Lecture 15

Enoch Cheung

October 17, 2013

1. (a) $(a, b) \in R \Longleftrightarrow a<3 b$

Reflexive. (not antisymmetric because $(2,1),(1,2) \in R$, not transitive because $(9,5),(5,3) \in R$ but $(9,3) \notin R)$
(b) $(a, b) \in R \Longleftrightarrow a-b=0$

Reflexive, symmetric, transitive, antisymmetric.
(c) $(a, b) \in R \Longleftrightarrow 3 a \leq 2 b$

Irreflexive, transitive $(3 a \leq 2 b \wedge 3 b \leq 2 c \Rightarrow 3 a \leq 2 b \leq 3 b \leq 2 c \Rightarrow 3 a \leq 2 c)$, antisymmetric (if $(a, b),(b, a) \in R$ then by transitivity $(a, a) \in R$ which contradicts irreflexivity, therefore $(a, b),(b, a) \in R$ never holds).
(d) $(a, b) \in R \Longleftrightarrow 7 \mid(3 a+4 b)$

Note that $3 a+4 b \equiv 0(\bmod 7) \Longleftrightarrow 3 a \equiv-4 b(\bmod 7) \Longleftrightarrow 3 a \equiv 3 b(\bmod 7) \Longleftrightarrow a \equiv b$ $(\bmod 7)$. Therefore, it is reflexive, symmetric, transitive.
2. Consider the set $S=[4]$ with the following relations
(a) $R_{1}=\{(1,3),(2,4),(3,1),(4,2)\}$: Irreflexive, symmetric.
(b) $R_{2}=\{(1,3),(2,4)\}$: Irreflexive, antisymmetric, transitive.
(c) $R_{3}=\{(1,1),(2,2),(3,3),(4,4),(1,3),(2,4),(3,1),(4,2)\}$: Reflexive, symmetric, transitive.
(d) $R_{4}=\{(1,1),(2,2),(3,3),(4,4)\}$: Reflexive, symmetric, transitive, antisymmetric.
(e) $R_{5}=\{(1,1),(2,2),(3,3),(4,4),(1,2),(2,3),(3,4),(4,3),(3,2),(2,1)\}$: Reflexive, symmetric.
3. $A=[5]$
(a) Example of relation that is reflexive but not transitive:

$$
R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(2,3)\}
$$

(b) Example of a relation that is reflexive and symmetric but not transitive:

$$
R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(2,1),(2,3),(3,2)\}
$$

(c) Example of a relation that is irreflexive and transitive.

$$
R=\varnothing
$$

4. Consider the relation R defined on $\mathbb{R} \times \mathbb{R}$ by $(x, y) R\left(x^{\prime}, y^{\prime}\right)$ iff $x-x^{\prime} \in \mathbb{Z} \wedge y-y^{\prime} \in \mathbb{Z}$. Prove that R is reflexive, symmetric and transitive.

Reflexive: $x-x=0 \in \mathbb{Z} \wedge y-y=0 \in \mathbb{Z}$ so $(x, y) R(x, y)$.
Symmetric: Suppose $(x, y) R\left(x^{\prime}, y^{\prime}\right)$, then $x^{\prime}-x=-\left(x-x^{\prime}\right) \in \mathbb{Z} \wedge y^{\prime}-y=-\left(y-y^{\prime}\right) \in \mathbb{Z}$ so $\left(x^{\prime}, y^{\prime}\right) R(x, y)$.

Transitive: Suppose $(x, y) R\left(x^{\prime}, y^{\prime}\right)$ and $\left(x^{\prime}, y^{\prime}\right) R\left(x^{\prime \prime}, y^{\prime \prime}\right)$, then $x-x^{\prime \prime}=\left(x-x^{\prime}\right)+\left(x^{\prime}-x^{\prime \prime}\right) \in \mathbb{Z}$ and $y-y^{\prime \prime}=\left(y-y^{\prime}\right)+\left(y^{\prime}-y^{\prime \prime}\right) \in \mathbb{Z}$ so $(x, y) R\left(x^{\prime \prime}, y^{\prime \prime}\right)$.

