that p ∨ q = I and p ∧ q = 0.

Lemma 4.5. Let p, q ∈ A be projections. Then pq = p iff qp = p.

Proof. Since p = p∗ and q = q∗, if pq = p then pq = (pq)∗ = q∗p∗ = qp. The
converse is similar. �

Lemma 4.6. Let p, q ∈ A be projections. Then pq = qp iff pq is a projection,
in which case pq = p ∧ q and p+ q − pq = p ∨ q.

Proof. If pq = qp, (pq)∗ = q∗p∗ = qp = pq and (pq)2 = p(qp)q = p2q2 = pq.
Conversely, if pq is a projection then qp = (pq)∗ = pq. Clearly pq ≤ p and
pq ≤ q, and if r ≤ p and r ≤ q then rpq = (rp)q = rq = r so r ≤ pq.
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Hence pq = p ∧ q. We similarly have (1 − p)(1 − q) = (1 − p) ∧ (1 − q);
since r 7→ 1− r is an order-reversing involution it follows that p+ q − pq =
1− (1− p)(1− q) = p ∨ q. �

For A = B(H), note that p ≤ q iff range(p) ⊆ range(q). Also, joins and
meets always exist in B(H) and are given by

p ∧ q = the projection onto range(p) ∩ range(q),

p ∨ q = the projection onto span(range(p) ∪ range(q)).
That is, P(B(H)) is a lattice (in fact, it is a complete lattice, as the def-
initions of joins and meets above generalize naturally to infinite joins and
meets).

Note that if X is a connected compact Hausdorff space then C(X) has
no projections other than 0 and I.

Proposition 4.7. B(H) = C∗(P(B(H))). That is, B(H) is generated by its
projections.

Proof. Since every a ∈ B(H) is a linear combination of self-adjoints a + a∗

and i(a−a∗), it suffices to show that if b is self-adjoint and ε > 0 then there
is a linear combination of projections c =

∑
j αjpj such that ‖b − c‖ < ε.

We may use spectral theorem and approximate mf by a step function. �

Corollary 4.8. C(H) = C∗(P(C(H))). That is, C(H) is generated by its
projections.

Proof. Since a *-homomorphism sends projections to to projections, this is
a consequence of Proposition 4.7 �

Proposition 4.9. Let A be an abelian unital C∗-algebra. Then P(A) is a
Boolean algebra.

Proof. By Lemma 4.6, commuting projections always have joins and meets,
and p 7→ I − p gives complements. It is then easy to check that this is
actually a Boolean algebra using the formulas for joins and meets given by
Lemma 4.6. �

By combining Stone duality with Gelfand–Naimark theorem (see the re-
mark after Theorem 3.1) one obtains isomorphism between the categories
of Boolean algebras and abelian C∗-algebras generated by their projections.

Note that if A is nonabelian, then even if P(A) is a lattice it may be
nondistributive and hence not a Boolean algebra. See also Proposition 4.24
below.

4.1. Maximal abelian subalgebras. Since Boolean algebras are easier to
deal with than the arbitrary ordering of a poset of projections, we will be in-
terested in abelian (unital) subalgebras of B(H) and C(H). In particular, we
will look at maximal abelian subalgebras, or “masas.” The acronym masa
stands for ‘Maximal Abelian SubAlgebra’ or ‘MAximal Self-Adjoint subalge-
bra.’ Pedersen ([27]) uses MAÇA, for ‘MAximal Commutative subAlgebra.’
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Note that if H = L2(X,µ), then L∞(X,µ) is an abelian subalgebra of B(H)
(as multiplication operators).

Theorem 4.10. L∞(X,µ) ⊂ B(L2(X,µ)) is a masa.

Proof. See [9, Theorem 4.1.2] or [27, Theorem 4.7.7]. �

Conversely, every masa in B(H) is of this form. To prove this, we need
a stronger form of the spectral theorem, applying to abelian subalgebras
rather than just single normal operators.

Theorem 4.11 (General Spectral Theorem). If A is an abelian subalge-
bra of B(H) then there is a finite measure space (X,µ), a subalgebra B of
L∞(X,µ), and a Hilbert space isomorphism Φ : L2(X,µ) → H such that
AdΦ[B] = A.

Proof. See [9, Theorem 4.7.13]. �

Corollary 4.12. For any masa A ⊂ B(H), there is a finite measure space
(X,µ) and a Hilbert space isomorphism Φ : L2(X,µ) → H such that

AdΦ[L∞(X,µ)] = A.

Proof. By maximality, B must be all of L∞(X) in the spectral theorem. �

Example 4.13 (Atomic masa in B(H)). Fix an orthonormal basis (en) for
H, which gives an identification H ∼= `2(N) = `2. The corresponding masa
is then `∞, or all operators that are diagonalized by the basis (en). We
call this an atomic masa because the corresponding measure space is atomic.
The projections in `∞ are exactly the projections onto subspaces spanned by
a subset of {en}. That is, P(`∞) ∼= P(N). In particular, if we fix a basis,
then the Boolean algebra P(N) is naturally a sublattice of P(B(H)). Given
X ⊆ N, we write P (~e)

X for the projection onto span{en : n ∈ X}.

Example 4.14 (Atomless masa in B(H)). Let (X,µ) be any atomless finite
measure space. Then if we identify H with L2(X), L∞(X) ⊆ B(H) is
a masa, which we call an atomless masa. The projections in L∞(X) are
exactly the characteristic functions of measurable sets, so P(L∞(X)) is the
measure algebra of (X,µ) (modulo null sets).

Proposition 4.15. Let A ⊆ B(H) be an atomless masa. Then P(A) is
isomorphic to the Lebesgue measure algebra of measurable subsets of [0, 1]
modulo null sets.

Proof. Omitted, but see the remark following Proposition 4.9. �

We now relate masas in B(H) to masas in C(H).

Theorem 4.16 (Johnson–Parrott, 1972 [23]). If A is a masa in B(H) then
π[A] is a masa in C(H).

Proof. Omitted. �
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Theorem 4.17 (Akemann–Weaver [2]). There exists a masa A in C(H)
that is not of the form π[A] for any masa A ⊂ B(H).

Proof. By Corollary 4.12, each masa in B(H) is induced by an isomorphism
from H to L2(X) for a finite measure space X. But the measure algebra of
a finite measure space is countably generated, so there are only 2ℵ0 isomor-
phism classes of finite measure spaces. Since H is separable, it follows that
there are at most 2ℵ0 masas in B(H).

Now fix an almost disjoint (modulo finite) family A of infinite subsets of
N of size 2ℵ0 . Then the projections pX = π(P (~e)

X ), for X ∈ A, form a family
of orthogonal projections in C(H). Choose non-commuting projections q0X
and q1X in C(H) below pX . To each f : A → {0, 1} associate a family of
orthogonal projections {qf(X)

X }. Extending each of these families to a masa,
we obtain 22ℵ0 distinct masas in C(H). Therefore some masa in C(H) is not
of the form π[A] for any masa in B(H). �

Lemma 4.18. Let A ⊂ B(H) be a masa. Then J = P(A) ∩ K(H) is a
Boolean ideal in P(A) and P(π[A]) = P(A)/J .

