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1. Let a ∈ Z and m ∈ N. If gcd(a,m) = 1 then a−1 is unique modulo m.

Suppose gcd(a,m) = 1 with ba ≡ 1 (mod m) and ca ≡ 1 (mod m) (so b and c are both multiplica-
tive inverses of a). Then because multiplication is commutative ac ≡ 1 (mod m). Therefore,

ba ≡ 1 (mod m) =⇒ bac ≡ c (mod m) =⇒ b(ac) ≡ c (mod m) =⇒ b ≡ c (mod m)

Therefore, b ≡ c (mod m) so a−1 is unique modulo m.

2. Lemma. If n ∈ N and a1, a2, . . . , an ∈ N and p|(a1a2 · · · an) then ∃i ∈ N with 1 ≤ i ≤ n such that
p|ai.

Note that this is only true for prime p.

We prove this by induction on n. Base case: If p|a1 then p|a1.
Inductive case: Assume that for any a1, . . . , an ∈ N, p|(a1a2 · · · an) implies p|ai for some 1 ≤ i ≤ n.

Now given a1, . . . , an, an+1 ∈ N, then if p|an+1 then we are done. Otherwise, p - an+1, and since
p is prime, this means that p, an+1 are relatively prime. By Euclid’s Lemma (Lemma 6.5.25), since
p|(a1 · · · an ·an+1) and p, an+1 are relatively prime, so p|(a1 · · · an). Therefore, by inductive hypothesis,
p|ai for some 1 ≤ i ≤ n.

3. (a) 6x ≡ 1 (mod 13).

Note that 6 · 2 ≡ 12 ≡ −1 (mod 13), so 6(−2) ≡ 1 (mod 13). Therefore, x ≡ −1 (mod 13).
By question 1, multiplicative inverses are unique so −2 is the only solution modulo m.

(b) 4x+ 3 ≡ 1 (mod 9).

Note that 4 · (−2) ≡ 1 (mod 9). Therefore,

4x+3 ≡ 1 (mod 9) ⇐⇒ 4x ≡ −2 (mod 9) ⇐⇒ x ≡ (−2)(−2) (mod 9) ⇐⇒ x ≡ 4 (mod 9)

(c) 6x− 4 ≡ 12 (mod 15)

There are no such solutions x, because 6, 15 are not relatively prime, so 6 has no inverse
modulo 15.

Suppose 6x− 4 ≡ 12 (mod 15) for some x, then 6x ≡ 16 ≡ 1 (mod 15), so x is the multiplica-
tive inverse to 6, which does not exist.

4. Let a, b ∈ Z and m, d ∈ N. Assume d = gcd(a,m). Consider the linear congruence ax ≡ b (mod m).

(a) If d - b, can there be any x ∈ Z satisfying this congruence?

No. Suppose ax ≡ b (mod m) for some x, then m|(b − ax). Since d|m, this means that
d|(b− ax). Note that d|a so d|ax. Therefore, d|b which is a contradiction.

(b) If d|b why can we say that there are solutions to this congruence?

Since d = gcd(a,m) there are s, t ∈ N such that as+mt = d, so taken mod m, this means that
as ≡ d (mod m) (s is something similar to an inverse of a, but instead of 1 it gives d because a
need not have an inverse if d > 1). This s need not be unique modulo m.

Suppose a = cd, then c,m are relatively prime, since if `|c and `|m, then `d|a and `d|m so d
would not be the gcd. Therefore, c−1 exists mod m, so

ax ≡ b (mod m) ⇐⇒ cdx ≡ b (mod m) ⇐⇒ xd ≡ c−1b (mod m)

so we can let c−1b = yd then we are looking for solutions of xd ≡ yd (mod m) where d|m.

Lemma. If d|m then

xd ≡ yd (mod m) ⇐⇒ x ≡ y (mod
m

d
)
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Proof: Certainly, if x ≡ y (mod m
d ), then

m
d |(x − y) so m|(x − y). Now suppose xd ≡ yd

(mod m), then m|(xd − yd) so mk = (x − y)d for some k ∈ N. Therefore, m
d k = x − y so

m
d |(x− y).

Therefore, since d|b, using the lemma,

ax ≡ b (mod m) ⇐⇒ xd ≡ c−1b (mod m) ⇐⇒ x ≡ c−1 b

d
(mod

m

d
)

so there are d solutions modulom, since if x ≡ t (mod m
d ) is a solution, then t, t+m

d , t+
2m
d , . . . , t+

(d−1)m
d are all solutions distinct mod m.

(c) 9x ≡ 12 (mod 15).

Note that 9 · 2 ≡ 18 ≡ 3 (mod 15), so 9 · 2 · 4 ≡ 12 (mod 15). Therefore, x ≡ 8 (mod 15) is a
solution. Since gcd(9, 15) = 3, there are 3 solutions, and we have shown that 8, 8 + 5, 8 + 2 · 5 are
all solutions, so x ≡ 8, 13, 3 are all distinct solutions mod 15.

5. Let a, b, c ∈ Z. Prove that gcd(a, b) = gcd(a+ cb, b).

We wish to show that the set of common divisors of a, b and (a+ cb), b are the same.

Suppose d is a common divisor of a, b, then d|a and d|b, so d|cb, so d|(a + cb). Therefore, d is a
common divisor of (a+ cb), b.

Now suppose d is a common divisor of (a+cb), b, then d|(a+cb) and d|b. So d|−cb, so d|(a+cb−cb)
so d|a. Therefore, d is a common divisor of a, b.
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