Lecture 22

Enoch Cheung

November 11, 2013

1. Let A, B be sets and $f : A \to B$ be a function. Further suppose $X_1, X_2 \subseteq A$ and $Y \subseteq B$. Prove or disprove:

Recall the definitions $\operatorname{Im}_f(X) = \{b \in B \mid \exists a \in X \ f(a) = b\}$, and $\operatorname{PreIm}_f(Y) = \{a \in A \mid f(a) \in Y\}$.

(a) $\operatorname{Im}_f(\operatorname{PreIm}_f(Y)) \subseteq Y$

This is true. Consider arbitrary $y \in \text{Im}_f(\text{PreIm}_f(Y))$, then there is some $x \in \text{PreIm}_f(Y)$ such that f(x) = y. Therefore, $y \in Y$.

- (b) $Y \subseteq \text{Im}_f(\text{PreIm}_f(Y))$ This is false. Counter-example: Consider $f : [1] \to [2]$ where f(1) = 1, and Y = [2]. Therefore, $\text{PreIm}_f(Y) = [1]$ and $\text{Im}_f(\text{PreIm}_f(Y)) = [1]$, but Y = [2].
- (c) $\operatorname{Im}_f(X_1) \operatorname{Im}_f(X_2) \subseteq \operatorname{Im}_f(X_1 X_2)$ This is true. Consider $y \in \operatorname{Im}_f(X_1) - \operatorname{Im}_f(X_2)$, then $y \in \operatorname{Im}_f(X_1)$ and $y \notin \operatorname{Im}_f(X_2)$, so there is some $x \in X_1$ such that f(x) = y, and note that $x \notin X_2$ since $y \notin \operatorname{Im}_f(X_2)$. Therefore, $x \in X_1 - X_2$ so $\operatorname{Im}_f(X_1 - X_2)$.
- (d) $\operatorname{Im}_{f}(X_{1} X_{2}) \subseteq \operatorname{Im}_{f}(X_{1}) \operatorname{Im}_{f}(X_{2})$ This is false. Counter-example: Consider $f : [2] \to [1]$ with f(1) = f(2) = 1, and $X_{1} = [2]$ and $X_{2} = [1]$. Therefore, $\operatorname{Im}_{f}(X_{1} - X_{2}) = \operatorname{Im}_{f}(\{2\}) = \{1\}$. However, $\operatorname{Im}_{f}(X_{1}) - \operatorname{Im}_{f}(X_{2}) = [1] - [1] = \emptyset$.
- 2. Consider the following function $f : \mathbb{N} \to \mathbb{N}$.

$$f(n) = \begin{cases} n+1 & n \text{ odd} \\ n-1 & n \text{ even} \end{cases}$$

f is injective. Consider $n, m \in \mathbb{N}$ such that f(n) = f(m). If f(n) = f(m) is odd, n, m must have been even, so n + 1 = m + 1 so n = m. If f(n) = f(m) is even, n, m must have been odd, so n - 1 = m - 1 so n = m.

3. Define $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by $\forall (m, n) \in \mathbb{N} \times \mathbb{N}$, $f(m, n) = 2^{m-1}(2n-1)$. Prove that f is a bijection.

First, to see that f is injective, suppose f(m, n) = f(m', n') so $2^{m-1}(2n-1) = 2^{m'-1}(2n'-1)$. Note that 2n-1 and 2n'-1 are both odd, so it does not have 2 in its prime factorization. Therefore, the coefficient of 2 in the prime factorization of f(m, n) is m-1 and the coefficient of 2 in the prime factorization of f(m', n') is m'-1. By uniqueness of prime factorizations, m-1 = m'-1, so m = m'. Therefore, $2^{m-1}(2n-1) = 2^{m-1}(2n'-1)$, so 2n-1 = 2n'-1, so n = n' as well. Therefore, (m, n) = (m', n'). Therefore, f is injective.

Now, we will check that f is surjective. Consider $y \in \mathbb{N}$, then y can be written as a product of a power of 2 and an odd number, so $y = 2^a(2b+1)$ for some $a, b \in \mathbb{Z}_+$. Therefore, letting $m = a+1 \in \mathbb{N}$ and $n = b+1 \in \mathbb{N}$, so $y = 2^{m-1}(2n-1) = f(m,n)$. Thus f is surjective.

Therefore, f is a bijection.

4. Define a bijection $f : \mathbb{N} \to \mathbb{Z}$. Prove that your function is a bijection.

Let

$$f(n) = \begin{cases} \frac{n}{2} & n \text{ even} \\ -\frac{n-1}{2} & n \text{ odd} \end{cases}$$

Hint: Note that $f(n) > 0 \iff n$ is even.