Proof. It is easy to check that J is an ideal since K(H) ⊆ B(H) is an ideal.
Let a ∈ A be such that π(a) is a projection. WritingA = L∞(X), then in the
proof of Lemma 4.3, we could have chosen to represent a as a multiplication
operator on L2(X), in which case the projection p that we obtain such that
π(p) = π(a) is also a multiplication operator on L2(X). That is there is
a projection p ∈ A such that π(p) = π(a). Thus π : P(A) → P(π[A])
is surjective. Furthermore, it is clearly a Boolean homomorphism and its
kernel is J , so P(π[A]) = P(A)/J . �

4.2. Projections in the Calkin algebra.

Lemma 4.19. A projection p ∈ B(H) is compact iff its range is finite-
dimensional.

Proof. If we let B ⊆ H be the unit ball, p is compact iff p[B] is precompact.
But p[B] is just the unit ball in the range of p, which is (pre)compact iff the
range is finite-dimensional. �

Example 4.20. If A = `∞ is an atomic masa in B(H), then we obtain
an “atomic” masa π[A] in C(H). By Lemmas 4.18 and 4.19, P(π[A]) ∼=
P(N)/Fin, where Fin is the ideal of finite sets. In particular, if we fix a
basis then P(N)/Fin naturally embeds in P(C(H)). For this reason, we can
think of P(C(H)) as a “noncommutative” version of P(N)/Fin.

More generally, one can show that A ∩ K(H) = c0, the set of sequences
converging to 0, so that π[A] = `∞/c0 = C(βN \ N).

Example 4.21. If A is an atomless masa in B(H), then all of its projec-
tions are infinite-dimensional. Thus P(π[A]) = P(A). Thus the Lebesgue
measure algebra also embeds in P(C(H)).
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Lemma 4.22. For projections p and q in B(H), the following are equivalent:

(1) π(p) ≤ π(q),
(2) q(I − p) is compact,
(3) For any ε > 0, there is a finite-dimensional projection p0 ≤ I − p

such that ‖q(I − p− p0)‖ < ε.

Proof. The equivalence of (1) and (2) is trivial. For the remaining part see
[36, Proposition 3.3]. �

We write p ≤K q if the conditions of Lemma 4.22 are satisfied. The poset
(P(C(H)),≤) is then isomorphic to the quotient (P(B(H)),≤K)/ ∼, where
p ∼ q if p ≤K q and q ≤K p. In the strong operator topology, P(B(H)) is
Polish, and (3) in Lemma 4.22 then shows that ≤K⊂ P(B(H)) × P(B(H))
is Borel.

Lemma 4.23. There are projections p and q in B(H) such that π(p) =
π(q) 6= 0 but p ∧ q = 0.

Proof. Fix an orthonormal basis (en) for H and let αn = 1 − 1
n and βn =√

1− α2
n. Vectors ξn = αne2n + βne2n+1 for n ∈ N are orthonormal and

they satisfy limn(ξn|e2n) = 1. Projections p = projspan{e2n:n∈N} and q =
projspan{ξn:n∈N} are as required. �

Recall that P(B(H)) is a complete lattice, which is analogous to the fact
that P(N) is a complete Boolean algebra. Since P(N)/Fin is not a complete
Boolean algebra, we would not expect P(C(H)) to be a complete lattice.
More surprisingly, however, the “noncommutativity” of P(C(H)) makes it
not even be a lattice at all.

Proposition 4.24 (Weaver). P(C(H)) is not a lattice.

Proof. Enumerate a basis of H as ξmn, ηmn for m,n in N. Define

ζmn =
1
n
ξmn +

√
n− 1
n

ηmn

and

K =span{ξmn : m,n ∈ N}, p = projK
L =span{ζmn : m,n ∈ N}, q = projL.

For f : N → N, define

M(f) = span{ξmn : m ≤ f(n)} and r(f) = projM(f).

It is easy to show that r(f) ≤ p and r(f) ≤K q for all f , and if f < g, then
r(f) <K r(g) strictly. Furthermore, one can show that if r ≤K p and r ≤K q
then r ≤K r(f) for some f . In particular, it follows that p and q cannot
have a meet under ≤K. �
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4.3. Cardinal invariants. Since cardinal invariants can often be stated in
terms of properties of P(N)/Fin (see [11]), we can look for “noncommuta-
tive” (or “quantum”) versions of cardinal invariants by looking at analogous
properties of P(C(H)).

Recall that a denotes the minimal possible cardinality of a maximal infi-
nite antichain in P(N)/Fin, or equivalently the minimal possible cardinality
of an (infinite) maximal almost disjoint family in P(N).

Definition 4.25 (Wofsey, 2006 [37]). A family A ⊆ P(B(H)) is almost
orthogonal (ao) if pq is compact for p 6= q in A but no p ∈ A is compact.
We define a∗ to be the minimal possible cardinality of an infinite maximal
ao family (“mao family”).

Note that we require every p ∈ A to be noncompact since while Fin ⊂
P(N) is only countable, there are 2ℵ0 compact projections in P(B(H)).

Theorem 4.26 (Wofsey, 2006 [37]). (1) It is relatively consistent with
ZFC that ℵ1 = a = a∗ < 2ℵ0,

(2) MA implies a∗ = 2ℵ0.

Proof. Omitted. �

Question 4.27. Is a = a∗? Is a ≥ a∗? Is a∗ ≥ a?

It may seem obvious that a ≥ a∗, since P(N)/Fin embeds in P(C(H)) so
any maximal almost disjoint family would give a mao family. However, it
turns out that a maximal almost disjoint family can fail to be maximal as
an ao family.

An ideal J on P(N) is a p-ideal if for every sequenceXn, n ∈ N of elements
of J there is X ∈ J such that Jn \ J is finite for all n.

Lemma 4.28 (Steprāns, 2007). Fix a ∈ B(H) and a basis (en) for H. Then

Ja = {X ⊆ N : P (~e)
X a is compact}

is a Borel P-ideal.

Proof. Let ϕa(X) = ‖PXa‖. This is a lower semicontinuous submeasure on
N, and PXa is compact iff limn ϕa(X \ n) = 0 (see equivalent conditions
(1)–(3) in Example 2.1.3). Thus Ja is Fσδ. Proving that it is a p-ideal is an
easy exercise. �

Proposition 4.29 (Wofsey, 2006 [37]). There is a maximal almost disjoint
family A ⊂ P(N) whose image in P(B(H)) is not a mao family.

