Enoch Cheung

October 30, 2013

1. Consider $n=32688048$. Clearly $2 \mid n$ since its last digit is even.
(a) Does $2^{2} \mid n$? Does $2^{3} \mid n$?

Note that

$$
n=32688000+48=326880(100)+48=326880\left(25 \cdot 2^{2}\right)+48
$$

so since $2^{2}\left|48,2^{2}\right| n$.
Similarly,

$$
n=32688000+48=32688(1000)+48=32688\left(125 \cdot 2^{3}\right)+48
$$

so since $2^{3}\left|48,2^{3}\right| n$.
(b) Clearly, $10^{j}=(5 \cdot 2)^{j}=5^{j} \cdot 2^{j}$. Therefore, given any n, we can look at the last j digits such that

$$
n=q \cdot 10^{j}+r=q \cdot 5^{j} \cdot 2^{j}+r
$$

so by Modular Arithemtic Lemma

$$
n \equiv 0 \quad\left(\bmod 2^{j}\right) \Longleftrightarrow q \cdot 5^{j} \dot{2}^{j} \equiv 0 \quad\left(\bmod 2^{j}\right) \wedge r \equiv 0 \quad\left(\bmod 2^{j}\right)
$$

and since $q \cdot 5^{j} \dot{2}^{j} \equiv 0\left(\bmod 2^{j}\right)$ is always true,

$$
2^{j}\left|n \Longleftrightarrow 2^{j}\right| r
$$

so n is divisible by 2^{j} if and only if the last j digits are.
(c) By the same argument,

$$
n \equiv 0 \quad\left(\bmod 5^{j}\right) \Longleftrightarrow q \cdot 5^{j} \dot{2}^{j} \equiv 0 \quad\left(\bmod 5^{j}\right) \wedge r \equiv 0 \quad\left(\bmod 5^{j}\right)
$$

so

$$
5^{j}\left|n \Longleftrightarrow 5^{j}\right| r
$$

so n is divisible by 5^{j} if and only if the last j digits are.
2. (a) $100 \equiv 9(\bmod 13)($ since $100=7 \cdot 13+9)$
(b) $-1000 \equiv 1(\bmod 13)($ since $-1000=-77 \cdot 13+1)$
(c) $2^{15} \equiv 8(\bmod 13)\left(\right.$ By Fermat's little theorem $\left.2^{13} \equiv 2(\bmod 13)\right)$
3. Construct addition and multiplication table for $\mathbb{Z} / 6 \mathbb{Z}$:

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

\times	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

4. Let $m \in \mathbb{N}$. Show that if $a \equiv b(\bmod m)$ then $\operatorname{gcd}(a, m)=\operatorname{gcd}(b, m)$.

Suppose $a \equiv b(\bmod m)$. We will show that $\operatorname{gcd}(a, m) \geq \operatorname{gcd}(b, m)$, by showing that any common divisor of b, m is also a common divisor of a, m. Suppose d is a common divisor of b, m, so $d \mid b$ and $d \mid m$. Then since $d \mid m$ and $m \mid(b-a)$, then $d \mid(b-a)$, and since $d \mid b$, then $d \mid-a$ so $d \mid a$. Therefore, d is a common divisor of a, m.

By symmetry, we can do the same proof to show $\operatorname{gcd}(b, m) \geq \operatorname{gcd}(a, m)$. Therefore, $\operatorname{gcd}(a, m)=$ $\operatorname{gcd}(b, m)$.

