Lecture 5

Enoch Cheung

September 10, 2013

1. A binary tree is a rooted tree in which every node has either 0 or 2 children. These are computer scientist trees, not graph-theorist trees, meaning that "left" and "right" matter. So there are two trees with 3 leaves, even though they are mirror images of each other, and isomorphic as graphs.

Let $t(n)$ count the number of binary trees with n leaves (nodes with no children). Thus $t(1)=1$, $t(2)=1, t(3)=2$. Convince yourself that $t(4)=5$. Now given an inductive definition of $t(n)$

$$
t(n)=\sum_{1 \leq i<n} t(i) \cdot t(n-i)
$$

2. Prove that the Fibonacci numbers satisfies $F(n) \geq(3 / 2)^{n-2}$ for all $n \in \mathbb{N}$.

Base case: $F(1)=1 \geq \frac{2}{3}=(3 / 2)^{1-2}, F(2)=1 \geq 1=(3 / 2)^{2-2}$
Inductive case: Assume $F(n-2) \geq(3 / 2)^{n-4}$ and $F(n-1) \geq(3 / 2)^{n-3}$.
By definition of the Fibonacci numbers

$$
\begin{aligned}
F(n) & =F(n-1)+F(n-2) \\
& \geq(3 / 2)^{n-3}+(3 / 2)^{n-4}=\frac{2}{3}(3 / 2)^{n-2}+\frac{4}{9}(3 / 2)^{n-2}=\left(\frac{2}{3}+\frac{4}{9}\right)(3 / 2)^{n-2} \\
& \geq(3 / 2)^{n-2}
\end{aligned}
$$

3. Prove that the Fibonacci numbers $F(3 n)$ is even for every $n \in \mathbb{N}$.

Base case: $F(3)=2$ is even.
Inductive case: Assume $F(3(n-1))=F(3 n-3)$ is even.

$$
F(3 n)=F(3 n-1)+F(3 n-2)=F(3 n-2)+F(3 n-3)+F(3 n-2)=2 \cdot F(3 n-2)+F(3 n-3)
$$

so since $F(3 n-3)$ is even by the inductive hypothesis, $F(3 n)$ is even.
4. (Similar to the triomino homework question): If an equilateral triangle is cut into 4^{n} equilateral triangles and one corner is removed, the remaining area can be covered by trapezoidal tiles made up of 3 triangles.

Base case: A triangle made of 4 triangles with the top corner removed is exactly a trapezoid made of 3 triangles.

Inductive case: Assume that a tiling exists for triangle of size 4^{n-1}
Observe that

is a trapezoid made up for 4 smaller trapezoids.
For a triangle with 4^{n} equilateral triangles, consider it to be made of 4^{n-1} larger triangles, each 4 times the area (so each large triangle is made of 4 triangles). Using the inductive hypothesis, we can tile a triangle with 4^{n-1} larger triangles with larger trapezoids each 4 times the size. However, each larger trapezoid can be tiled by 4 standard sized trapezoids. The tiling from the inductive hypothesis leaves a large triangle empty, so we can tile the remaining large triangle using the base case, leaving a standard triangle empty, which is what we wanted.