Proof. Let

ξn = 2−n/2
2n+1−1∑
j=2n

ej .

Then ξn, n ∈ N, are orthonormal and q = projspan{ξn}. Then limn ‖qen‖ = 0
hence Jq is a dense ideal: every infinite subset of N has an infinite subset
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in Jq (choose a sparse enough subset X such that
∑

n∈X ‖qen‖ < ∞). By
density, we can find a maximal almost disjoint family A that is contained in
Jq. Then q is almost orthogonal to PX for all X ∈ A, so {PX : X ∈ A} is
not a mao family. �

In some sense, this is the only way to construct such a counterexample.
More precisely, we have the following:

Theorem 4.30. Let a′ denote the minimal possible cardinality of a maximal
almost disjoint family that is not contained in any proper Borel P-ideal.
Then a′ ≥ a and a′ ≥ a∗.

Proof. The inequality a′ ≥ a is trivial, and the inequality a′ ≥ a∗ follows by
Lemma 4.28. �

One can also similarly define other quantum cardinal invariants: p∗, t∗, b∗,
etc (see e.g., [11]). For example, recall that b is the minimal cardinal κ such
that there exists a (κ, ω)-gap in P(N)/Fin and let b be the minimal cardinal
κ such that there exists a (κ, ω)-gap in P(C(H)). Considerations similar to
those needed in the proof of Proposition 4.24 lead to following.

Theorem 4.31 (Zamora–Avilés, 2007). b = b∗.

Proof. Omitted. �

Almost all other questions about the relationship between these and or-
dinary cardinal invariants are open. One should also note that equivalent
definitions of standard cardinal invariants may lead to distinct quantum
cardinal invariants.

4.4. A Luzin twist of projections. A question that may be related to
cardinal invariants is when collections of commuting projections of C(H) can
be simultaneously lifted to B(H) such that the lifts still commute. Let l2

be the minimal cardinality of such a collection that does not lift (it follows
from the proof of Theorem 4.17 that such collections exist). Note that if
instead of projections in the definition of l we consider arbitrary commuting
operators, then its value drops to 2: Consider the unilateral shift and its
adjoint (see Example 4.4).

Lemma 4.32. The cardinal l is uncountable. Given any sequence pi of
projections in B(H) such that π(pi) and π(pj) commute for all i, j, there is
an atomic masa A in B(H) such that π[A] contains all π(pi).

Proof. Let ζ(i), i ∈ N, be a norm-dense subset of the unit ball of H. We
will recursively choose projections qi in B(H), orthonormal basis ei, and
k(j) ∈ N so that for all i ≤ k(j) we have π(qi) = π(pi), qi(ej) ∈ {ej , 0}
and ζ(j) is spanned by {ei : i < k(j)}. Assume qj , j < n, and ei, i < k(n),
have been chosen to satisfy these requirements. Let r be the projection to
the orthogonal of {ei | i < n} and for each α ∈ {1,⊥}n let rα = rα(n) =

2This symbol is mathfrak l
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r
∏
i<n q

α(i)
i . For each α ∈ {1,⊥}n we have that π(pn) and π(rα) commute,

hence by Lemma 4.3 there is a projection pα in B(rα[H]) such that π(pα) =
π(pn)π(rα), and π(pn) =

∑
α ṗnṙα. Now pick k(n+1) large enough and unit

vectors ei, k(n) ≤ i < k(n + 1), each belonging in some rαqn[H], such that
ei, i < k(n+ 1) span ζ(n).

This assures (ei) is a basis of H. Let X(i) = {n : n ≥ k(i) and the unique
α ∈ {1,⊥}n such that en ∈ rα(n) satisfies α(i) = 1}. Fix i ∈ N. Clearly
qi = P

(~e)
X(i) satisfies π(qi) = π(pi) and it is diagonalized by (en). �

Note that it is not true that any countable collection of commuting pro-
jections in B(H) is simultaneously diagonalizable (e.g., take H = L2([0, 1])
and the projections onto L2([0, q]) for each q ∈ Q).

The following result was inspired by [25].

Proposition 4.33 (Farah, 2006 [17]). There is a collection of ℵ1 commut-
ing projections in C(H) that cannot be lifted to simultaneous diagonalizable
projections in B(H).

Proof. Construct pξ (ξ < ω1) in P(B(H)) so that for ξ 6= η:
(1) pξpη is compact, and
(2) ‖[pξ, pη]‖ > 1/4.

Such a family can easily be constructed by recursion using Lemma 4.32.
If there are lifts P (~e)

Xξ
of π(pξ) that are all diagonalized by a basis (en),

let dξ = pξ − P
(~e)
X(ξ). Write rn = P

(~e)
{0,1,...,n−1}, so a is compact iff limn ‖a(I −

rn)‖ = 0. By hypothesis, each dξ is compact, so fix n̄ such that S = {ξ :
‖dξ(I − rn̄)‖ < 1/8} is uncountable. Since the range of I − rn̄ is separable,
there are distinct ξ, η ∈ S such that ‖(dξ − dη)rn̄‖ < 1/8. But then we can
compute that

‖[pξ, pη]‖ ≤ ‖[PX(ξ), PX(η)]‖+
1
8

=
1
4
,

a contradiction. �

Conjecture 4.34. The projections constructed in Proposition 4.33 cannot
be lifted to simultaneously commuting projections. In particular, l = ℵ1.

4.5. Maximal chains of projections in the Calkin algebra. A problem
closely related to cardinal invariants is the the description of isomorphism
classes of maximal chains in P(N)/Fin and P(C(H)). Since P(N)/Fin is
ℵ1-saturated, under CH a back-and-forth argument shows that all maximal
chains are order-isomorphic.

Theorem 4.35 (Hadwin, 1998 [21]). CH implies that any two maximal
chains in P(C(H)) are order-isomorphic.

Proof. One can show that P(C(H)) has a similar saturation property and
then use the same back-and-forth argument. �
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Conjecture 4.36 (Hadwin, 1998 [21]). CH is equivalent to “any two max-
imal chains in P(C(H)) are order-isomorphic”.

This conjecture seems unlikely, as the analogous statement for P(N)/Fin
is not true.

Theorem 4.37 (essentially Shelah–Steprāns). There is a model of ¬CH in
which all maximal chains in P(N)/Fin are isomorphic.

Proof. Add ℵ2 Cohen reals to a model of CH. We can then build up an
isomorphism between any two maximal chains in the generic model in es-
sentially the same way as a nontrivial automorphism of P(N)/Fin is built
up in [33]. �

However, this proof cannot be straighforwardly adapted to the case of
P(C(H)).

By forcing towers in P(N)/Fin of different cofinalities, one can construct
maximal chains in (P(N) \ {N})/Fin of different cofinalities (in particular,
they are non-isomorphic). The same thing works for P(C(H)) \ {π(I)}.

