Lecture 2

Enoch Cheung

1.

Theorem 1. If m and $m+n$ are both even integers then n is an even integer.
The theorem is true, but the proof is not valid, because it assumes that n is even.

Proof. Suppose m and $m+n$ are even, then let $m=2 a$ and $m+n=2 b$. Then

$$
\begin{aligned}
(m+n)-m & =2 b-2 a \\
n & =2(b-a)
\end{aligned}
$$

Thus n is even.
2.

Proposition 1. $\tan (2 \theta)=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
This proposition is true. The proof is not valid, as it assumes the proposition and derives a true statement from it. We should instead start with a true statement, and derive our proposition. We should also take care to consider values of $\theta \neq \pi \frac{k}{2}+\frac{\pi}{4}$ for $k \in \mathbb{Z}$, because for $\theta=\pi \frac{k}{2}+\frac{\pi}{4}$ the function $\tan (2 \theta)$ is undefined. Luckily, the right hand side are also undefined at exactly those same points, since $\tan (\theta)$ is undefined at $\theta=\pi k+\frac{\pi}{2}$ and $\tan (\theta)=1$ when $\theta=\pi k+\frac{\pi}{4}$

To fix this proof, we notice that each implication in the original proof are in fact "if and only if" (double implication). The only potential problem is when dividing $\cos ^{2}(\theta)$, but we see that it is nonzero for all the points we are considering, since $\cos (\theta)=0 \Longleftrightarrow \theta=\pi k+\frac{\pi}{2}$.
3.

Theorem 2. If $x>0$ and $y>0$ then $x+y>0$.
We assume that x and y are both positive, and conclude that $x+y$ is positive.
Proof. Suppose $x>0$ and $y>0$, then

$$
\begin{aligned}
& x>0 \\
& x+y>y \\
& x+y>y>0 \\
& x+y>0
\end{aligned}
$$

4. The proof removed squares without consider both square roots.
