Enoch Cheung

November 11, 2013

1. Lemma. Let $m_{1}, m_{2}, \ldots, m_{r} \in \mathbb{N}$ be pairwise relatively prime. If $a \equiv b\left(\bmod m_{i}\right)$ for each $i \in[r]$ then $a \equiv b\left(\bmod m_{1} m_{2} \ldots m_{r}\right)$.

Proof. We will induct on $r \in \mathbb{N}$.
Base case: If $r=1$, then $a \equiv b\left(\bmod m_{1}\right) \Longrightarrow a \equiv b\left(\bmod m_{1}\right)$ so we are done.
For convenience, we will prove it for $r=2$ as well, because we will use it explicitly later. Consider $m_{1}, m_{2} \in \mathbb{N}$ relatively prime, and $a \equiv b\left(\bmod m_{i}\right)$ for $i=1,2$, so $m_{1} \mid(b-a)$ and $m_{2} \mid(b-a)$.

Suppose $m_{1} m_{2} \nmid(b-a)$, then $b-a=m_{1} m_{2} q+r$ for some $q \in \mathbb{Z}$ and $r \in \mathbb{N}$ with $0<r<$ $m_{1} m_{2}$. Then $r=(b-a)-m_{1} m_{2} q$, then since $m_{1} \mid(b-a)$, we have $m_{1} \mid r$. Similarly, $m_{2} \mid r$. This is a contradiction because $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1 \Longrightarrow \operatorname{lcm}\left(m_{1}, m_{2}\right)=m_{1} m_{2}$ (this uses the fact that $\left.\operatorname{gcd}\left(m_{1}, m_{2}\right) \cdot \operatorname{lcm}\left(m_{1}, m_{2}\right)=m_{1} \cdot m_{2}\right)$, so r cannot be a common divisor of m_{1}, m_{2}. Therefore, $a \equiv b$ $\left(\bmod m_{1} m_{2}\right)$.

Inductive case: Assume for some $r \in \mathbb{N}$, for any $m_{1}, \ldots, m_{r} \in \mathbb{N}$ pairwise relatively prime, $a \equiv b$ $\left(\bmod m_{i}\right)$ for each $i \in[r]$ implies $a \equiv b\left(\bmod m_{1} m_{2} \cdots m_{r}\right)$.

Now consider $m_{1}, \ldots, m_{r}, m_{r+1} \in \mathbb{N}$ pairwise relatively prime, then note that $m_{1} \cdots m_{r}$ and m_{r+1} is relatively prime, because if they share a prime factor p, then by lemma proved in our last recitation $p \mid m_{i}$ for some $1 \leq i \leq r$ and $p \mid m_{r+1}$, which contradicts the fact that they are supposed to be pairwise relatively prime. By the inductive hypothesis, $a \equiv b\left(\bmod m_{1} \cdots m_{r}\right)$ and $a \equiv b\left(\bmod m_{r+1}\right)$, so by the case for two relatively prime numbers, $a \equiv b\left(\bmod m_{1} \cdots m_{r} m_{r+1}\right)$.
2. Let $\operatorname{gcd}(a, b)=d$ and suppose $d \mid c$. Further, let $\left(x_{0}, y_{0}\right)$ be a solution to the diophantine equation $a x+b y=c$.
(a) $\forall k \in \mathbb{Z},\left(x_{0}+\frac{b}{d} k, y_{0}-\frac{a}{d} k\right)$ is also a solution.

Note that the pair $\left(x_{0}+\frac{b}{d} k, y_{0}-\frac{a}{d} k\right)$ is a pair of integers, due to our divisibility assumptions. Observe that

$$
a\left(x_{0}+\frac{b}{d} k\right)+b\left(y_{0}-\frac{a}{d} k\right)=a x_{0}+\frac{a b}{d} k+b y_{0}-\frac{a b}{d} k=\left(a x_{0}+b y_{0}\right)+\left(\frac{a b}{d} k-\frac{a b}{d} k\right)=c
$$

(b) Suppose $(x, y) \in \mathbb{Z}$ is a solution to $a x+b y=c$. Prove that $\exists k \in \mathbb{Z}$ such that $x=x_{0}+\frac{b}{d} k$ and $y=y_{0}-\frac{a}{d} k$ (i.e. every solution has this form).