Theorem 4.38 (Wofsey, 2006 [37]). There is a forcing extension in which
there are maximal chains in P(C(H)) \ {π(I)} of different cofinalities (and
2ℵ0 = ℵ2).

Proof. Omitted. �

5. Pure states

We now look at some set-theoretic problems concerning pure states on
C∗-algebras.

Lemma 5.1. If B is abelian and A is a unital subalgebra of B then any
pure state of B restricts to a pure state of A

Proof. A state on either algebra is pure iff it is multiplicative. It follows
that the restriction of a pure state is pure. �

However, in general the restriction of a pure state to a unital subalgebra
need not be pure.

Example 5.2. If ωξ is a vector state of B(H) and A is the atomic masa
diagonalized by a basis (en), then ωξ � A is pure iff |(ξ|en)| = 1 for some n.
Indeed, A = `∞ ∼= C(βN), so a state is pure iff it is the limit of the vector
states ωen under an ultrafilter (see Example 5.24 below).

Lemma 5.3. If A is an abelian C∗-algebra generated by its projections than
a state φ of A is pure if and only if φ(p) ∈ {0, 1} for every projection p in A.

Proof. Let us first consider the case when A is unital. By the Gelfand–
Namark theorem we may assume A is C(X) for a compact Hausdorff space
X. By Lemma 3.12 a state φ of C(X) is pure if and only if there is x ∈ X
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such that φ(f) = f(x) for all f . Such state clearly satisfies φ(p) ∈ {0, 1} for
each projection p in C(X).

If φ(p) ∈ {0, 1} for every projection p, then F = {p : φ(p) = 1} is a
filter such that for every p either p or I − p is in F . By our assumption,
X is zero-dimensional. Therefore F converges to a point x and Lemma 3.5
implies φ(f) = f(x) for all f ∈ C(X).

If A is not unital, then A is isomorphic to C0(X) for a locally compact
Hausdorff space X. Consider it as a subalgebra of C(βX) and use an argu-
ment similar to the above. �

Proposition 5.4. Let B be a unital abelian C∗-algebra and A ⊆ B be a
unital subalgebra. If every pure state of A extends to a unique pure state of
B, then A = B.

Proof. We have B = C(X), where X is the space of pure states on B. Since
B is abelian, every point of X gives a pure state on A. The hypothesis then
says that A separates points of X, so by Stone-Weierstrass A = C(X). �

Without the assumption that B is abelian the conclusion of Proposi-
tion 5.4 is no longer true. Let B = M2∞ and let A be its standard masa—the
limit of algebras of diagonal matrices. Then A is isomorphic to C(2N) and
each pure state φ of A is an evaluation function at some x ∈ 2N. Assume ψ
is a state extension of φ to M2∞ . In each M2n there is a 1-dimensional pro-
jection pn such that φ(pn) = 1, and therefore Lemma 3.5 implies that for all
a ∈M2n we have φ(a) = φ(pnapn) = the diagonal entry of the 2n × 2n ma-
trix pnapn determined by pn. Since

⋃
nM2n is dense in M2∞ , ψ is uniquely

determined by φ.
If A ⊆ B are C∗-algebras we say that A separates pure states of B if for

all states ψ 6= φ of B there is a ∈ A such that φ(a) 6= ψ(a).

Problem 5.5 (Noncommutative Stone-Weierstrass problem). Assume A is
a unital subalgebra of B and A separates P(B) ∪ {0}. Does this necessarily
imply A = B?

For more on this problem see e.g., [31].

Definition 5.6 (Kaplansky). A C∗-algebra A is of type I if for every irre-
ducible representation π : A→ B(H) we have π[A] ⊇ K(H).

Type I C∗-algebras are also known as GCR, postliminal, postliminary, or
smooth. Here GCR stands for ‘Generalized CCR’ where CCR stands for
‘completely continuous representation’; ‘completely continuous operators’
is an old-fashioned term for compact operators. See [26, §6.2.13] for an
amusing explanation of the terminology. Type I C∗-algebras should not be
confused with type I von Neumann algebras: B(H) is a type I von Neumann
algebra but is not a type I C∗-algebra.

Definition 5.7. A C∗-algebra is simple if and only if it has no nontrivial
(closed two-sided) ideals.
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Recall that the pure states of a C∗-algebra correspond to its irreducible
representations (Lemma 3.10) and that pure states are equivalent if and
only if the corresponding irreducible representations are equivalent (Propo-
sition 3.18).

Lemma 5.8. A type I C∗-algebra has only one pure state up to equivalence
if and only if it is isomorphic to K(H) for some H.

Proof. The converse direction is a theorem of Naimark, Theorem 5.11 below.
For the direct implication, assume A is of type I and all of its pre states are
equivalent. It is not difficult to see that A has to be simple. Therefore any
irreducible representation is an isomorphism and therefore π[A] = K(H). �

C∗-algebras that are not type I are called non-type I or antiliminary.
Theorem 5.9 is the key part of Glimm’s characterization of type I C∗-algebras
([19], see also [26, Theorem 6.8.7]). Its proof contains a germ of what became
known as the Glimm-Effros Dichotomy ([22]).

Theorem 5.9 (Glimm). If A is a non-type-I C∗-algebra then there is a
subalgebra B ⊆ A that has a quotient isomorphic to M2∞.

Proof. See [26, §6.8]. �

Corollary 5.10 (Akemann–Weaver, 2002 [1]). If A is non-type-I and has a
dense subset of cardinality < 2ℵ0, then A has nonequivalent pure states.

Proof. By Glimm’s Theorem, a quotient of a subalgebra of A is isomorphic
to M2∞ , and the pure states ϕf on M2∞ then lift and extend to pure states
ψf of A. Furthermore, if f 6= g then ‖ψf − ψg‖ = 2, since the same is true
of ϕf and ϕg. In particular, if ψ is any pure state on A, then unitaries that
turn ψ into ψf must be far apart (distance ≥ 1) from unitaries that turn ψ
into ψg. Since A does not have a subset of cardinality 2ℵ0 such that any two
points are far apart from each other, ψ cannot be equivalent to every ψf . �

5.1. Naimark’s problem.

Theorem 5.11 (Naimark, 1948). Any two pure states on K(H) are equiv-
alent, for any (not necessarily separable) Hilbert space H.

Proof. If ξ and η are unit vectors in H, then the corresponding vector states
ωξ and ωη are clearly equivalent, via any unitary that sends ξ to η. Hence
the conclusion follows from Proposition 5.12 below. �

Proposition 5.12. If φ is a pure state of K(H) then there is η ∈ H such
that φ(a) = ωη(a) = (a(η), η).

Proof. An operator a ∈ B(H) is a Trace Class Operator if for some orthog-
onal basis E of H we have ∑

e∈E
(|a|e, e) <∞.
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For a trace class operator a define its trace as

tr(a) =
∑
e∈E

(ae, e).

