Enoch Cheung

November 18, 2013

1. Let A, B be countably infinite sets.

By definition, there are bijections $f: A \rightarrow \mathbb{N}$ and $g: B \rightarrow \mathbb{N}$. Therefore, there is a bijection

$$
\begin{aligned}
h: A \times B & \longrightarrow \mathbb{N} \times \mathbb{N} \\
(a, b) & \longmapsto(f(a), g(b))
\end{aligned}
$$

To see that h is an injection, consider $(a, b),\left(a^{\prime}, b^{\prime}\right) \in A \times B$, and suppose $h(a, b)=h\left(a^{\prime}, b^{\prime}\right)$, then by definition, $(f(a), g(b))=\left(f\left(a^{\prime}\right), g\left(b^{\prime}\right)\right)$. By injectivity of f and g, this implies that $a=a^{\prime}$ and $b=b^{\prime}$, so $(a, b)=\left(a^{\prime}, b^{\prime}\right)$.

To see that h is surjective, consider $(n, m) \in \mathbb{N}$, then by surjectivity of f and g, there are $a \in A$ such that $f(a)=n$ and $b \in B$ such that $g(b)=B$. Therefore, $(a, b) \in A \times B$ such that $h(a, b)=(n, m)$.

Therefore, $h: A \times B \rightarrow \mathbb{N} \times \mathbb{N}$ is a bijection.
Recall from last time that $s: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined $s(m, n)=2^{m-1}(2 n-1)$ is a bijection.
We claim that $s \circ h: A \times B \rightarrow \mathbb{N}$ is a bijection.
To see that $s \circ h$ is injective, consider $(a, b),\left(a^{\prime}, b^{\prime}\right) \in A \times B$, then if $s(h(a, b))=s\left(h\left(a^{\prime}, b^{\prime}\right)\right)$, then by injectivity of $s, h(a, b)=h\left(a^{\prime}, b^{\prime}\right)$ and by injectivity of h we have $(a, b)=\left(a^{\prime}, b^{\prime}\right)$.

To see that $s \circ h$ is surjective, for all $n \in \mathbb{N}$, since s is surjective there is some $\left(n^{\prime}, m^{\prime}\right) \in \mathbb{N}$ such that $s\left(n^{\prime}, m^{\prime}\right)=n$, and by surjectivity of h there is some $(a, b) \in A \times B$ such that $h(a, b)=\left(n^{\prime}, m^{\prime}\right)$. Therefore, $s \circ h(a, b)=s\left(n^{\prime}, m^{\prime}\right)=n$.

Therefore, $s \circ h: A \times B \rightarrow \mathbb{N}$ is a bijection, which shows that $A \times B$ is countable.
2. Diagonalization:

Show that there does not exists an injection $f: \mathcal{P}(A) \rightarrow A$ for any set A.
Suppose such injection $f: \mathcal{P}(A) \rightarrow A$ exists. Consider $X=\{f(Y) \mid Y \subseteq A \wedge f(Y) \notin Y\}$. Note that $X \subseteq Y$, so let $a=f(X)$.

To see that this is a contradiction, note that there are two cases $a \notin X$ or $a \in X$. Suppose $a \notin X$, then $a=f(X) \notin X$ so by definition $f(X) \in X$ which is a contradiction.

On the other hand, if $a \in X$, then there is some $Y \subseteq A$ and $f(Y) \notin Y$ such that $f(Y)=a \in X$. However since f is injective, $f(Y)=a=f(X)$ implies that $X=Y$, which is a contradiction because $a=f(X) \in X$ but $f(Y) \notin Y$.
3. In class we proved that the open interval $|(0,1)|$ was uncountable.
(a) Prove that $|(0,1)|=|[0,1)|$ by showing that the function $f:(0,1) \rightarrow[0,1)$ below is injective.

$$
f(x)= \begin{cases}0 & x=\frac{1}{2} \\ \frac{1}{2^{n}} & x=\frac{1}{2^{n+1}} \text { for some } n \in \mathbb{N} \\ x & \text { otherwise }\end{cases}
$$

Injectivity: Suppose $x, y \in(0,1)$ and $f(x)=f(y)$. If $f(x)=f(y)=0$, then note that the only possibility is $x=y=\frac{1}{2}$. If $f(x)=f(y)=\frac{1}{2^{n}}$ for some $n \in \mathbb{N}$, then note that the only possibility is $x=y=\frac{1}{2^{n+1}}$. Otherwise, $f(x)=f(y)$ does not take the forms above, so $f(x)=f(y)=x=y$.

Surjectivity: Consider any $y \in[0,1)$. If $y=0$, then $f\left(\frac{1}{2}\right)=0$. If $y=\frac{1}{2^{n}}$ for some $n \in \mathbb{N}$, then $f\left(\frac{1}{2^{n}}\right)=\frac{1}{2^{n}}$. Otherwise, $y \neq 0$ and $y \in[0,1)$ so $y \in(0,1)$, so $f(y)=y$.
(b) Prove that $|(0,1)|=|\mathbb{R}|$ by showing that the function $f(x)=\ln \left(\frac{1-x}{x}\right)$ is a bijection $f:(0,1) \rightarrow \mathbb{R}$.

We will provide an inverse to f. Note that for any $a \neq 0$ and $b \neq-1$,

$$
\frac{1-a}{a}=b \Longleftrightarrow \frac{1}{a}-1=b \Longleftrightarrow \frac{1}{a}=b+1 \Longleftrightarrow a=\frac{1}{b+1}
$$

Therefore, let $g: \mathbb{R} \rightarrow(0,1)$ be defined

$$
g(y)=\frac{1}{e^{y}+1}
$$

to see that the fraction is well defined, note that for any $y \in \mathbb{R}, e^{y}>0$. This also shows that $e^{y}+1>1$ so $\frac{1}{e^{y}+1}<1$, and $e^{y}+1>0$ so $0<\frac{1}{e^{y}+1}<1$, so g has appropriate domain and codomain.

To check that g is the inverse of f, note that for any $x \in(0,1)$,

$$
g(f(x))=\frac{1}{e^{\ln \left(\frac{1-x}{x}\right)}+1}=\frac{1}{\frac{1-x}{x}+1}=\frac{1}{\frac{1}{x}}=x
$$

and for any $y \in \mathbb{R}$,

$$
f(g(y))=\ln \left(\frac{1-\frac{1}{e^{y}+1}}{\frac{1}{e^{y}+1}}\right)=\ln \left(\frac{1}{\frac{1}{e^{y}+1}}-1\right)=\ln \left(e^{y}+1-1\right)=y
$$

thus $g=f^{-1}$ is the inverse of f, so f is a bijection.

