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1. Claim:

∀n ∈ N.
n∑

i=1

(−1)ii2 =
(−1)nn(n + 1)

2

We will prove this by induction.

Base Case: for n = 1,
∑1

i=1(−1)ii2 = −1 = (−1)1(2)
2 .

Inductive case: Assume for some n ∈ N we have
∑n

i=1(−1)ii2 = (−1)nn(n+1)
2 , then

n+1∑
i=1

(−1)ii2 =

n∑
i=1

(−1)ii2 + (−1)n+1(n + 1)2

=
(−1)nn(n + 1)

2
+ (−1)n+1(n + 1)2 (by inductive hypothesis)

=
−(−1)n+1n(n + 1) + 2(−1)n+1(n + 1)2

2

=
(−1)n+1(n + 1)(−n + 2n + 2)

2

=
(−1)n+1(n + 1)(n + 2)

2

so we have shown by induction that ∀n ∈ N.
∑n

i=1(−1)ii2 = (−1)nn(n+1)
2

2. (a) Prove that ∀x ∈ R. x2 6= 1→ x 6= 1.

We will prove this by contrapositive. Let x ∈ R be arbitrary, and x = 1, then x2 = 1.
Therefore, ∀x ∈ R. x = 1→ x2 = 1, which is the contrapositive of the original statement.

(b) Prove that ∀n ∈ N. n ≥ 5→ 2n2 > (n + 1)2.

Suppose n ∈ N arbitrary, n ≥ 5. Then

2n2 = n2 + n2 > n2 + 4n > n2 + 2n + 1 = (n + 1)2

where we made the substitution n > 4 and 2n > 1.

(c) Let E(x) be the proposition “x is even.” Prove that

∀a, b ∈ Z. E(a) ∧ E(b) ⇐⇒ E(a + b) ∧ E(a · b)

We first prove E(a) ∧ E(b) =⇒ E(a + b) ∧ E(a · b). Consider a, b ∈ Z arbitrary, and
E(a) ∧ E(b) so let a = 2h and b = 2k for h, k ∈ Z. Then a + b = 2h + 2k = 2(h + k) is even and
a · b = (2h)(2k) = 2(2hk) is even, so E(a + b) ∧ E(a · b).

Now we prove E(a)∧E(b)⇐= E(a+b)∧E(a ·b) by contraposition. Consider a, b ∈ Z arbitrary
such that ¬(E(a) ∧ E(b)). Equivalently, ¬E(a) ∨ ¬E(b). Consider the case where ¬E(a), so a
is odd. Then if a + b is even then b is odd. However, this means that a · b is odd which gives a
contradiction. Now consider the case where ¬E(b), so b is odd. Then if a + b is even then a is
odd, so a · b is odd which gives a contradiction.

3. Claim: There are no positive integer solutions to the equation x2 − y2 = 1.

Symbolically, this is ∀x, y ∈ N x2 − y2 6= 1.

Suppose for sake of contradiction that x, y ∈ N such that x2 − y2 = 1. Then note that

(x + y)(x− y) = x2 − y2 = 1

so in particular (x + y) divides 1. However, since x, y are positive integers, x + y ≥ 2, which is a
contradiction because the only divisors of 1 are −1 and 1.
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4. Claim: If a and b are both real numbers such that the product ab is irrational then either a or b must
be irrational.

To write this out symbolically:

∀a, b ∈ R. ab /∈ Q→ a /∈ Q ∨ b /∈ Q

Consider the contrapositive (with De Morgan’s law): ∀a, b ∈ R. a ∈ Q ∧ b ∈ Q → ab ∈ Q. Let
a, b ∈ R be arbitrary, and suppose a, b ∈ Q. Then let a = s

t , b = u
v where s, t, u, v ∈ Z and v, t 6= 0.

Then ab = su
tv ∈ Q since uv 6= 0. Therefore, we have shown the contrapositive.

5. Claim: For any distinct integers p and q it is the case that p − 1 is a multiple of q − p if and only if
q − 1 is a multiple of q − p.

To write this out symbolically:

∀p, q ∈ Z. (p 6= q =⇒ ((q − p)|(p− 1)↔ (q − p)|(q − 1)))

Consider p, q ∈ Z arbitrary such that p 6= q.

Suppose (q − p)|(p− 1), then there is some n ∈ Z such that (q − p)n = p− 1. It follows that

(q − p)n = p− 1

=⇒ (q − p)n− (p− q) = p− 1− (p− q)

=⇒ (q − p)(n− 1) = q − 1

so (q − p)|(q − 1) as desired.

On the other hand, suppose (q − p)|(q − 1), then there is some n ∈ Z such that (q − p)n = q − 1,
then

(q − p)n = q − 1

=⇒ (q − p)n + (p− q) = q − 1 + (p− q)

=⇒ (q − p)(n + 1) = p− 1

so (q − p)|(p− 1) as desired.
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