Just like in the finite-dimensional case we have tr(ab) = tr(ba) for any trace
class operator a and any operator b. In particular, this sum does not depend
on the choice of the orthonormal basis Every trace class operator is compact
since it can be approximated by finite rank operators.

For unit vectors η1 and η2 in H define a rank one operator bη1,η2 : H → H
by

bη1,η2(ξ) = (ξ, η2)η1.

Claim 5.13. Given a functional φ ∈ K(H)∗ there is a trace class operator
u such that φ(a) = tr(ua) for all a ∈ K(H). If φ ≥ 0 then u ≥ 0.

Proof. For the existence, see e.g., [27, Theorem 3.4.13]. To see u is positive,
pick η ∈ H. Then ubη,η(ξ) = u((ξ, η)η) = (ξ, η)u(η) = bu(η),η(ξ). Therefore

0 ≤ φ(bη,η) = tr(ubη,η) = tr(bu(η),η)

=
∑
e∈E

(bu(η),η(e), e) =
∑
e∈E

(ubη,ηe, e) = (u(η), η).

(In the last equality we change the basis to E′ so that η ∈ E′.) �

Since u is a positive compact operator, it is by the Spectral Theorem diag-
onalizable so we can write u =

∑
e∈E λee

∗ with the appropriate choice of the
basis E. Thus φ(a) = tr(ua) = tr(au) =

∑
e∈E(aue, e) =

∑
e∈E λe(ae, e) ≥

λe0(ae0, e0), for any e0 ∈ E. Since φ is a pure state, for each e ∈ E there
is te ∈ [0, 1] such that teφ(a) = λe0(ae0, e0). Thus exactly one te = te0 is
nonzero, and a 7→ λe0(ae0, e0). �

Question 5.14 (Naimark, 1951). If all pure states on a C∗-algebra A are
equivalent, is A isomorphic to K(H) for some Hilbert space H?

Note that by Lemma 5.8 and Corollary 5.10, any counterexample to this
must be non-type I and have no dense subset of cardinality < 2ℵ0 . A similar
argument shows that a counterexample cannot be a subalgebra of B(H) for
a Hilbert space with a dense subset of cardinality < 2ℵ0 .

The following lemma is based on recent work of Kishimoto–Ozawa–Sakai
and Futamura–Kataoka–Kishimoto.

Lemma 5.15 (Akemann–Weaver, 2004 [1]). Let A be a simple separable
unital C∗-algebra and let ϕ and ψ be pure states on A. Then there is a
simple separable unital B ⊇ A such that

(1) ϕ and ψ extend to states ϕ′, ψ′ on B in a unique way.
(2) ϕ′ and ψ′ are equivalent.

Proof. Omitted. �
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Recall that ♦ stands for Jensen’s diamond principle on ω1. One of its
equivalent reformulations states that there are functions hα : α → ω1, for
α < ω1, such that for every g : ω1 → ω1, the set {α : g � α = hα} is
stationary.

Theorem 5.16 (Akemann–Weaver, 2004 [1]). Assume ♦. Then there is a
C∗-algebra A, all of whose pure states are equivalent, which is not isomorphic
to K(H) for any H.

Proof. We construct an increasing chain of simple separable unital C∗-algebras
Aα (α ≤ ω1). We also construct pure states ψα on Aα such that for α < β,
ψβ � Aα = ψα. For each Aα, let {ϕγα}γ<ω1 enumerate all of its pure states.

If α is limit, we let Aα = lim−→β→α
Aβ and ψα = lim−→ψβ. If α is a successor

ordinal, let Aα+1 = Aα. If α is limit and we want to define Aα+1, suppose
there is ϕ ∈ P(Aα) such that ϕ � Aβ = ϕ

hα(β)
β for all β < α (if no such ϕ

exists, let Aα+1 = Aα). Note that
⋃
β<αAβ is dense in Aα since α is limit,

so there is at most one such ϕ. By Lemma 5.15, let Aα+1 be such that ψα
and ϕ have unique extensions to Aα+1 that are equivalent, and let ψα+1 be
the unique extension of ψα.

Let A = Aω1 and ψ = ψω1 . Then A is unital and infinite-dimensional,
so A is not isomorphic to any K(H). Let ϕ be any pure state on A; we
will show that ϕ is equivalent to ψ, so that A has only one pure state up to
equivalence.

Claim 5.17. S = {α : ϕ � Aα is pure on Aα} contains a club.

Proof. For x ∈ A and m ∈ N,

Tm,x =
{
α : ∃ψ1, ψ2 ∈ S(Aα), ϕ � Aα =

ψ1 + ψ2

2
and |ϕ(x)− ψ1(x)| ≥

1
m

}
is bounded in ω1. Indeed, if it were unbounded, we could take a limit of
such ψi (with respect to an ultrafilter) to obtain states ψi on A such that
ϕ = ψ1+ψ2

2 but such that |ϕ(x) − ψ1(x)| ≥ 1
m , contradicting purity of ϕ.

Since each Aα is separable, we can take a suitable diagonal intersection of
the Tm,x over allm and all x in a dense subset of A to obtain a club contained
in S. �

Now let h : S → ω1 be such that ϕ � Aα = ϕ
h(α)
α for all α ∈ S. Since S

contains a club, there is some limit ordinal α such that h � α = hα. Then by
construction, ϕ � Aα+1 is equivalent to ψα+1; say ϕ � Aα+1 = uψα+1u

∗ for
a unitary u. For each β ≥ α, ψβ extends uniquely to ψβ+1, so by induction
we obtain that ψ is the unique extension of ψα+1 to A. Since ϕ � Aα+1 is
equivalent to ψα+1, it also has a unique extension to A, which must be ϕ.
But uψu∗ is an extension of ϕ � Aα+1, so ϕ = uψu∗ and is equivalent
to ψ. �
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5.2. Extending pure states on masas. By Lemma 3.12, a state on an
abelian C∗-algebra is pure if and only if it is multiplicative, i.e., a *-homo-
morphism. If the algebra is generated by projections then this is equivalent
to asserting that φ(p) ∈ {0, 1} for every projection p (Lemma 5.3).

Definition 5.18. A masa in a C∗-algebra A has the extension property
(EP) if each of its pure states extends uniquely to a pure state on A.

On B(H), every vector state has the unique extension to a pure state.
Thus a masa A ⊂ B(H) has the EP iff π[A] ⊂ C(H) has the EP (since by
Theorem 3.16 all non-vector pure states are singular and thus define pure
states on C(H)).

Theorem 5.19 (Kadison–Singer, 1959, [24]). Atomless masas in B(H) do
not have the EP.

Proof. Omitted. �

Theorem 5.20 (Anderson, 1978 [5]). CH implies there is a masa in C(H)
that has the EP.

