Lecture 8

Enoch Cheung

September 23, 2013

1. Prove $A-(B \cup C) \subseteq A-B$.

Let $x \in A-(B \cup C)$, then $x \in A$ and $x \notin(B \cup C)$. Thus $x \notin B$, so $x \in A-B$.
2. Use double containment to prove $(A-B) \cup(C-B)=(A \cup C)-B$.

To show $(A-B) \cup(C-B) \subseteq(A \cup C)-B$, suppose $x \in(A-B) \cup(C-B)$. Case 1: If $x \in(A-B)$, then $x \in A \subseteq A \cup C$ and $x \notin B$, so $x \in(A \cup C)-B$. Case 2: If $x \in(C-B)$, then $x \in C \subseteq A \cup C$ and $x \notin B$ so $x \in(A \cup C)-B$.

To show $(A-B) \cup(C-B) \supseteq(A \cup C)-B$, suppose $x \in(A \cup C)-B$. Then $x \in A \cup C$ and $x \notin B$. Case 1: if $x \in A$, then $x \in A-B$. Case 2: if $x \in C$, then $x \in C-B$. In both cases, $x \in(A-B) \cup(C-B)$.
3. Let $\left\{B_{i}\right\}_{i \in \mathbb{N}}$ be an indexed family of sets and A be any set. Show that

$$
A-\bigcap_{i \in \mathbb{N}} B_{i}=\bigcup_{i \in \mathbb{N}}\left(A-B_{i}\right)
$$

First, we show that $A-\bigcap_{i \in \mathbb{N}} B_{i} \subseteq \bigcup_{i \in \mathbb{N}}\left(A-B_{i}\right)$. Suppose $x \in A-\bigcap_{i \in \mathbb{N}} B_{i}$, then $x \in A$ and $x \notin \bigcap_{i \in \mathbb{N}} B_{i}$. If $x \in B_{i}$ for every $i \in \mathbb{N}$, then $x \in \bigcap_{i \in \mathbb{N}}$ which would be a contradiction, so $x \notin B_{k}$ for some $k \in \mathbb{N}$. This means that $x \in A-B_{k}$ where $k \in \mathbb{N}$, so $x \in \bigcup_{i \in \mathbb{N}}\left(A-B_{i}\right)$.

Now we show that $A-\bigcap_{i \in \mathbb{N}} B_{i} \supseteq \bigcup_{i \in \mathbb{N}}\left(A-B_{i}\right)$. Suppose $x \in \bigcup_{i \in \mathbb{N}}\left(A-B_{i}\right)$, then for some $k \in \mathbb{N}$ we have $x \in\left(A-B_{k}\right)$. Thus, $x \in A$ and $x \notin B_{k}$. Therefore, $x \notin \bigcap_{i \in \mathbb{N}} B_{i}$, so $x \in A-\bigcap_{i \in \mathbb{N}} B_{i}$.
4. Define the symetric difference between two sets as $A \triangle B=(A-B) \cup(B-A)$. Prove the following:

$$
A \cap(B \triangle C)=(A \cap B) \triangle(A \cap C)
$$

To show $A \cap(B \triangle C) \subseteq(A \cap B) \triangle(A \cap C)$, suppose $x \in A \cap(B \triangle C)$, then $x \in A$ and $x \in B \triangle C=$ $(B-C) \cup(C-B)$. Case 1: Suppose $x \in B-C$, then $x \in B$ so $x \in A \cap B$, and $x \notin C$ so $x \notin A \cap C$. Therefore, $x \in(A \cap B)-(A \cap C)$, so $x \in(A \cap B) \triangle(A \cap C)$. Case 2: Suppose $x \in C-B$, then $x \in C$ so $x \in A \cap C$, and $x \notin B$ so $x \notin A \cap B$. Therefore, $x \in(A \cap C)-(A \cap B)$, so $x \in(A \cap B) \triangle(A \cap C)$.

To show $A \cap(B \triangle C) \supseteq(A \cap B) \triangle(A \cap C)$, suppose $x \in(A \cap B) \triangle(A \cap C)=((A \cap B)-(A \cap C)) \cup$ $((A \cap C)-(A \cap B))$. Case 1: If $x \in(A \cap B)-(A \cap C)$, then $x \in A \cap B$ and $x \notin A \cap C$, so $x \in A$ and $x \in B$, so $x \notin C$. Therefore, $x \in B-C \subseteq B \triangle C$, so $x \in A \cap(B \triangle C)$. Case 2: If $x \in(A \cap C)-(A \cap B)$, then $x \in A \cap C$ and $x \notin A \cap B$, so $x \in A$ and $x \in C$ so $x \notin B$. Therefore, $x \in C-B \subseteq B \triangle C$ so $x \in A \cap(B \triangle C)$.

