Lecture 14

Enoch Cheung

October 15, 2013

1. Claim: For all $n \in \mathbb{N} - \{1\}$, n has a prime factorization.

We will prove this by strong induction on n. Base case: n = 2 is prime, so 2 is its prime factorization. Inductive case: Suppose $\forall k < n \ k$ has a prime factorization, then consider n. If n is prime, n is the prime factorization. Otherwise, n is not prime, so n = ab where 1 < a, b < n. By inductive hypothesis, a, b has prime factorizations $a = p_1 \cdot p_2 \cdots p_k$ and $b = q_1 \cdot q_2 \cdots q_l$. Then $n = ab = p_1 \cdot p_2 \cdots p_k \cdot q_1 \cdot q_2 \cdots q_l$ is a prime factorization.

2. Claim: $\forall n \in \mathbb{N}$. $(n \ge 12 \rightarrow (\exists a, b \in \mathbb{Z}^{\ge 0})$. n = 4a + 5b.

Base cases: Four cases $12 = 4 \cdot 3$, $13 = 4 \cdot 2 + 5$, $14 = 4 + 5 \cdot 2$, $15 = 5 \cdot 3$.

Inductive hypothesis: For some $n \ge 12$ suppose $\forall 12 \le k < n \ \exists a, b \in \mathbb{Z}^{\ge 0}$. k = 4a + 5b.

Then suppose n > 15 (so we are not in one of our base cases), then $12 \le n - 4 < n$ so by inductive hypothesis $\exists a, b \in \mathbb{Z}^{\ge 0}$ such that n - 4 = 4a + 5b. Therefore, n = 4(a + 1) + 5b.

3. Suppose I have variable proposition P(m, n) defined on $\mathbb{N} \times \mathbb{N}$ and I know: (1) P(1, 1) holds, (2) $\forall m \in \mathbb{N}$. $P(m, 1) \to P(m + 1, 1)$, and (3) $\forall m, n \in \mathbb{N}$. $P(m, n) \to P(m, n + 1)$. For what values of $(m, n) \in \mathbb{N} \times \mathbb{N}$ can I conclude P(m, n) holds?

By induction on m, using (1) as base case and (2) as inductive step, we can conclude that $\forall m \in \mathbb{N}$. P(m, 1) holds. Now for a chosen m, we can induct on n using what we just showed as a base case and (3) as our inductive step, we can show that $\forall n \in \mathbb{N}$. P(m, n).

Therefore, we have shown that $\forall m, n \in \mathbb{N}$. P(m, n).

4. Define the sequence

$$a_0 = 2, a_1 = 2, a_n = 2a_{n-1} + 8a_{n-2}$$
 for $n \ge 2$

Prove by induction that $a_n = 4^n + (-2)^n$ for all $n \in \mathbb{Z}^{\geq 0}$. Base cases: $a_0 = 2 = 1 + 1 = 4^0 + (-2)^0$, $a_1 = 2 = 4 - 2 = 4^1 + (-2)^1$. Inductive case: Suppose for some $n \geq 2$ that $\forall k < n \ a_k = 4^k + (-2)^k$, then

$$a_n = 2a_{n-1} + 8a_{n-2}$$

= 2(4ⁿ⁻¹ + (-2)ⁿ⁻¹) + 8(4ⁿ⁻² + (-2)ⁿ⁻²)
= 2 \cdot 4ⁿ⁻¹ - (-2)ⁿ + 2 \cdot 4ⁿ⁻¹ + 2(-2)ⁿ
= (2 + 2)4ⁿ⁻¹ + (2 - 1)(-2)ⁿ
= 4ⁿ + (-2)ⁿ

- 5. Consider the following equation: $4x^4 + 2y^4 = z^4$. In this problem, you will prove that this equation has no solution $(x, y, z) \in \mathbb{N}^3$ by descent.
 - (a) AFSOC that $(x, y, z) \in \mathbb{N}^3$ is such a solution, and suppose further that this solution has the smallest value of x amongst all solutions.
 - (b) z is even because $z^4 = 2(2x^4 + y^4)$ is even, and z even $\iff z^2$ even $\iff z^4$ even.
 - (c) y is even because z is even so let z = 2k for $k \in \mathbb{Z}$, then $2y^4 = (2k)^4 4x^4$ so $y^4 = 2^3k^4 2x^4$ which is even, so y is even.
 - (d) x is even because if y, z are even, let y = 2l and z = 2k for $k, l \in \mathbb{Z}$, then $4x^4 = z^4 2y^4 = (2k)^4 2(2l)^4 = 4 \cdot 2^2k^4 4 \cdot 2^3l^4$ so $x^4 = 2^2k^4 2^3l^4$ is even, so x is even.
 - (e) Note therefore that $(a, b, c) = (\frac{x}{2}, \frac{y}{2}, \frac{z}{2}) \in \mathbb{N}^3$ is also a solution because x, y, z are even and

$$4x^4 + 2y^4 = z^4 \implies \frac{4x^4 + 2y^4}{2^4} = \frac{z^4}{2^4} \implies 4(\frac{x}{2})^4 + 2(\frac{y}{2})^4 = (\frac{z}{2})^4$$

- (f) Therefore, since $\frac{x}{2} < x$ so (x, y, z) is not a solution with x being smallest amongst all solutions, which is a contradiction to (a), so there are no solutions in \mathbb{N}^3 .
- (g) Note that if $(x, y, z) \in \mathbb{Z}^3$ is a solution, then $(|x|, |y|, |z|) \in (\mathbb{Z}^{\leq 0})^3$ is a solution, since $|x|^4 = x^4$ etc. Therefore, we showed that $x \notin \mathbb{N}$, so $x \notin \mathbb{Z}^{<0}$ either, so x = 0. Therefore, the only possible solution is inside \mathbb{Z}^3 , with x = 0. Thus, suppose $(0, y, z) \in (\mathbb{Z}^{\leq 0})^3$ is such a solution, then $2y^4 = z^4$, so taking the positive square roots we have $\sqrt{2}y^2 = z^2$ (because clearly both sides must be positive so we can take the square root, and $\sqrt{2}y^2$ and z^2 must be positive, so we are using the positive square root), so $\sqrt{2} = \frac{z^2}{y^2}$ is a contradiction because $\sqrt{2}$ is irrational. Therefore, y = 0, so $z^4 = 4 \cdot 0^4 + 2 \cdot 0^4 = 0$, which means that the only solution is $(x, y, z) = (0, 0, 0) \in \mathbb{Z}^3$ the trivial solution.