Proof. Omitted. �

Note that Anderson’s theorem does not give a masa on B(H) with the
EP, since his masa on C(H) does not lift to a masa on B(H). The following
is a famous open problem (compare with Problem 5.5).

Problem 5.21 (Kadison–Singer, 1959 [24]). Do atomic masas of B(H) have
the EP?

This is known to be equivalent to an arithmetic statement (i.e., a state-
ment all of whose quantifiers range over natural numbers). As such, it is
absolute between transitive models of ZFC and its solution is thus highly
unlikely to involve set theory. For more on this problem see [13]. How-
ever, there are related questions that seem more set-theoretic. For example,
consider the following conjecture:

Conjecture 5.22 (Kadison–Singer, 1959 [24]). For every pure state ϕ of
B(H) there is a masa A such that ϕ � A is multiplicative (i.e., pure).

We could also make the following stronger conjecture:

Conjecture 5.23. For every pure state ϕ of B(H) there is an atomic masa
A such that ϕ � A is multiplicative.

Example 5.24. Let U be an ultrafilter on N and (en) be an orthonormal
basis for H. Then

ϕ
(~e)
U (a) = lim

n→U
(aen|en)

is a state on B(H). It is singular iff U is nonprincipal (if {n} ∈ U , then
ϕ

(~e)
U = ωen).
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We say a state of the form ϕ
(~e)
U for some basis (en) and some ultrafilter

U is diagonalizable. As noted in Example 5.2, the restriction of a diagonal-
izable state to the corresponding atomic masa is a pure state of the masa,
and every pure state of an atomic masa is of this form.

Theorem 5.25 (Anderson, 1979 [7]). Diagonalizable states are pure.

Proof. Omitted. �

Conjecture 5.26 (Anderson, 1981 [4]). Every pure state on B(H) is diag-
onalizable.

Proposition 5.27. If atomic masas do have the EP, then Anderson’s con-
jecture is equivalent to Conjecture 5.23.

Proof. If atomic masas have the EP, a pure state on B(H) is determined
by its restriction to any atomic masa on which it is multiplicative. Any
multiplicative state on an atomic masa extends to a diagonalizable state,
so this means that a pure state restricts to a multiplicative state iff it is
diagonalizable. �

We now prove an affirmative answer for a special case of the Kadison-
Singer problem. We say an ultrafilter U on N is a Q-point (sometimes called
rare ultrafilter) if every partition of N into finite intervals has a transversal
in U . The existence of Q-points is known to be independent from ZFC, but
what matters here is that many ultrafilters on N are not Q-points.

Fix a basis (en) and let A denote the atomic masa of all operators diag-
onalized by it. In the following proof we write PX for P (~e)

X .

Theorem 5.28 (Reid, 1971 [29]). If U is a Q-point then the diagonal state
ϕU � A has the unique extension to a pure state of B(H).

Proof. Fix a pure state ϕ on B(H) extending ϕU � A and let a ∈ B(H).
Without a loss of generality U is nonprincipal so ϕ is singular.

Choose finite intervals (Ji) such that N =
⋃
n Jn and

‖PJmaPJn‖ < 2−m−n

whenever |m−n| ≥ 2. This is possible by (2) and (3) of Example 2.1.3 since
aPJm and PJma are compact. (See [18, Lemma 1.2] for details.) Let X ∈ U
be such that X ∩ (J2i ∪ J2i+1) = {n(i)} for all i. Then for Qi = P{n(i)} and
fi = en(i) we have ϕ(

∑
iQi) = 1 and

QaQ =
∑
i

Qia
∑
i

Qi =
∑
i

QiaQi +
∑
i6=j

QiaQj .

The second sum is compact by our choice of (Ji), and QiaQi = (afi|fi)Qi.
Now as we make X ∈ U smaller and smaller,

∑
i∈X(aei|ei)P{i} gets closer

and closer to (limi→U (aei|ei))
∑
Pi = ϕU (a)

∑
Pi. Thus

lim
X→U

π(PXaPX − ϕU (a)PX) → 0.
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Since ϕ is singular and ϕ(PX) = ϕU (PX) = 1, by Lemma 3.5 ϕ(a) =
ϕ(PXaPX) = ϕU (a). Since a was arbitrary, ϕ = ϕU . �

5.3. A pure state that is not multiplicative on any masa in B(H).
The following result shows that Conjecture 5.23 is not true in all models of
ZFC.

Theorem 5.29 (Akemann–Weaver, 2005 [2]). CH implies there is a pure
state ϕ on B(H) that is not multiplicative on any atomic masa.

Proof. We will sketch the proof of a stronger result (Theorem 5.39) below.
�

The basic idea of constructing such a pure state is to encode pure states
as “quantum ultrafilters”; a pure state on the atomic masa `∞ ⊂ B(H) is
equivalent to an ultrafilter. By the following result, states on B(H) corre-
spond to finitely additive maps from P(B(H)) into [0, 1].

Theorem 5.30 (Gleason). Assume µ : P(B(H)) → [0, 1] is such that µ(p+
q) = µ(p) + µ(q) whenever pq = 0. Then there is a unique state on B(H)
that extends µ.

Proof. Omitted. �

We need to go a little further and associate certain ‘filters’ of projections
to pure states of B(H).

Definition 5.31. A family F of projections in a C∗-algebra is a filter if
(1) For any p, q ∈ F there is r ∈ F such that r ≤ p and r ≤ q.
(2) If p ∈ F and r ≥ p then r ∈ F.

The filter generated by X ⊆ P(A) is the intersection of all filters containing
X (which may not actually be a filter in general if P(A) is not a lattice).

We say that a filter F ⊂ P(C(H)) lifts if there is a commuting family
X ⊆ P(B(H)) that generates a filter F such that π[F] = F . Note that, unlike
the case of quotient Boolean algebras, π−1[F ] itself is not a filter because
there exist projections p, q ∈ B(H) such that π(p) = π(q) but p ∧ q = 0
(Lemma 4.23).

Question 5.32. Does every maximal filter F in P(C(H)) lift?

Theorem 5.33 (Anderson, [6]). There are a singular pure state ϕ of B(H),
an atomic masa A1, and an atomless masa A2 such that both ϕ � A1 and
ϕ � A2 are multiplicative.

Proof. Omitted. �

Lemma 5.34 (Weaver, 2007). For F in P(B(H)) the following are equiva-
lent:

(A) ‖p1p2 . . . pn‖ = 1 for any p1, . . . , pn ∈ F and F is maximal with
respect to this property.
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(B) For all ε > 0 and for all finite F ⊆ F there is a unit vector ξ such
that ‖pξ‖ > 1− ε for all p ∈ F .

