Enoch Cheung

October 15, 2013

1. Claim: For all $n \in \mathbb{N}-\{1\}, n$ has a prime factorization.

We will prove this by strong induction on n. Base case: $n=2$ is prime, so 2 is its prime factorization.
Inductive case: Suppose $\forall k<n k$ has a prime factorization, then consider n. If n is prime, n is the prime factorization. Otherwise, n is not prime, so $n=a b$ where $1<a, b<n$. By inductive hypothesis, a, b has prime factorizations $a=p_{1} \cdot p_{2} \cdots p_{k}$ and $b=q_{1} \cdot q_{2} \cdots q_{l}$. Then $n=a b=p_{1} \cdot p_{2} \cdots p_{k} \cdot q_{1} \cdot q_{2} \cdots q_{l}$ is a prime factorization.
2. Claim: $\forall n \in \mathbb{N}$. $\left(n \geq 12 \rightarrow\left(\exists a, b \in \mathbb{Z}^{\geq 0} . n=4 a+5 b\right)\right)$.

Base cases: Four cases $12=4 \cdot 3,13=4 \cdot 2+5,14=4+5 \cdot 2,15=5 \cdot 3$.
Inductive hypothesis: For some $n \geq 12$ suppose $\forall 12 \leq k<n \exists a, b \in \mathbb{Z}^{\geq 0} . k=4 a+5 b$.
Then suppose $n>15$ (so we are not in one of our base cases), then $12 \leq n-4<n$ so by inductive hypothesis $\exists a, b \in \mathbb{Z} \geq 0$ such that $n-4=4 a+5 b$. Therefore, $n=4(a+1)+5 b$.
3. Suppose I have variable proposition $P(m, n)$ defined on $\mathbb{N} \times \mathbb{N}$ and I know: (1) $P(1,1)$ holds, (2) $\forall m \in \mathbb{N} . P(m, 1) \rightarrow P(m+1,1)$, and (3) $\forall m, n \in \mathbb{N} . P(m, n) \rightarrow P(m, n+1)$. For what values of $(m, n) \in \mathbb{N} \times \mathbb{N}$ can I conclude $P(m, n)$ holds?

By induction on m, using (1) as base case and (2) as inductive step, we can conclude that $\forall m \in$ $\mathbb{N} . P(m, 1)$ holds. Now for a chosen m, we can induct on n using what we just showed as a base case and (3) as our inductive step, we can show that $\forall n \in \mathbb{N} . P(m, n)$.

Therefore, we have shown that $\forall m, n \in \mathbb{N}$. $P(m, n)$.
4. Define the sequence

$$
a_{0}=2, a_{1}=2, a_{n}=2 a_{n-1}+8 a_{n-2} \text { for } n \geq 2
$$

Prove by induction that $a_{n}=4^{n}+(-2)^{n}$ for all $n \in \mathbb{Z} \geq 0$.
Base cases: $a_{0}=2=1+1=4^{0}+(-2)^{0}, a_{1}=2=4-2=4^{1}+(-2)^{1}$.
Inductive case: Suppose for some $n \geq 2$ that $\forall k<n a_{k}=4^{k}+(-2)^{k}$, then

$$
\begin{aligned}
a_{n} & =2 a_{n-1}+8 a_{n-2} \\
& =2\left(4^{n-1}+(-2)^{n-1}\right)+8\left(4^{n-2}+(-2)^{n-2}\right) \\
& =2 \cdot 4^{n-1}-(-2)^{n}+2 \cdot 4^{n-1}+2(-2)^{n} \\
& =(2+2) 4^{n-1}+(2-1)(-2)^{n} \\
& =4^{n}+(-2)^{n}
\end{aligned}
$$

5. Consider the following equation: $4 x^{4}+2 y^{4}=z^{4}$. In this problem, you will prove that this equation has no solution $(x, y, z) \in \mathbb{N}^{3}$ by descent.
(a) AFSOC that $(x, y, z) \in \mathbb{N}^{3}$ is such a solution, and suppose further that this solution has the smallest value of x amongst all solutions.
(b) z is even because $z^{4}=2\left(2 x^{4}+y^{4}\right)$ is even, and z even $\Longleftrightarrow z^{2}$ even $\Longleftrightarrow z^{4}$ even.
(c) y is even because z is even so let $z=2 k$ for $k \in \mathbb{Z}$, then $2 y^{4}=(2 k)^{4}-4 x^{4}$ so $y^{4}=2^{3} k^{4}-2 x^{4}$ which is even, so y is even.
(d) x is even because if y, z are even, let $y=2 l$ and $z=2 k$ for $k, l \in \mathbb{Z}$, then $4 x^{4}=z^{4}-2 y^{4}=$ $(2 k)^{4}-2(2 l)^{4}=4 \cdot 2^{2} k^{4}-4 \cdot 2^{3} l^{4}$ so $x^{4}=2^{2} k^{4}-2^{3} l^{4}$ is even, so x is even.
(e) Note therefore that $(a, b, c)=\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right) \in \mathbb{N}^{3}$ is also a solution because x, y, z are even and

$$
4 x^{4}+2 y^{4}=z^{4} \Longrightarrow \frac{4 x^{4}+2 y^{4}}{2^{4}}=\frac{z^{4}}{2^{4}} \Longrightarrow 4\left(\frac{x}{2}\right)^{4}+2\left(\frac{y}{2}\right)^{4}=\left(\frac{z}{2}\right)^{4}
$$

(f) Therefore, since $\frac{x}{2}<x$ so (x, y, z) is not a solution with x being smallest amongst all solutions, which is a contradiction to (a), so there are no solutions in \mathbb{N}^{3}.
(g) Note that if $(x, y, z) \in \mathbb{Z}^{3}$ is a solution, then $(|x|,|y|,|z|) \in\left(\mathbb{Z}^{\leq 0}\right)^{3}$ is a solution, since $|x|^{4}=x^{4}$ etc. Therefore, we showed that $x \notin \mathbb{N}$, so $x \notin \mathbb{Z}^{<0}$ either, so $x=0$. Therefore, the only possible solution is inside \mathbb{Z}^{3}, with $x=0$. Thus, suppose $(0, y, z) \in\left(\mathbb{Z}^{\leq 0}\right)^{3}$ is such a solution, then $2 y^{4}=z^{4}$, so taking the positive square roots we have $\sqrt{2} y^{2}=z^{2}$ (because clearly both sides must be positive so we can take the square root, and $\sqrt{2} y^{2}$ and z^{2} must be positive, so we are using the positive square root), so $\sqrt{2}=\frac{z^{2}}{y^{2}}$ is a contradiction because $\sqrt{2}$ is irrational. Therefore, $y=0$, so $z^{4}=4 \cdot 0^{4}+2 \cdot 0^{4}=0$, which means that the only solution is $(x, y, z)=(0,0,0) \in \mathbb{Z}^{3}$ the trivial solution.

