Lecture 9

Enoch Cheung

September 30, 2013

1. What is $s_{n}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}$ in summation notation? Prove that

$$
s_{n}=\frac{n(n+1)(2 n+1)}{6}
$$

In summation notation:

$$
s_{n}=\sum_{i=1}^{n} i^{2}
$$

Base case: $s_{1}=1=\frac{1 \cdot 2 \cdot 3}{6}=1$
Inductive case: Suppose $s_{n}=\frac{n(n+1)(2 n+1)}{6}$, we want to show $s_{n+1}=\frac{(n+1)(n+2)(2 n+3)}{6}$

$$
\begin{aligned}
s_{n+1} & =\sum_{i=1}^{n+1} i^{2} \\
& =\sum_{i=1}^{n} i^{2}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \quad \text { by the inductive hypothesis } \\
& =\frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6} \\
& =\frac{(n+1)(n(2 n+1)+6(n+1))}{6} \\
& =\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6} \\
& =\frac{(n+1)(n+2)(2 n+3)}{6}
\end{aligned}
$$

2. Let $t_{1}=t_{2}=t_{3}=1$ and $t_{n}=t_{n-1}+t_{n-2}+t_{n-3}$. Show that $t_{n}<2^{n}$ for all $n \in \mathbb{N}$.

Base cases: $t_{1}=1<2, t_{2}=1<4=2^{2}, t_{3}=1<8=2^{3}$
Inductive case: Suppose $t_{k}<2^{k}$ for all $k<n$. We wish to show $t_{n}<2^{n}$.

$$
\begin{aligned}
t_{n} & =t_{n-1}+t_{n-2}+t_{n-3} \\
& <2^{n-1}+2^{n-2}+2^{n-3} \\
& =\frac{1}{2} 2^{n}+\frac{1}{4} 2^{n}+\frac{1}{8} 2^{n} \\
& =\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right) 2^{n} \\
& =\frac{7}{8} 2^{n} \\
& <2^{n}
\end{aligned}
$$

3. Let $\left\{A_{i}\right\}_{i \in \mathbb{N}}$ and $\left\{B_{i}\right\}_{i \in \mathbb{N}}$ be two indexed families of sets such that for all $i \in \mathbb{N}, A_{i} \subsetneq B_{i}$. Show that

$$
\bigcup_{i \in \mathbb{N}} A_{i} \subseteq \bigcup_{i \in \mathbb{N}} B_{i}
$$

Is it true always true that

$$
\bigcup_{i \in \mathbb{N}} A_{i} \subsetneq \bigcup_{i \in \mathbb{N}} B_{i}
$$

Let $x \in \bigcup_{i \in \mathbb{N}} A_{i}$, then $x \in A_{k}$ for some k, so $x \in B_{k+1} \subseteq \bigcup_{i \in \mathbb{N}} B_{i}$.
It is not true. Conisder $A_{i}=[i]$ and $B_{i}=[i+1]$. Certainly $A_{i} \subsetneq B_{i}$. However, consider $x \in \bigcup_{i \in \mathbb{N}} B_{i}$, then $x \in B_{k}=[k+1]$ for some k so $x \in A_{k+1}=[k+1]$ so $x \in \bigcup_{i \in \mathbb{N}}$.
4. Prove or disprove $\mathcal{P}(A) \cup A \neq \mathcal{P}(A)$ for all sets $A \neq \varnothing$.

This is false. Let $A=\{\varnothing\}$, then $\mathcal{P}(A)=\{\varnothing,\{\varnothing\}\}$.
5. Let $A \subseteq B$ and $C \subseteq D$. Prove or disprove $A \times C \subseteq B \times D$.

Suppose $(x, y) \in A \times C$, then $x \in A \subseteq B$ and $y \in C \subseteq D$, so $(x, y) \in B \times D$.
6. Prove or disprove $A \times B-C \times D=(A-C) \times(B-D)$ for all A, B, C, D.

Let $A=[2], B=[2], C=[1], D=[2]$, then $A \times B-C \times D=\{(1,1),(1,2),(2,1),(2,2)\}-$ $\{(1,1),(1,2)\}=\{(2,1),(2,2)\}$. However, $(A-C) \times(B-D)=\{2\} \times \varnothing=\varnothing$.