Since $a x+b y=c$ and $a x_{0}+b y_{0}=c$, and $\operatorname{gcd}(a, b)=d$,

$$
a x+b y=a x_{0}+b y_{0} \Longrightarrow a\left(x-x_{0}\right)=b\left(y_{0}-y\right) \Longrightarrow \frac{d}{b}\left(x-x_{0}\right)=\frac{d}{a}\left(y_{0}-y\right)
$$

so let $k=\frac{d}{b}\left(x-x_{0}\right)=\frac{d}{a}\left(y_{0}-y\right) \in \mathbb{Q}$, then $x=x_{0}+\frac{b}{d} k$ and $y=y_{0}+\frac{b}{d} k$.
Now we need to show that $k \in \mathbb{Z}$. In other words, we wish to show that $a \mid d\left(y_{0}-y\right)$. Since $d=\operatorname{gcd}(a, b)$, by Tuesday's discussion, we can write $b=e d$ where e, a are relatively prime. Therefore, since $a\left(x-x_{0}\right)=b\left(y_{0}-y\right)$,

$$
0 \equiv b\left(y_{0}-y\right) \quad(\bmod a) \Longrightarrow 0 \equiv e d\left(y_{0}-y\right) \quad(\bmod a) \Longrightarrow 0 \equiv d\left(y_{0}-y\right) \quad(\bmod a)
$$

since e is invertible $\bmod a$. Therefore, $k=\frac{d}{b}\left(x-x_{0}\right)=\frac{d}{a}\left(y_{0}-y\right) \in \mathbb{Z}$ as desired.
3. Find all solution to

$$
\begin{array}{ll}
x \equiv 3 & (\bmod 4) \\
x \equiv 1 & (\bmod 5) \\
x \equiv 2 & (\bmod 3)
\end{array}
$$

We wish to consider number of the form

$$
\underbrace{5 \cdot 3 \cdot A}_{\text {vanishes } \bmod 5 \text { and mod } 3}+\underbrace{4 \cdot 3 \cdot B}_{\text {vanishes mod } 4 \text { and } \bmod 3}+\underbrace{4 \cdot 5 \cdot C}_{\text {vanishes } \bmod 4 \text { and } \bmod 5}
$$

where $5 \cdot 3 \cdot A \equiv 3(\bmod 4), 4 \cdot 3 \cdot B \equiv 1(\bmod 5)$ and $4 \cdot 5 \cdot C \equiv 2(\bmod 3)$. By multiplying with the corresponding inverses, we find $A \equiv 1(\bmod 4), B \equiv 3(\bmod 5)$ and $C \equiv 1(\bmod 3)$ to work.

By Chinese remainder theorem, the solution is unique modulo $4 \cdot 5 \cdot 3=60$. Therefore,

$$
5 \cdot 3 \cdot 1+4 \cdot 3 \cdot 3+4 \cdot 5 \cdot 1 \equiv 15+36+20 \equiv 11 \quad(\bmod 60)
$$

4. Show that if $\operatorname{gcd}\left(m_{1}, m_{2}\right) \nmid a_{1}-a_{2}$ then there are no solutions to the system of linear congruences:

$$
\begin{aligned}
& x \equiv a_{1} \quad\left(\bmod m_{1}\right) \\
& x \equiv a_{2} \quad\left(\bmod m_{2}\right)
\end{aligned}
$$

Suppose there is such a solution x, then $m_{1} \mid a_{1}-x$ and $m_{2} \mid a_{2}-x$. Let $d=\operatorname{gcd}\left(m_{1}, m_{2}\right)$, then $d \mid m_{1}$ and $d \mid m_{2}$ so $d \mid a_{1}-x$ and $d \mid a_{2}-x$. Therefore, $d \mid\left(a_{1}-x\right)-\left(a_{2}-x\right)$ so $d \mid a_{1}-a_{2}$. Thus, we have shown the contrapositive.

