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1. Lemma. Let m1,m2, . . . ,mr ∈ N be pairwise relatively prime. If a ≡ b (mod mi) for each i ∈ [r] then
a ≡ b (mod m1m2 . . .mr).

Proof. We will induct on r ∈ N.

Base case: If r = 1, then a ≡ b (mod m1) =⇒ a ≡ b (mod m1) so we are done.

For convenience, we will prove it for r = 2 as well, because we will use it explicitly later. Consider
m1,m2 ∈ N relatively prime, and a ≡ b (mod mi) for i = 1, 2, so m1|(b− a) and m2|(b− a).

Suppose m1m2 - (b − a), then b − a = m1m2q + r for some q ∈ Z and r ∈ N with 0 < r <
m1m2. Then r = (b − a) − m1m2q, then since m1|(b − a), we have m1|r. Similarly, m2|r. This
is a contradiction because gcd(m1,m2) = 1 =⇒ lcm(m1,m2) = m1m2 (this uses the fact that
gcd(m1,m2) · lcm(m1,m2) = m1 ·m2), so r cannot be a common divisor of m1,m2. Therefore, a ≡ b
(mod m1m2).

Inductive case: Assume for some r ∈ N, for any m1, . . . ,mr ∈ N pairwise relatively prime, a ≡ b
(mod mi) for each i ∈ [r] implies a ≡ b (mod m1m2 · · ·mr).

Now consider m1, . . . ,mr,mr+1 ∈ N pairwise relatively prime, then note that m1 · · ·mr and mr+1

is relatively prime, because if they share a prime factor p, then by lemma proved in our last recitation
p|mi for some 1 ≤ i ≤ r and p|mr+1, which contradicts the fact that they are supposed to be pairwise
relatively prime. By the inductive hypothesis, a ≡ b (mod m1 · · ·mr) and a ≡ b (mod mr+1), so by
the case for two relatively prime numbers, a ≡ b (mod m1 · · ·mrmr+1).

2. Let gcd(a, b) = d and suppose d|c. Further, let (x0, y0) be a solution to the diophantine equation
ax + by = c.

(a) ∀k ∈ Z, (x0 + b
dk, y0 −

a
dk) is also a solution.

Note that the pair (x0 + b
dk, y0−

a
dk) is a pair of integers, due to our divisibility assumptions.

Observe that

a(x0 +
b

d
k) + b(y0 −

a

d
k) = ax0 +

ab

d
k + by0 −

ab

d
k = (ax0 + by0) + (

ab

d
k − ab

d
k) = c

(b) Suppose (x, y) ∈ Z is a solution to ax + by = c. Prove that ∃k ∈ Z such that x = x0 + b
dk and

y = y0 − a
dk (i.e. every solution has this form).

Since ax + by = c and ax0 + by0 = c, and gcd(a, b) = d,

ax + by = ax0 + by0 =⇒ a(x− x0) = b(y0 − y) =⇒ d

b
(x− x0) =

d

a
(y0 − y)

so let k = d
b (x− x0) = d

a (y0 − y) ∈ Q, then x = x0 + b
dk and y = y0 + b

dk.

Now we need to show that k ∈ Z. In other words, we wish to show that a|d(y0 − y). Since
d = gcd(a, b), by Tuesday’s discussion, we can write b = ed where e, a are relatively prime.
Therefore, since a(x− x0) = b(y0 − y),

0 ≡ b(y0 − y) (mod a) =⇒ 0 ≡ ed(y0 − y) (mod a) =⇒ 0 ≡ d(y0 − y) (mod a)

since e is invertible mod a. Therefore, k = d
b (x− x0) = d

a (y0 − y) ∈ Z as desired.

3. Find all solution to

x ≡ 3 (mod 4)

x ≡ 1 (mod 5)

x ≡ 2 (mod 3)
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We wish to consider number of the form

5 · 3 ·A︸ ︷︷ ︸
vanishes mod 5 and mod 3

+ 4 · 3 ·B︸ ︷︷ ︸
vanishes mod 4 and mod 3

+ 4 · 5 · C︸ ︷︷ ︸
vanishes mod 4 and mod 5

where 5 · 3 · A ≡ 3 (mod 4), 4 · 3 · B ≡ 1 (mod 5) and 4 · 5 · C ≡ 2 (mod 3). By multiplying with the
corresponding inverses, we find A ≡ 1 (mod 4), B ≡ 3 (mod 5) and C ≡ 1 (mod 3) to work.

By Chinese remainder theorem, the solution is unique modulo 4 · 5 · 3 = 60. Therefore,

5 · 3 · 1 + 4 · 3 · 3 + 4 · 5 · 1 ≡ 15 + 36 + 20 ≡ 11 (mod 60)

4. Show that if gcd(m1,m2) - a1 − a2 then there are no solutions to the system of linear congruences:

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

Suppose there is such a solution x, then m1|a1−x and m2|a2−x. Let d = gcd(m1,m2), then d|m1

and d|m2 so d|a1− x and d|a2− x. Therefore, d|(a1− x)− (a2− x) so d|a1− a2. Thus, we have shown
the contrapositive.
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