Lecture 20

Enoch Cheung

November 7, 2013

1. Let $a \in \mathbb{Z}$ and $m \in \mathbb{N}$. If gcd(a, m) = 1 then a^{-1} is unique modulo m.

Suppose gcd(a, m) = 1 with $ba \equiv 1 \pmod{m}$ and $ca \equiv 1 \pmod{m}$ (so b and c are both multiplicative inverses of a). Then because multiplication is commutative $ac \equiv 1 \pmod{m}$. Therefore,

 $ba \equiv 1 \pmod{m} \implies bac \equiv c \pmod{m} \implies b(ac) \equiv c \pmod{m} \implies b \equiv c \pmod{m}$

Therefore, $b \equiv c \pmod{m}$ so a^{-1} is unique modulo m.

2. Lemma. If $n \in \mathbb{N}$ and $a_1, a_2, \ldots, a_n \in \mathbb{N}$ and $p|(a_1a_2\cdots a_n)$ then $\exists i \in \mathbb{N}$ with $1 \leq i \leq n$ such that $p|a_i$.

Note that this is only true for prime p.

We prove this by induction on n. Base case: If $p|a_1$ then $p|a_1$.

Inductive case: Assume that for any $a_1, \ldots, a_n \in \mathbb{N}$, $p|(a_1a_2\cdots a_n)$ implies $p|a_i$ for some $1 \leq i \leq n$.

Now given $a_1, \ldots, a_n, a_{n+1} \in \mathbb{N}$, then if $p|a_{n+1}$ then we are done. Otherwise, $p \nmid a_{n+1}$, and since p is prime, this means that p, a_{n+1} are relatively prime. By Euclid's Lemma (Lemma 6.5.25), since $p|(a_1 \cdots a_n \cdot a_{n+1})$ and p, a_{n+1} are relatively prime, so $p|(a_1 \cdots a_n)$. Therefore, by inductive hypothesis, $p|a_i$ for some $1 \leq i \leq n$.

3. (a) $6x \equiv 1 \pmod{13}$.

Note that $6 \cdot 2 \equiv 12 \equiv -1 \pmod{13}$, so $6(-2) \equiv 1 \pmod{13}$. Therefore, $x \equiv -1 \pmod{13}$. By question 1, multiplicative inverses are unique so -2 is the only solution modulo m.

(b) $4x + 3 \equiv 1 \pmod{9}$.

Note that $4 \cdot (-2) \equiv 1 \pmod{9}$. Therefore,

 $4x + 3 \equiv 1 \pmod{9} \iff 4x \equiv -2 \pmod{9} \iff x \equiv (-2)(-2) \pmod{9} \iff x \equiv 4 \pmod{9}$

(c) $6x - 4 \equiv 12 \pmod{15}$

There are no such solutions x, because 6,15 are not relatively prime, so 6 has no inverse modulo 15.

Suppose $6x - 4 \equiv 12 \pmod{15}$ for some x, then $6x \equiv 16 \equiv 1 \pmod{15}$, so x is the multiplicative inverse to 6, which does not exist.

- 4. Let $a, b \in \mathbb{Z}$ and $m, d \in \mathbb{N}$. Assume $d = \gcd(a, m)$. Consider the linear congruence $ax \equiv b \pmod{m}$.
 - (a) If $d \nmid b$, can there be any $x \in \mathbb{Z}$ satisfying this congruence?

No. Suppose $ax \equiv b \pmod{m}$ for some x, then m|(b-ax). Since d|m, this means that d|(b-ax). Note that d|a so d|ax. Therefore, d|b which is a contradiction.

(b) If d|b why can we say that there are solutions to this congruence?

Since $d = \gcd(a, m)$ there are $s, t \in \mathbb{N}$ such that as + mt = d, so taken mod m, this means that $as \equiv d \pmod{m}$ (s is something similar to an inverse of a, but instead of 1 it gives d because a need not have an inverse if d > 1). This s need not be unique modulo m.

Suppose a = cd, then c, m are relatively prime, since if $\ell | c$ and $\ell | m$, then $\ell d | a$ and $\ell d | m$ so d would not be the gcd. Therefore, c^{-1} exists mod m, so

 $ax \equiv b \pmod{m} \iff cdx \equiv b \pmod{m} \iff xd \equiv c^{-1}b \pmod{m}$

so we can let $c^{-1}b = yd$ then we are looking for solutions of $xd \equiv yd \pmod{m}$ where d|m. Lemma. If d|m then

$$xd \equiv yd \pmod{m} \iff x \equiv y \pmod{\frac{m}{d}}$$

Proof: Certainly, if $x \equiv y \pmod{\frac{m}{d}}$, then $\frac{m}{d}|(x-y)$ so m|(x-y). Now suppose $xd \equiv yd \pmod{m}$, then m|(xd-yd) so mk = (x-y)d for some $k \in \mathbb{N}$. Therefore, $\frac{m}{d}k = x-y$ so $\frac{m}{d}|(x-y)$.

Therefore, since d|b, using the lemma,

$$ax \equiv b \pmod{m} \iff xd \equiv c^{-1}b \pmod{m} \iff x \equiv c^{-1}\frac{b}{d} \pmod{\frac{m}{d}}$$

so there are d solutions modulo m, since if $x \equiv t \pmod{\frac{m}{d}}$ is a solution, then $t, t + \frac{m}{d}, t + \frac{2m}{d}, \ldots, t + \frac{(d-1)m}{d}$ are all solutions distinct mod m.

(c) $9x \equiv 12 \pmod{15}$.

Note that $9 \cdot 2 \equiv 18 \equiv 3 \pmod{15}$, so $9 \cdot 2 \cdot 4 \equiv 12 \pmod{15}$. Therefore, $x \equiv 8 \pmod{15}$ is a solution. Since gcd(9, 15) = 3, there are 3 solutions, and we have shown that $8, 8 + 5, 8 + 2 \cdot 5$ are all solutions, so $x \equiv 8, 13, 3$ are all distinct solutions mod 15.

5. Let $a, b, c \in \mathbb{Z}$. Prove that gcd(a, b) = gcd(a + cb, b).

We wish to show that the set of common divisors of a, b and (a + cb), b are the same.

Suppose d is a common divisor of a, b, then d|a and d|b, so d|cb, so d|(a + cb). Therefore, d is a common divisor of (a + cb), b.

Now suppose d is a common divisor of (a+cb), b, then d|(a+cb) and d|b. So d|-cb, so d|(a+cb-cb) so d|a. Therefore, d is a common divisor of a, b.