Lecture 7

Enoch Cheung

September 16, 2013

1. Do there exists sets A and B such that $A-B=B-A \neq \emptyset$? Why or why not?

No. If $A-B$ is nonempty, let $x \in A-B$, then $x \notin B$ so $x \notin B-A$. Therefore, $A-B \neq B-A$.
2. (a) Find an example of sets A, B, C such that $(A-B)-C=A-(B-C)$.

Trivial example: $A=B=C=\emptyset$.
Another example: $A=\{a, d\}, B=\{b, d, e\}, C=\{c, e\}$, then $(A-B)-C=A-(B-C)=\{a\}$.
(b) Example where $(A-B)-C \neq A-(B-C)$.

Trivial example: $A=B=C=\{x\}$.
Interesting example: $A, B, C \subseteq \mathcal{P}(\{a, b, c\}), A=\{x \mid a \in x\}, B=\{x \mid b \in x\}, C=\{x \mid c \in x\}$.
Then $(A-B)-C=\{\{a\}\}$ and $A-(B-C)=\{\{a\},\{a, c\},\{a, b, c\}\}$.
3. (a) Compare $\mathcal{P}(\{1\} \cup\{2,3\})$ and $\mathcal{P}(\{1\}) \cup \mathcal{P}(\{2,3\}$.

$$
\begin{aligned}
& \mathcal{P}(\{1\} \cup\{2,3\})=\mathcal{P}(\{1,2,3\})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\} \\
& \mathcal{P}(\{1\}) \cup \mathcal{P}(\{2,3\})=\{\emptyset,\{1\}\} \cup\{\emptyset,\{2\},\{3\},\{2,3\}=\{\emptyset,\{1\},\{2\},\{3\},\{2,3\})
\end{aligned}
$$

(b) In general, $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

Suppose $X \in \mathcal{P}(A)$, then $X \subseteq A \subseteq A \cup B$, so $X \in \mathcal{P}(A \cup B)$. Same for $X \in \mathcal{P}(B)$. Thus, $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
4. Prove that for all sets A and B, if $A-B=\emptyset$, then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

If $A-B=\emptyset$, then $A \subseteq B$. Suppose $X \subseteq A$, then $X \subseteq B$. Thus $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
5. Given sets A, B, C in some universal set U, prove that if $A \subseteq B \cap \bar{C}$ then $C \subseteq \bar{A}$.

Suppose $A \subseteq B \cap \bar{C}$, and consider $x \in C$. We claim that $x \notin A$, suppose $x \in A$, then $x \in B \cap \bar{C}$ so $x \in \bar{C}$ which contradicts $x \in C$. Therefore, $x \notin A$, so $C \subseteq \bar{A}$.

