Enoch Cheung

October 28, 2013

1. Show that if $a \in \mathbb{Z}$ and $b, c \in \mathbb{N}$ such that when a is divided by b the quotient is q and the remainder is r and when q is divided by c the quotient is s and the remainder is t then wehn a is divided by $b c$ the quotient is s and the remainder is $b t+r$. (Make sure to show that $0 \leq b t+r<b c$.)

The assumption is $a=b q+r$ and $q=c s+t$, and we wish to show that $a=b c(s)+(b t+r)$. By substitution,

$$
a=b(c s+t)+r=b c s+b t+r=b c(s)+(b t+r)
$$

as desired.
To check that $0 \leq b t+r<b c$, note that since r, t are remainders $0 \leq r<b$ and $0 \leq t<c$. Rewritten, this is $0 \leq t \leq c-1$, which means that $0 \leq b t \leq b(c-1)$. Add the inequality $0 \leq r<b$ to obtain

$$
0 \leq b t+r<b(c-1)+b=b c
$$

so $0 \leq b t+r<b c$ as desired.
2. True, false, true, true, false, true.
3. Claim:

$$
\forall a, b \in \mathbb{Z} . \forall m \in \mathbb{N} .\left(a \equiv b \quad(\bmod m) \rightarrow \forall n \in \mathbb{N} . a^{n} \equiv b^{n} \quad(\bmod m)\right)
$$

Consider $a, b \in \mathbb{Z}$ and $m \in \mathbb{N}$ arbitrary such that $a \equiv b(\bmod m)$. We will prove by induction on $n \in \mathbb{N}$ that $a^{n} \equiv b^{n}(\bmod m)$. The base case is just $a \equiv b(\bmod m)$ which we already have.

For the inductive step, suppose for some $n \in \mathbb{N}$ that $a^{n} \equiv b^{n}(\bmod m)$, then since $a \equiv b(\bmod m)$, by Lemma 6.5.10 (Modular Arithmetic Lemma p.419), $a^{n} a \equiv b^{n} b(\bmod m)$, so $a^{n+1} \equiv b^{n+1}(\bmod m)$.

Therefore, by induction, we have shown that $\forall n \in \mathbb{N}$. $a^{n} \equiv b^{n}(\bmod m)$. Since $a, b \in \mathbb{Z}, m \in \mathbb{N}$ were arbitrary, we showed $\forall a, b \in \mathbb{Z} . \forall m \in \mathbb{N} .\left(a \equiv b(\bmod m) \rightarrow \forall n \in \mathbb{N} . a^{n} \equiv b^{n}(\bmod m)\right)$.

