Enoch Cheung

December 3, 2013

1. How many ways are there to pick two cards from a standard 52 -card deck such that the first card is a spade and the second card is not an ace?

Case 1: First card ace of spades, $52-4=48$ non-aces left. $1 \cdot 48$ ways this case can happen.
Case 2: First card spades but not ace, $13-1=12$ choices of first card. $52-4-1=47$ non-aces left. $12 \cdot 47$ ways this case can happen.

Therefore, there are $48+12 \cdot 47$ ways.
2. How many ways are there to deal a 5 card hand such that at least 3 cards have the same rank?

There are 13 choices for the repeated rank. Case 1: The rank is repeated exactly 3 times, then there are $\binom{4}{3}=4$ choices of the repeating cards, and $\binom{48}{2}$ choices for the remaining cards. Case 2 : The rank is exactly 4 times, then there is 1 choice for the four cards, and $\binom{48}{1}=48$ choices for the remaining card.

Therefore, there are $13\left(4 \cdot\binom{48}{2}+48\right)$ ways.
3. (a) How many 5 -letter words can be made that have at least 1 vowel?

It is easier to count the number of 5 -letter words that has no vowels. There are $26-5=21$ consonants. Therefore, there are 21^{5} words with no vowels. There are 26^{5} total words. Therefore, there are $26^{5}-21^{5}$ words with at least one vowel.
(b) How many 6-letter words only have 1 distinct vowel and that vowel occurs exactly twice.

There are 5 choices of the vowel that appears. There are $\binom{6}{2}$ possible positions the vowel can appear (in the 6 letter string). There are 21^{4} possible choices for the remaining letters. Therefore, the total number is $5 \cdot\binom{6}{2} \cdot 21^{4}$.
4. How many anagrams are there of the word BANANA are there?

First, there are $\binom{6}{1}$ possible choices of locations of B. Next, there are $\binom{5}{3}$ possible choices of locations of the A's. The rest are N's. Therefore, the total number is $\binom{6}{1}\binom{5}{3}=\frac{6!}{1!3!2!}$.
5. Let $n \in \mathbb{N}$. How many lattice paths to $(2 n, 2 n)$ go through the point (n, n).

Starting from $(0,0)$, there are $\binom{2 n}{n}$ lattice paths to (n, n), because each path is a distinct sequence of n UPs and n RIGHTs. From (n, n), there are $\binom{2 n}{n}$ lattice paths to $(2 n, 2 n)$. Therefore, there are $\binom{2 n}{n}^{2}$ total paths.
6. How many lattice paths to $(11,7)$,
(a) Pass though both $(2,3)$ and $(7,4)$?

Starting from $(0,0)$, there are $\binom{2+3}{2}=\binom{5}{2}$ lattice paths to $(2,3)$, because each path is a distinct sequence of 2 RIGHTs and 3 UPs. Now from $(2,3)$ there are $\binom{7-2+4-3}{7-2}=\binom{6}{5}$ lattice paths to $(7,4)$. Finally, from $(7,4)$ to $(11,7)$ there are $\binom{11-7+7-4}{11-7}=\binom{7}{4}$ paths.

Therefore, total there are $\binom{5}{2}\binom{6}{5}\binom{7}{4}$ paths.
(b) Pass through neither $(2,3)$ nor $(7,4)$?

The total number of paths from $(0,0)$ to $(11,7)$ are $\binom{11+7}{11}=\binom{18}{11}$. The number of paths that pass through $(2,3)$ are $\binom{2+3}{2}\binom{11-2+7-3}{11-2}=\binom{5}{2}\binom{13}{9}$. The number of paths that pass through $(7,4)$ are $\binom{7+4}{7}\binom{11-7+7+4}{11-7}=\binom{11}{7}\binom{7}{4}$. Note however that if a path goes through both $(2,3)$ and $(7,4)$, then it will be counted when we count paths that goes through $(2,3)$ and also when we count paths that goes through $(7,4)$. By (a), there are $\binom{5}{2}\binom{6}{5}\binom{7}{4}$ such paths.

Therefore, the total number of paths that goes through neither $(2,3)$ nor $(7,4)$ are

$$
\binom{18}{11}-\binom{5}{2}\binom{13}{9}-\binom{11}{7}\binom{7}{4}+\binom{5}{2}\binom{6}{5}\binom{7}{4}
$$

7. How many ways are there to distribute 12 indistinguishable balls among 5 bins? "Stars and Bars" method: To divide up 12 balls (Stars) in a row into 5 bins, we need 4 dividers (Bars). There are $\binom{12+4}{4}$ possible positions of the Bars in a sequence of $12+4$ objects. Therefore, there are $\binom{16}{4}$ ways.

If we require at least one ball per bin, it is the same as asking how many ways to distribute 12-5 balls among 5 bins where they could be empty, then adding 1 ball to each of the 5 bins. Therefore, there are $\binom{12-5+4}{4}=\binom{11}{4}$ ways.