Proof. Since ‖p1p2 . . . pn‖ ≤ ‖p1‖ · ‖p2‖ · · · · · ‖pn‖ = 1, clause (A) is equiv-
alent to stating that for every ε > 0 there is a unit vector ξ such that
‖p1p2 . . . pnξ‖ > 1− ε. The remaining calculations are left as an exercise to
the reader. Keep in mind that, for a projection p, the value of ‖pξ‖ is close
to ‖ξ‖ if and only if ‖ξ − pξ‖ is close to 0. �

We call an F satisfying the conditions of Lemma 5.34 a quantum filter.

Theorem 5.35 (Farah–Weaver, 2007). Let F ⊆ P(C(H)). Then the fol-
lowing are equivalent:

(1) F is a maximal quantum filter,
(2) F = Fϕ = {p : ϕ(p) = 1} for some pure state ϕ.

Proof. (1⇒2): For a finite F ⊆ F and ε > 0 let

XF,ε = {ϕ ∈ S(B(H)) : ϕ(p) ≥ 1− ε for all p ∈ F}.
If ξ is as in (B) then ωξ ∈ XF,ε.

Since XF,ε is weak*-compact,
⋂

(F,ε)XF,ε 6= ∅, and any extreme point of
the intersection is a pure state with the desired property.3

(2⇒1). If ϕ(pj) = 1 for j = 1, . . . , k, then ϕ(p1p2 . . . pk) = 1 by Lemma
3.5, hence (A) holds. It is then not hard to show that Fϕ also satisfies (B)
and is maximal. �

Lemma 5.36. Let F be a maximal quantum filter, let (ξn) be an orthonor-
mal basis, and let N =

⋃n
j=1Aj be a finite partition. Then if there is a

q ∈ F such that ‖P (~ξ)
Aj
q‖ < 1 for all j, F is not diagonalized by (ξn) (i.e.,

the corresponding pure state is not diagonalized by (ξn)).

Proof. Assume F is diagonalized by (ξn) and let U be such that F = ϕ
(~ξ)
U .

Then Aj ∈ U for some j, but ‖P (~ξ)
Aj
q‖ < 1 for q ∈ F , contradicting the

assumption that F is a filter. �

Lemma 5.37. Let (en) and (ξn) be orthonormal bases. Then there is a
partition of N into finite intervals (Jn) such that for all k,

ξk ∈ span{ei : i ∈ Jn ∪ Jn+1}
(modulo a small perturbation of ξk) for some n = n(k).

Proof. Omitted. �

For (Jn) as in Lemma 5.37 let

D ~J = {q : ‖P (~e)
Jn∪Jn+1

q‖ < 1/2 for all n}

3It can be proved, using a version of Kadison’s Transitivity Theorem, that this inter-
section is actually a singleton.
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Lemma 5.38. Each D ~J is dense in P(C(H)), in the sense that for any
noncompact p ∈ P(B(H)), there is a noncompact q ≤ p such that q ∈ D ~J .

Proof. Taking a basis for range(p), we can thin out the basis and take ap-
propriate linear combinations to find such a q. �

Recall that d is the minimal cardinality of a cofinal subset of NN under
the pointwise order, and we write t∗ for the minimal length of a maximal
decreasing well-ordered chain in P(C(H)) \ {0}. In particular, CH (or MA)
implies that d = t∗ = 2ℵ0 .

Theorem 5.39 (Farah–Weaver). Assume d ≤ t∗.4 Then there exists a pure
state on B(H) that is not diagonalized by any atomic masa.

Proof. We construct a corresponding maximal quantum filter. By the den-
sity of D ~J and d ≤ t∗, it is possible to construct a maximal quantum filter
F such that F ∩ D ~J 6= ∅ for all ~J . Given a basis (ξk), pick (Jn) such
that ξk ∈ Jn(k) ∪ Jn(k)+1 (modulo a small perturbation) for all k. Let

Ai = {k | n(k) mod 4 = i} for 0 ≤ i < 4. Then if q ∈ F ∩D ~J , ‖P
(~ξ)
Ai
q‖ < 1

for each i. By Lemma 5.36, F is not diagonalized by (ξn). �

6. Automorphisms of the Calkin algebra

We now investigate whether the Calkin algebra has nontrivial automor-
phisms, which is analogous to the question of whether P(N)/Fin has non-
trivial automorphisms. We say an automorphism Φ of a C∗-algebra is inner
if Φ = Adu for some unitary u.

Example 6.1. If A = C0(X) is abelian then each automorphism is of the
form

f 7→ f ◦Ψ

for an autohomeomorphism Ψ of X. This automorphism is inner iff Ψ is the
identity (because Adu(a) = uau∗ = uu∗a = a for any u, a). Thus abelian
C∗-algebras often have many outer automorphisms. However, there do exist
(locally) compact Hausdorff spaces with no nontrivial autohomeomorphisms
(see the introduction of [28]), so some nontrivial abelian C∗-algebras have
no outer automorphisms.

Proposition 6.2. All automorphisms of B(H) are inner.

Proof. Omitted, but not too different from the proof that each automor-
phism of P(N) is given by a permutation of N. �

Proposition 6.3. The CAR algebra M2∞ =
⊗

nM2 has outer automor-
phisms.

4The sharpest hypothesis would be d <“the Novák number of P(C(H))”, if it makes
sense.
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Proof. Let Φ =
⊗

n Ad
(

0 1
1 0

)
. Then Φ is outer since

⊗
n

(
0 1
1 0

)
is not in

M2∞ . �

We now turn to automorphisms of the Calkin algebra. Although uni-
taries in C(H) need not lift to unitaries in B(H), they do lift to “almost
unitaries” (i.e., isomorphisms between finite codimension subspaces of H).
In particular, if we let S denote the unilateral shift, one can show that no
inner automorphism of C(H) sends π(S) to π(S∗).

Theorem 6.4 (Brown–Douglas–Fillmore, 1977 [12]). Let a, b ∈ B(H) be
normal. Then there is an automorphism of C(H) mapping π(a) to π(b) iff
there is an inner automorphism of C(H) mapping π(a) to π(b).

Proof. Omitted �

Question 6.5 (Brown–Douglas–Fillmore, 1977 [12, 1.6(ii)]). Is there an
automorphism of C(H) that maps π(S) to π(S∗)? More generally, are there
a, b ∈ C(H) such that no inner automorphism maps a to b but an outer
automorphism does?

A more basic question, also asked by Brown, Douglas and Fillmore ([12,
1.6(ii)]), is whether outer automorphisms exist at all. The obvious approach
to construct an outer automorphism would be to simply take a nontrivial
automorphism of P(N)/Fin ⊂ P(C(H)) and try to extend it to an automor-
phism of all of C(H). Unfortunately, this does not work, by the following
consequence of a result of Alperin–Covington–Macpherson [3].

Proposition 6.6. An automorphism of P(N)/Fin extends to an automor-
phism of C(H) if and only if it is trivial.

