Lecture 3

Enoch Cheung

September 2, 2013

1. n people, each person has at most k friends. Into how many clubs do we need to partition the n people to guarantee that nobody is in a club with a friend?

Let p_{1}, \ldots, p_{n} be the n people. At stage 0 , nobody is in any club. At each stage i, we put p_{i} into some club C_{1}, \ldots, C_{c} such that nobody is in a club with a friend. We need to show that we can always put p_{i} somewhere.
2. 17 rooks are placed on an 8×8 chessboard. Prove that there are at least 3 rooks that do not threaten each other.

There are two ways to solve this using the pigeon hole principle.
(a) There are 8 rows, thus at least one row contains at least 3 rooks, call it row A. There are at least $17-8=9$ rooks in the other 7 rows, so one row contains at least 2 rooks, call it B. Finally, there are at least $9-8=1$ rook in the remaining 6 rows, so one row contains at least 1 rook, call it C.

Pick 1 rook in row C, then pick 1 rook in B that is not in the same column, since B has at least 2 rooks. Then pick 1 rook in A that is not in the same column as the previous 2, since A has at least 3 rooks.
(b) Roll the chessboard into a cylinder. Observe that rooks on the same diagonal do not threaten each other. There are 8 diagonals. By the pigeon hole principle, at least 3 rooks must be on the same diagonal, thus do not threaten each other.
3. Suppose $f(x)$ is a polynomial with integer coefficients.
(a) Prove that for any 2 different integers p and $q, p-q$ divides $f(p)-f(q)$.

Let $f(p)-f(q)=\sum_{k=0}^{n} a_{k}\left(p^{k}-q^{k}\right)$ where $a_{k} \in \mathbb{Z}$. We claim that $p-q$ divides $p^{k}-q^{k}$ for all $k \in \mathbb{N}$.

$$
\frac{p^{k}-q^{k}}{p-q}=p^{k-1}+p^{k-2} q+p^{k-3} q^{2}+\cdots+p q^{k-2}+q^{k-1}
$$

Thus $p-q$ divides $f(p)-f(q)$.
(b) Now suppose $f(x)=2$ for 3 distinct integers $x=a_{1}, a_{2}, a_{3}$. Show that if $f(b)=3$ then b is not an integer.

From (a) we know that $\left(b-a_{i}\right)$ divides $f(b)-f\left(a_{i}\right)=1$ for each $i=1,2,3$. The only integer divisors of 1 are $1,-1$, so by pigeon hole principle some $b-a_{i}=b-a_{j}$. Thus $a_{i}=a_{j}$ contradiction.
1.5.20 Let M_{0} be the initial number of $M \& M s$. Let $M_{1}=\frac{2}{3}\left(M_{0}-1\right)$. Let $M_{2}=\frac{2}{3}\left(M_{1}-1\right)$. Let $M_{3}=\frac{2}{3}\left(M_{2}-1\right)$. Finally, 3 divides M_{3}.

Thus

$$
M_{0}=1+\frac{3}{2}\left(1+\frac{3}{2}\left(1+\frac{3}{2} M_{3}\right)\right)
$$

Note that M_{3} has to be divisible by 3 and 2 , so try $M_{3}=6$. Then $M_{2}=10$, and $M_{1}=16$, and $M_{0}=25$.

