Enoch Cheung

November 7, 2013

1. Let $a \in \mathbb{Z}$ and $m \in \mathbb{N}$. If $\operatorname{gcd}(a, m)=1$ then a^{-1} is unique modulo m.

Suppose $\operatorname{gcd}(a, m)=1$ with $b a \equiv 1(\bmod m)$ and $c a \equiv 1(\bmod m)$ (so b and c are both multiplicative inverses of $a)$. Then because multiplication is commutative $a c \equiv 1(\bmod m)$. Therefore,

$$
b a \equiv 1 \quad(\bmod m) \Longrightarrow b a c \equiv c \quad(\bmod m) \Longrightarrow b(a c) \equiv c \quad(\bmod m) \Longrightarrow b \equiv c \quad(\bmod m)
$$

Therefore, $b \equiv c(\bmod m)$ so a^{-1} is unique modulo m.
2. Lemma. If $n \in \mathbb{N}$ and $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{N}$ and $p \mid\left(a_{1} a_{2} \cdots a_{n}\right)$ then $\exists i \in \mathbb{N}$ with $1 \leq i \leq n$ such that $p \mid a_{i}$.

Note that this is only true for prime p.
We prove this by induction on n. Base case: If $p \mid a_{1}$ then $p \mid a_{1}$.
Inductive case: Assume that for any $a_{1}, \ldots, a_{n} \in \mathbb{N}, p \mid\left(a_{1} a_{2} \cdots a_{n}\right)$ implies $p \mid a_{i}$ for some $1 \leq i \leq n$.
Now given $a_{1}, \ldots, a_{n}, a_{n+1} \in \mathbb{N}$, then if $p \mid a_{n+1}$ then we are done. Otherwise, $p \nmid a_{n+1}$, and since p is prime, this means that p, a_{n+1} are relatively prime. By Euclid's Lemma (Lemma 6.5.25), since $p \mid\left(a_{1} \cdots a_{n} \cdot a_{n+1}\right)$ and p, a_{n+1} are relatively prime, so $p \mid\left(a_{1} \cdots a_{n}\right)$. Therefore, by inductive hypothesis, $p \mid a_{i}$ for some $1 \leq i \leq n$.
3. (a) $6 x \equiv 1(\bmod 13)$.

Note that $6 \cdot 2 \equiv 12 \equiv-1(\bmod 13)$, so $6(-2) \equiv 1(\bmod 13)$. Therefore, $x \equiv-1(\bmod 13)$. By question 1, multiplicative inverses are unique so -2 is the only solution modulo m.
(b) $4 x+3 \equiv 1(\bmod 9)$.

Note that $4 \cdot(-2) \equiv 1(\bmod 9)$. Therefore,

$$
4 x+3 \equiv 1 \quad(\bmod 9) \Longleftrightarrow 4 x \equiv-2 \quad(\bmod 9) \Longleftrightarrow x \equiv(-2)(-2) \quad(\bmod 9) \Longleftrightarrow x \equiv 4 \quad(\bmod 9)
$$

(c) $6 x-4 \equiv 12(\bmod 15)$

There are no such solutions x, because 6,15 are not relatively prime, so 6 has no inverse modulo 15 .

Suppose $6 x-4 \equiv 12(\bmod 15)$ for some x, then $6 x \equiv 16 \equiv 1(\bmod 15)$, so x is the multiplicative inverse to 6 , which does not exist.
4. Let $a, b \in \mathbb{Z}$ and $m, d \in \mathbb{N}$. Assume $d=\operatorname{gcd}(a, m)$. Consider the linear congruence $a x \equiv b(\bmod m)$.
(a) If $d \nmid b$, can there be any $x \in \mathbb{Z}$ satisfying this congruence?

No. Suppose $a x \equiv b(\bmod m)$ for some x, then $m \mid(b-a x)$. Since $d \mid m$, this means that $d \mid(b-a x)$. Note that $d \mid a$ so $d \mid a x$. Therefore, $d \mid b$ which is a contradiction.
(b) If $d \mid b$ why can we say that there are solutions to this congruence?

Since $d=\operatorname{gcd}(a, m)$ there are $s, t \in \mathbb{N}$ such that $a s+m t=d$, so taken $\bmod m$, this means that $a s \equiv d(\bmod m)(s$ is something similar to an inverse of a, but instead of 1 it gives d because a need not have an inverse if $d>1$). This s need not be unique modulo m.

Suppose $a=c d$, then c, m are relatively prime, since if $\ell \mid c$ and $\ell \mid m$, then $\ell d \mid a$ and $\ell d \mid m$ so d would not be the gcd. Therefore, c^{-1} exists $\bmod m$, so

$$
a x \equiv b \quad(\bmod m) \Longleftrightarrow c d x \equiv b \quad(\bmod m) \Longleftrightarrow x d \equiv c^{-1} b \quad(\bmod m)
$$

so we can let $c^{-1} b=y d$ then we are looking for solutions of $x d \equiv y d(\bmod m)$ where $d \mid m$.
Lemma. If $d \mid m$ then

$$
x d \equiv y d \quad(\bmod m) \Longleftrightarrow x \equiv y \quad\left(\bmod \frac{m}{d}\right)
$$

Proof: Certainly, if $x \equiv y\left(\bmod \frac{m}{d}\right)$, then $\left.\frac{m}{d} \right\rvert\,(x-y)$ so $m \mid(x-y)$. Now suppose $x d \equiv y d$ $(\bmod m)$, then $m \mid(x d-y d)$ so $m k=(x-y) d$ for some $k \in \mathbb{N}$. Therefore, $\frac{m}{d} k=x-y$ so $\left.\frac{m}{d} \right\rvert\,(x-y)$.

Therefore, since $d \mid b$, using the lemma,

$$
a x \equiv b \quad(\bmod m) \Longleftrightarrow x d \equiv c^{-1} b \quad(\bmod m) \Longleftrightarrow x \equiv c^{-1} \frac{b}{d} \quad\left(\bmod \frac{m}{d}\right)
$$

so there are d solutions modulo m, since if $x \equiv t\left(\bmod \frac{m}{d}\right)$ is a solution, then $t, t+\frac{m}{d}, t+\frac{2 m}{d}, \ldots, t+$ $\frac{(d-1) m}{d}$ are all solutions distinct $\bmod m$.
(c) $9 x \equiv 12(\bmod 15)$.

Note that $9 \cdot 2 \equiv 18 \equiv 3(\bmod 15)$, so $9 \cdot 2 \cdot 4 \equiv 12(\bmod 15)$. Therefore, $x \equiv 8(\bmod 15)$ is a solution. Since $\operatorname{gcd}(9,15)=3$, there are 3 solutions, and we have shown that $8,8+5,8+2 \cdot 5$ are all solutions, so $x \equiv 8,13,3$ are all distinct solutions $\bmod 15$.
5. Let $a, b, c \in \mathbb{Z}$. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a+c b, b)$.

We wish to show that the set of common divisors of a, b and $(a+c b), b$ are the same.
Suppose d is a common divisor of a, b, then $d \mid a$ and $d \mid b$, so $d \mid c b$, so $d \mid(a+c b)$. Therefore, d is a common divisor of $(a+c b), b$.

Now suppose d is a common divisor of $(a+c b), b$, then $d \mid(a+c b)$ and $d \mid b$. So $d \mid-c b$, so $d \mid(a+c b-c b)$ so $d \mid a$. Therefore, d is a common divisor of a, b.