Proof. Recall that S∞ is the group of all permutations of N and let FS(S∞)
be its normal subgroup of all permutations which move only finitely many
points. By [3], the outer automorphism group of S∞/FS(S∞) is infinite
cyclic. The description of outer automorphisms given in [3] easily shows
that if an automorphism Φ of the Calkin algebra sends the atomic masa to
itself, then the restriction of Φ to the group of all unitaries that send the
atomic masa to itself is implemented by a unitary of the Calkin algebra. �

The following fact is a major way in which automorphisms of C(H) differ
from automorphisms of P(N)/Fin.

Proposition 6.7. An automorphism Φ of C(H) is inner iff Φ � C(H0) :
C(H0) → C(H) is Adu for a unitary u : H0 → H1 ⊆ H for some (any)
infinite-dimensional subspace H0 of H.

Proof. Fix u such that Φ(b) = ubu∗ for b ∈ C(H0). Fix v ∈ C(H) so that
vv∗ = π(projH0

) and v∗v = I. Then

Φ(a) = Φ(v∗)Φ(vav∗)Φ(v) = Φ(v∗)uvav∗u∗Φ(v).

For w = Φ(v∗)uv, we then have Φ(a) = waw∗. �
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That is, an automorphism is trivial iff it is somewhere trivial. This is
not true for automorphisms of P(N)/Fin. See, for example, the second part
of [33].

6.1. An outer automorphism from the Continuum Hypothesis. Un-
der CH, we might expect to be able to easily modify the proof that P(N)/Fin
has outer automorphisms to obtain an outer automorphism of C(H). That
is, we would build up an automorphism on separable subalgebras of C(H),
diagonalizing so that it avoids each inner automorphism. However, it turns
out that this construction faces serious difficulties at limit stages. Neverthe-
less, the result still holds.

Theorem 6.8 (Phillips–Weaver, 2006 [28]). CH implies that the Calkin
algebra has outer automorphisms.

Proof. The original proof used the approach above, but required very deep
C∗-algebra machinery to handle limit stages. We instead sketch a more
elementary proof, given in [18]. In addition, by an observation of Stefan
Geschke, this proof can be easily modified to require not CH but only 2ℵ0 <
2ℵ1 and d = ℵ1.

Fix a basis (en). For a partition of N into finite intervals N =
⋃
n Jn, let

En = span{ei : i ∈ Jn} and D[ ~J ] be the algebra of all operators that have
each En as an invariant subspace. We write ~Jeven = (J2n ⊕ J2n+1)n and
~Jodd = (J2n+1 ⊕ J2n+2)n.

Lemma 6.9. Suppose u is a unitary and αn ∈ C, |αn| = 1 for all n. Then
if v =

∑
n αnPJnu, Adu and Ad v agree on D[ ~J ].

Proof. Without a loss of generality u = I. Note that a ∈ D[ ~J ] iff a =∑
n PJnaPJn . Thus for a ∈ D[ ~J ],

vav∗ =
∑
n

αnPJnPJnaαnPJn =
∑
n

PJnaPJn = a.

�

For partitions ~J , ~K of N into finite intervals we say ~J � ~K if for all m
there is some n such that Jm ⊆ Kn ∪Kn+1.

Lemma 6.10. The ordering � is σ-directed and cofinally equivalent to
(NN,≤∗).

Proof. See [18, §3.1]. �

We write DD[ ~J ] = D[ ~Jeven] ∪ D[ ~Jodd].

Definition 6.11. A family F of pairs ( ~J, u) is a coherent family of unitaries
if

(1) F0 = { ~J : ( ~J, u) ∈ F for some u} is �-cofinal and
(2) For ~J � ~K in F0, Adu ~J and Adu ~K agree on DD[ ~J ].
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The following key lemma is not entirely trivial because not every a ∈ B(H)
is in D[ ~J ] for some ~J .

Lemma 6.12. If F is a coherent family of unitaries then there is the unique
automorphism ΦF of C(H) such that ΦF (π(a)) = π(uau∗) for all ( ~J, u) ∈ F
and all a ∈ D[ ~J ].

Proof. The main point is that any a ∈ B(H) can be decomposed as a =
a0 + a1 + c so that a0 and a1 are in DD[ ~E] for some ~E and c is compact
([18, Lemma 1.2]). See [18, Lemma 1.3] for details. �

A coherent family of unitaries is trivial if there is u0 ∈ B(H) such that
Adu0 and Adu agree on D[ ~J ] for all ( ~J, u) ∈ F . The automorphism ΦF is
inner iff F is trivial.

Now by CH construct �-increasing and cofinal sequence of partitions Jξ

(ξ < ω1) and diagonal unitaries αξ ∈ (U(1))N ⊂ `∞ ⊂ B(H) such that for
ξ < η such that for ξ < η, Adαξ and Adαη agree on D[ ~Jξ]. This can be done
with Lemma 6.9 and some work, and it can be done in such a way that there
are ℵ1 choices to be made in the construction. We thus obtain 2ℵ1 different
coherent families of unitaries that give 2ℵ1 different automorphisms of C(H).
Since there are only 2ℵ0 unitaries in C(H), some of these automorphisms
must be outer. �

Note, however, that this construction still does not answer Question 6.5,
since the outer automorphisms constructed are locally given by unitaries.
The same is true of the automorphisms constructed in Phillips–Weaver’s
original proof.

6.2. Todorcevic’s Axiom implies all automorphisms are inner. She-
lah ([32]) constructed a forcing extension in which all automorphisms of
P(N)/Fin are trivial. Toward this end he has developed a sophisticated
oracle chain condition forcing. His conclusion was later obtained from
the Proper Forcing Axiom (Shelah–Steprāns) and from Todorcevic’s Ax-
iom (which is one of the axioms known under the name of Open Coloring
Axiom, OCA) and Martin’s Axiom (Veličković). A number of rigidity results
along the similar lines has been obtained since (see [16]).

Todorcevic’s Axiom, TA [34]. Assume (V,E) is a graph such that E =⋃∞
n=0An × Bn for some subsets An, Bn of V . Then one of the following

applies.
(1) (V,E) has an uncountable clique: Y ⊆ X such that any two vertices

in Y are connected by an edge, or
(2) (V,E) is countably chromatic: there is a partition V =

⋃∞
n=0Xn so

that no edge connects two vertices in the same Xn.

Theorem 6.13 (Farah, 2007 [18]). Todorcevic’s Axiom implies all auto-
morphisms of C(H) are inner.
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Proof. Fix an automorphism Φ. The proof has two components.

(1) TA implies that the restriction of Φ to D[ ~J ] is implemented by a
unitary for every ~J .

(2) TA implies that every coherent family of unitaries is trivial.
The proof of (1) is a bit more complicated than the proof of (2), and both
can be found in [18]. Assertion (2) is false under CH (by the proof of
Theorem 6.8). On the other hand, we don’t know whether (1) is provable
without any additional assumption (cf. Theorem 6.6). �
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