Lecture 7

Enoch Cheung

September 16, 2013

- 1. Do there exists sets A and B such that $A B = B A \neq \emptyset$? Why or why not? No. If A - B is nonempty, let $x \in A - B$, then $x \notin B$ so $x \notin B - A$. Therefore, $A - B \neq B - A$.
- 2. (a) Find an example of sets A, B, C such that (A B) C = A (B C). Trivial example: $A = B = C = \emptyset$. Another example: $A = \{a, d\}, B = \{b, d, e\}, C = \{c, e\}$, then $(A - B) - C = A - (B - C) = \{a\}$.
 - (b) Example where $(A B) C \neq A (B C)$. Trivial example: $A = B = C = \{x\}$. Interesting example: $A, B, C \subseteq \mathcal{P}(\{a, b, c\}), A = \{x \mid a \in x\}, B = \{x \mid b \in x\}, C = \{x \mid c \in x\}$. Then $(A - B) - C = \{\{a\}\}$ and $A - (B - C) = \{\{a\}, \{a, c\}, \{a, b, c\}\}$.
- 3. (a) Compare $\mathcal{P}(\{1\} \cup \{2,3\})$ and $\mathcal{P}(\{1\}) \cup \mathcal{P}(\{2,3\})$. $\mathcal{P}(\{1\} \cup \{2,3\}) = \mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}\}$ $\mathcal{P}(\{1\}) \cup \mathcal{P}(\{2,3\}) = \{\emptyset, \{1\}\} \cup \{\emptyset, \{2\}, \{3\}, \{2,3\} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{2,3\}\}$
 - (b) In general, $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. Suppose $X \in \mathcal{P}(A)$, then $X \subseteq A \subseteq A \cup B$, so $X \in \mathcal{P}(A \cup B)$. Same for $X \in \mathcal{P}(B)$. Thus, $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
- 4. Prove that for all sets A and B, if $A B = \emptyset$, then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

If $A - B = \emptyset$, then $A \subseteq B$. Suppose $X \subseteq A$, then $X \subseteq B$. Thus $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

5. Given sets A, B, C in some universal set U, prove that if $A \subseteq B \cap \overline{C}$ then $C \subseteq \overline{A}$. Suppose $A \subseteq B \cap \overline{C}$, and consider $x \in C$. We claim that $x \notin A$, suppose $x \in A$, then $x \in B \cap \overline{C}$ so $x \in \overline{C}$ which contradicts $x \in C$. Therefore, $x \notin A$, so $C \subseteq \overline{A}$.