Lecture 21

Enoch Cheung

November 11, 2013

1. Lemma. Let $m_1, m_2, \ldots, m_r \in \mathbb{N}$ be pairwise relatively prime. If $a \equiv b \pmod{m_i}$ for each $i \in [r]$ then $a \equiv b \pmod{m_1 m_2 \ldots m_r}$.

Proof. We will induct on $r \in \mathbb{N}$.

Base case: If r = 1, then $a \equiv b \pmod{m_1} \implies a \equiv b \pmod{m_1}$ so we are done.

For convenience, we will prove it for r = 2 as well, because we will use it explicitly later. Consider $m_1, m_2 \in \mathbb{N}$ relatively prime, and $a \equiv b \pmod{m_i}$ for i = 1, 2, so $m_1 | (b - a)$ and $m_2 | (b - a)$.

Suppose $m_1m_2 \nmid (b-a)$, then $b-a = m_1m_2q + r$ for some $q \in \mathbb{Z}$ and $r \in \mathbb{N}$ with $0 < r < m_1m_2$. Then $r = (b-a) - m_1m_2q$, then since $m_1|(b-a)$, we have $m_1|r$. Similarly, $m_2|r$. This is a contradiction because $\gcd(m_1, m_2) = 1 \implies \operatorname{lcm}(m_1, m_2) = m_1m_2$ (this uses the fact that $\gcd(m_1, m_2) \cdot \operatorname{lcm}(m_1, m_2) = m_1 \cdot m_2$), so r cannot be a common divisor of m_1, m_2 . Therefore, $a \equiv b \pmod{m_1m_2}$.

Inductive case: Assume for some $r \in \mathbb{N}$, for any $m_1, \ldots, m_r \in \mathbb{N}$ pairwise relatively prime, $a \equiv b \pmod{m_i}$ for each $i \in [r]$ implies $a \equiv b \pmod{m_1 m_2 \cdots m_r}$.

Now consider $m_1, \ldots, m_r, m_{r+1} \in \mathbb{N}$ pairwise relatively prime, then note that $m_1 \cdots m_r$ and m_{r+1} is relatively prime, because if they share a prime factor p, then by lemma proved in our last recitation $p|m_i$ for some $1 \leq i \leq r$ and $p|m_{r+1}$, which contradicts the fact that they are supposed to be pairwise relatively prime. By the inductive hypothesis, $a \equiv b \pmod{m_1 \cdots m_r}$ and $a \equiv b \pmod{m_{r+1}}$, so by the case for two relatively prime numbers, $a \equiv b \pmod{m_1 \cdots m_r m_{r+1}}$.

- 2. Let gcd(a, b) = d and suppose d|c. Further, let (x_0, y_0) be a solution to the diophantine equation ax + by = c.
 - (a) $\forall k \in \mathbb{Z}, (x_0 + \frac{b}{d}k, y_0 \frac{a}{d}k)$ is also a solution.

Note that the pair $(x_0 + \frac{b}{d}k, y_0 - \frac{a}{d}k)$ is a pair of integers, due to our divisibility assumptions. Observe that

$$a(x_0 + \frac{b}{d}k) + b(y_0 - \frac{a}{d}k) = ax_0 + \frac{ab}{d}k + by_0 - \frac{ab}{d}k = (ax_0 + by_0) + (\frac{ab}{d}k - \frac{ab}{d}k) = c$$

(b) Suppose $(x, y) \in \mathbb{Z}$ is a solution to ax + by = c. Prove that $\exists k \in \mathbb{Z}$ such that $x = x_0 + \frac{b}{d}k$ and $y = y_0 - \frac{a}{d}k$ (i.e. every solution has this form).

Since ax + by = c and $ax_0 + by_0 = c$, and gcd(a, b) = d,

$$ax + by = ax_0 + by_0 \implies a(x - x_0) = b(y_0 - y) \implies \frac{d}{b}(x - x_0) = \frac{d}{a}(y_0 - y)$$

so let $k = \frac{d}{b}(x - x_0) = \frac{d}{a}(y_0 - y) \in \mathbb{Q}$, then $x = x_0 + \frac{b}{d}k$ and $y = y_0 + \frac{b}{d}k$.

Now we need to show that $k \in \mathbb{Z}$. In other words, we wish to show that $a|d(y_0 - y)$. Since $d = \gcd(a, b)$, by Tuesday's discussion, we can write b = ed where e, a are relatively prime. Therefore, since $a(x - x_0) = b(y_0 - y)$,

$$0 \equiv b(y_0 - y) \pmod{a} \implies 0 \equiv ed(y_0 - y) \pmod{a} \implies 0 \equiv d(y_0 - y) \pmod{a}$$

since e is invertible mod a. Therefore, $k = \frac{d}{b}(x - x_0) = \frac{d}{a}(y_0 - y) \in \mathbb{Z}$ as desired.

3. Find all solution to

 $x \equiv 3 \pmod{4}$ $x \equiv 1 \pmod{5}$ $x \equiv 2 \pmod{3}$

We wish to consider number of the form

 $\underbrace{5 \cdot 3 \cdot A}_{\text{vanishes mod 5 and mod 3}} + \underbrace{4 \cdot 3 \cdot B}_{\text{vanishes mod 4 and mod 3}} + \underbrace{4 \cdot 5 \cdot C}_{\text{vanishes mod 4 and mod 5}}$

where $5 \cdot 3 \cdot A \equiv 3 \pmod{4}$, $4 \cdot 3 \cdot B \equiv 1 \pmod{5}$ and $4 \cdot 5 \cdot C \equiv 2 \pmod{3}$. By multiplying with the corresponding inverses, we find $A \equiv 1 \pmod{4}$, $B \equiv 3 \pmod{5}$ and $C \equiv 1 \pmod{3}$ to work.

By Chinese remainder theorem, the solution is unique modulo $4 \cdot 5 \cdot 3 = 60$. Therefore,

 $5 \cdot 3 \cdot 1 + 4 \cdot 3 \cdot 3 + 4 \cdot 5 \cdot 1 \equiv 15 + 36 + 20 \equiv 11 \pmod{60}$

4. Show that if $gcd(m_1, m_2) \nmid a_1 - a_2$ then there are no solutions to the system of linear congruences:

$$x \equiv a_1 \pmod{m_1}$$
$$x \equiv a_2 \pmod{m_2}$$

Suppose there is such a solution x, then $m_1|a_1 - x$ and $m_2|a_2 - x$. Let $d = \gcd(m_1, m_2)$, then $d|m_1$ and $d|m_2$ so $d|a_1 - x$ and $d|a_2 - x$. Therefore, $d|(a_1 - x) - (a_2 - x)$ so $d|a_1 - a_2$. Thus, we have shown the contrapositive.