Enoch Cheung

November 11, 2013

1. Let A, B be sets and $f: A \rightarrow B$ be a function. Further suppose $X_{1}, X_{2} \subseteq A$ and $Y \subseteq B$. Prove or disprove:

Recall the definitions $\operatorname{Im}_{f}(X)=\{b \in B \mid \exists a \in X f(a)=b\}$, and $\operatorname{PreIm}_{f}(Y)=\{a \in A \mid f(a) \in Y\}$.
(a) $\operatorname{Im}_{f}\left(\operatorname{PreIm}_{f}(Y)\right) \subseteq Y$

This is true. Consider arbitrary $y \in \operatorname{Im}_{f}\left(\operatorname{PreIm}_{f}(Y)\right)$, then there is some $x \in \operatorname{PreIm}_{f}(Y)$ such that $f(x)=y$. Therefore, $y \in Y$.
(b) $Y \subseteq \operatorname{Im}_{f}\left(\operatorname{PreIm}_{f}(Y)\right)$

This is false. Counter-example: Consider $f:[1] \rightarrow[2]$ where $f(1)=1$, and $Y=[2]$. Therefore, $\operatorname{PreIm}_{f}(Y)=[1]$ and $\operatorname{Im}_{f}\left(\operatorname{PreIm}_{f}(Y)\right)=[1]$, but $Y=[2]$.
(c) $\operatorname{Im}_{f}\left(X_{1}\right)-\operatorname{Im}_{f}\left(X_{2}\right) \subseteq \operatorname{Im}_{f}\left(X_{1}-X_{2}\right)$

This is true. Consider $y \in \operatorname{Im}_{f}\left(X_{1}\right)-\operatorname{Im}_{f}\left(X_{2}\right)$, then $y \in \operatorname{Im}_{f}\left(X_{1}\right)$ and $y \notin \operatorname{Im}_{f}\left(X_{2}\right)$, so there is some $x \in X_{1}$ such that $f(x)=y$, and note that $x \notin X_{2}$ since $y \notin \operatorname{Im}_{f}\left(X_{2}\right)$. Therefore, $x \in X_{1}-X_{2}$ so $\operatorname{Im}_{f}\left(X_{1}-X_{2}\right)$.
(d) $\operatorname{Im}_{f}\left(X_{1}-X_{2}\right) \subseteq \operatorname{Im}_{f}\left(X_{1}\right)-\operatorname{Im}_{f}\left(X_{2}\right)$

This is false. Counter-example: Consider $f:[2] \rightarrow[1]$ with $f(1)=f(2)=1$, and $X_{1}=[2]$ and $X_{2}=[1]$. Therefore, $\operatorname{Im}_{f}\left(X_{1}-X_{2}\right)=\operatorname{Im}_{f}(\{2\})=\{1\}$. However, $\operatorname{Im}_{f}\left(X_{1}\right)-\operatorname{Im}_{f}\left(X_{2}\right)=$ $[1]-[1]=\varnothing$.
2. Consider the following function $f: \mathbb{N} \rightarrow \mathbb{N}$.

$$
f(n)= \begin{cases}n+1 & n \text { odd } \\ n-1 & n \text { even }\end{cases}
$$

f is injective. Consider $n, m \in \mathbb{N}$ such that $f(n)=f(m)$. If $f(n)=f(m)$ is odd, n, m must have been even, so $n+1=m+1$ so $n=m$. If $f(n)=f(m)$ is even, n, m must have been odd, so $n-1=m-1$ so $n=m$.
3. Define $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by $\forall(m, n) \in \mathbb{N} \times \mathbb{N}, f(m, n)=2^{m-1}(2 n-1)$. Prove that f is a bijection.

First, to see that f is injective, suppose $f(m, n)=f\left(m^{\prime}, n^{\prime}\right)$ so $2^{m-1}(2 n-1)=2^{m^{\prime}-1}\left(2 n^{\prime}-1\right)$. Note that $2 n-1$ and $2 n^{\prime}-1$ are both odd, so it does not have 2 in its prime factorization. Therefore, the coefficient of 2 in the prime factorization of $f(m, n)$ is $m-1$ and the coefficient of 2 in the prime factorixation of $f\left(m^{\prime}, n^{\prime}\right)$ is $m^{\prime}-1$. By uniqueness of prime factorizations, $m-1=m^{\prime}-1$, so $m=m^{\prime}$. Therefore, $2^{m-1}(2 n-1)=2^{m-1}\left(2 n^{\prime}-1\right)$, so $2 n-1=2 n^{\prime}-1$, so $n=n^{\prime}$ as well. Therefore, $(m, n)=\left(m^{\prime}, n^{\prime}\right)$. Therefore, f is injective.

Now, we will check that f is surjective. Consider $y \in \mathbb{N}$, then y can be written as a product of a power of 2 and an odd number, so $y=2^{a}(2 b+1)$ for some $a, b \in \mathbb{Z}_{+}$. Therefore, letting $m=a+1 \in \mathbb{N}$ and $n=b+1 \in \mathbb{N}$, so $y=2^{m-1}(2 n-1)=f(m, n)$. Thus f is surjective.

Therefore, f is a bijection.
4. Define a bijection $f: \mathbb{N} \rightarrow \mathbb{Z}$. Prove that your function is a bijection.

Let

$$
f(n)= \begin{cases}\frac{n}{2} & n \text { even } \\ -\frac{n-1}{2} & n \text { odd }\end{cases}
$$

Hint: Note that $f(n)>0 \Longleftrightarrow n$ is even.

