Lecture 19

Enoch Cheung

October 30, 2013

- 1. Consider n = 32688048. Clearly 2|n since its last digit is even.
 - (a) Does $2^2|n$? Does $2^3|n$? Note that

$$n = 32688000 + 48 = 326880(100) + 48 = 326880(25 \cdot 2^2) + 48$$

so since $2^2|48, 2^2|n$. Similarly,

$$n = 32688000 + 48 = 32688(1000) + 48 = 32688(125 \cdot 2^3) + 48$$

so since $2^3|48, 2^3|n$.

(b) Clearly, $10^j = (5 \cdot 2)^j = 5^j \cdot 2^j$. Therefore, given any n, we can look at the last j digits such that

$$n = q \cdot 10^j + r = q \cdot 5^j \cdot 2^j + r$$

so by Modular Arithemtic Lemma

$$n \equiv 0 \pmod{2^j} \iff q \cdot 5^j \dot{2}^j \equiv 0 \pmod{2^j} \wedge r \equiv 0 \pmod{2^j}$$

and since $q \cdot 5^j \dot{2}^j \equiv 0 \pmod{2^j}$ is always true,

 $2^j | n \iff 2^j | r$

so n is divisible by 2^j if and only if the last j digits are.

(c) By the same argument,

$$n \equiv 0 \pmod{5^j} \iff q \cdot 5^j \dot{2}^j \equiv 0 \pmod{5^j} \wedge r \equiv 0 \pmod{5^j}$$

 \mathbf{SO}

$$5^j | n \iff 5^j | r$$

so n is divisible by 5^{j} if and only if the last j digits are.

- 2. (a) $100 \equiv 9 \pmod{13}$ (since $100 = 7 \cdot 13 + 9$)
 - (b) $-1000 \equiv 1 \pmod{13}$ (since $-1000 = -77 \cdot 13 + 1$)
 - (c) $2^{15} \equiv 8 \pmod{13}$ (By Fermat's little theorem $2^{13} \equiv 2 \pmod{13}$)

3. Construct addition and multiplication table for $\mathbb{Z}/6\mathbb{Z}$:

+	0	1	2	3	4	5	×	0	1	2	3	4	5
0	0	1	2	3	4	5	0	0	0	0	0	0	0
1	1	2	3	4	5	0	1	0	1	2	3	4	5
2	2	3	4	5	0	1	2	0	2	4	0	2	4
3	3	4	5	0	1	2	3	0	3	0	3	0	3
4	4	5	0	1	2	3	4	0	4	2	0	4	2
5	5	0	1	2	3	4	5	0	5	4	3	2	1

4. Let $m \in \mathbb{N}$. Show that if $a \equiv b \pmod{m}$ then gcd(a, m) = gcd(b, m).

Suppose $a \equiv b \pmod{m}$. We will show that $gcd(a, m) \ge gcd(b, m)$, by showing that any common divisor of b, m is also a common divisor of a, m. Suppose d is a common divisor of b, m, so d|b and d|m. Then since d|m and m|(b-a), then d|(b-a), and since d|b, then d|-a so d|a. Therefore, d is a common divisor of a, m.

By symmetry, we can do the same proof to show $gcd(b,m) \ge gcd(a,m)$. Therefore, gcd(a,m) = gcd(b,m).