Lecture 23

Enoch Cheung

November 13, 2013

- 1. Let A, B, C be sets and $f: A \to B$ and $g: B \to C$ be functions. Prove or disprove the following:
 - (a) If $g \circ f$ is injective then f is injective.

This is true. Note $g \circ f : A \to C$. To show that f is injective, consider arbitrary $a, a' \in A$ such that f(a) = f(a'), then g(f(a)) = g(f(a')) so by injectivity of $g \circ f$, a = a'.

(b) If f is injective then $g \circ f$ is injective.

This is false. Consider $f : [2] \to [2]$ defined as f(n) = n for all $n \in [2]$. Clearly f is injective. Consider $g : [2] \to [1]$ where g(n) = 1 for all $n \in [2]$, then $g \circ f(n) = 1$ for all $n \in [2]$, so $g \circ f$ is not injective.

(c) If $g \circ f$ is injective then g is injective.

This is false. Consider $f : [1] \to [2]$ where f(1) = 1, and $g : [2] \to [1]$ where g(1) = g(2) = 1. Then $g \circ f : [1] \to [1]$ is injective, but g is not injective.

- 2. (Example 7.5.9) Let $h: \mathbb{R} \{-1\} \to \mathbb{R} \{1\}$ be defined by $h(x) = \frac{x}{1+x}$. Prove that h is a bijection by
 - (a) Showing h is 1-to-1 and onto.

To see that h is 1-to-1 (injective), consider arbitrary $x, x' \in \mathbb{R} - \{1\}$ such that h(x) = h(x'), then

$$\frac{x}{1+x} = \frac{x'}{1+x'}$$
$$x(1+x') = x'(1+x)$$
$$x + xx' = x' + x'x$$
$$x = x'$$

To see that h is onto (surjective), consider arbitrary $y \in \mathbb{R} - \{-1\}$, then note that $f(\frac{y}{1-y}) = y$ (see below), and $\frac{y}{1-y} \in \mathbb{R} - \{-1\}$ because $y \neq 1$, and $\frac{y}{1-y} \neq -1$.

(b) Showing h is invertible.

To find $h^{-1}: \mathbb{R} - \{1\} \to \mathbb{R} - \{-1\}$, note that $\forall x \in \mathbb{R} - \{1\}$ and $\forall y \in \mathbb{R} - \{-1\}$,

$$y = \frac{x}{1+x} \iff y(1+x) = x \iff y+xy-x = 0 \iff y+x(y-1) = 0 \iff x = -\frac{y}{y-1} \iff x = \frac{y}{1-y}$$

note that we are relying on the fact that $x \neq -1$ and $y \neq 1$.

Therefore, $h^{-1}: \mathbb{R} - \{1\} \to \mathbb{R} - \{-1\}$ defined $h^{-1}(y) = \frac{y}{1-y}$ is the inverse of h (check that $\frac{y}{1-y} \neq -1$ for $y \neq 1$).

3. (Try it #3) Let $U = \{x \in \mathbb{R} \mid -1 < x < 1\}$ and $I = \{x \in \mathbb{R} \mid -6 < x < 12\}$. Let $g: U \to I$ be defined by g(x) = 9x + 3 for all $x \in U$. Prove that g is a bijection by finding g^{-1} .

Given $x \in U$ and $y \in I$,

$$y = 9x + 3 \iff \frac{y - 3}{9} = x$$

therefore, consider $g^{-1}: I \to U$ defined $g^{-1}(y) = \frac{y-3}{9}$. For any $y \in I, -6 < y < 12$ so

$$-1 = \frac{-6-3}{9} < \frac{y-3}{9} < \frac{12-3}{9} = 1$$

so $\frac{y-3}{9} \in U$ as desired.