Lecture 13

Enoch Cheung

October 10, 2013

1. Suppose I want to modify PMI to conclude $\forall n \in S . P(n)$ holds for the following sets S. how should I modify the two conditions from PMI to prove this?
(a) $S=\left\{\frac{1}{3}, \frac{1}{6}, \frac{1}{12}, \ldots\right\}$.

Base case: Show $P\left(\frac{1}{3}\right)$. Inductive step: Show $\forall x \in S . P(x) \Longrightarrow P\left(\frac{x}{2}\right)$.
(b) Assume $a \in \mathbb{R}$ and $r \in \mathbb{R}^{+}$with $r \neq 0$. Let $S=\left\{x \in \mathbb{R} \mid \exists n \in \mathbb{N} \cup\{0\}\right.$. $\left.x=a r^{n}\right\}$.

Base case: Show $P\left(a r^{0}\right)$. Inductive step: Show $\forall x \in S . P(x) \Longrightarrow P(r x)$.
(c) $S=\left\{2,2^{2}, 2^{2^{2}}, \ldots\right\}$

Base case: Show $P(2)$. Inductive step: Show $\forall x \in S . P(x) \Longrightarrow P\left(2^{x}\right)$.
2. Induction practice
(a) Claim: $\forall n \in \mathbb{N}-\{1,2\} . n^{2} \geq 2 n+3$.

We induct on $n \geq 3$. Base case: For $n=3,3^{2}=9 \geq 9=2 \cdot 3+3$.
Inductive case: Assume for some $n \geq 3$ that $n^{2} \geq 2 n+3$, then

$$
(n+1)^{2}=n^{2}+2 n+1 \geq 2 n+3+2 n+1=2 n+3+2 \cdot 3+1=2 n+10 \geq 2 n+5
$$

by IH, and we make the substitution $n \geq 3$.
(b) Claim: $13^{n}+6$ is a multiple of 7 for all even number n.

We induct on n even. Base case: For $n=0,13^{0}+6=1+6=7$ is a multple of 7 .
Inductive case: Assume for some even n that $13^{n}+6=7 k$ for some $k \in \mathbb{Z}$. Then

$$
13^{n+2}+6=13^{n} \cdot 13^{2}+6=(7 k-6) \cdot 13^{2}+6=7 \cdot 13^{2} k-6 \cdot 13^{2}+6=7 \cdot 13^{2} k-1008=7 \cdot 13^{2} k-7 \cdot 12^{2}=7\left(13^{2} k-12^{2}\right)
$$

is a multiple of 7 .
(c) Define a sequence $\left\langle a_{i}\right\rangle_{i \in \mathbb{N}}$ recursively as follows: $a_{1}=1$ and $a_{n+1}=\sqrt{1+a_{n}}$ for $n \in \mathbb{N}$.
i. Claim: $a_{n}<a_{n+1}$ for all $n \in \mathbb{N}$.

Observe that for all $x \in \mathbb{R}$,

$$
x^{2} \geq 1+x \Longrightarrow
$$

We induct on n to show $a_{n}<a_{n+1}$. Base case: $a_{1}=1<\sqrt{2}=a_{2}$.
Inductive case: Assume $a_{n}<a_{n+1}$ for some $n \in \mathbb{N}$. Then

$$
a_{n}<a_{n+1} \Longrightarrow a_{n}+1<a_{n+1}+1 \Longrightarrow \sqrt{a_{n}+1}<\sqrt{a_{n+1}+1} \Longrightarrow a_{n+1}<a_{n+2}
$$

ii. Claim: $a_{n}<2$ for all $n \in \mathbb{N}$.

We induct on n. Base case: $a_{1}=1<2$.
Inductive case: Assume $a_{n}<2$ for some $n \in \mathbb{N}$. Then

$$
a_{n}<2 \Longrightarrow a_{n}+1<3 \Longrightarrow \sqrt{a_{n}+1}<\sqrt{3} \Longrightarrow a_{n+1}<\sqrt{3}<2
$$

Observe that $3<4 \Longrightarrow \sqrt{3}<\sqrt{4}=2$.
iii. This shows that the sequence $\left\langle a_{i}\right\rangle_{i \in \mathbb{N}}$ converges to some $a \leq 2$.
(d) Define a sequence $\left\langle x_{n}\right\rangle_{n \in \mathbb{N}}$ recursively by $x_{1}=1$ and $x_{n+1}=x_{n}+\frac{1}{x_{n}}$ for $n \in \mathbb{N}$.

Claim: $x_{n}>\sqrt{n}$ for all $n \in \mathbb{N}-\{1\}$.
Induct on $n \geq 2$ that $x_{n}>\sqrt{n}$. Base case: $x_{2}=2>\sqrt{2}$.
Inductive case: Assume for some $n \geq 2$ that $x_{n}>\sqrt{n}$. Then

$$
\left(x_{n+1}\right)^{2}=\left(x_{n}+\frac{1}{x_{n}}\right)^{2}=x_{n}^{2}+2+\frac{1}{x_{n}^{2}}>n+2+\frac{1}{x_{n}^{2}}>n+1
$$

by inductive hypothesis, and using $1+\frac{1}{x_{n}^{2}}$ is positive. Therefore, $x_{n+1}>\sqrt{n+1}$.

