Enoch Cheung

October 8, 2013

1. Claim:

$$
\forall n \in \mathbb{N} \cdot \sum_{i=1}^{n}(-1)^{i} i^{2}=\frac{(-1)^{n} n(n+1)}{2}
$$

We will prove this by induction.
Base Case: for $n=1, \sum_{i=1}^{1}(-1)^{i} i^{2}=-1=\frac{(-1) 1(2)}{2}$.
Inductive case: Assume for some $n \in \mathbb{N}$ we have $\sum_{i=1}^{n}(-1)^{i} i^{2}=\frac{(-1)^{n} n(n+1)}{2}$, then

$$
\begin{aligned}
\sum_{i=1}^{n+1}(-1)^{i} i^{2} & =\sum_{i=1}^{n}(-1)^{i} i^{2}+(-1)^{n+1}(n+1)^{2} \\
& =\frac{(-1)^{n} n(n+1)}{2}+(-1)^{n+1}(n+1)^{2} \quad(\text { by inductive hypothesis) } \\
& =\frac{-(-1)^{n+1} n(n+1)+2(-1)^{n+1}(n+1)^{2}}{2} \\
& =\frac{(-1)^{n+1}(n+1)(-n+2 n+2)}{2} \\
& =\frac{(-1)^{n+1}(n+1)(n+2)}{2}
\end{aligned}
$$

so we have shown by induction that $\forall n \in \mathbb{N}$. $\sum_{i=1}^{n}(-1)^{i} i^{2}=\frac{(-1)^{n} n(n+1)}{2}$
2. (a) Prove that $\forall x \in \mathbb{R} . x^{2} \neq 1 \rightarrow x \neq 1$.

We will prove this by contrapositive. Let $x \in \mathbb{R}$ be arbitrary, and $x=1$, then $x^{2}=1$. Therefore, $\forall x \in \mathbb{R} . x=1 \rightarrow x^{2}=1$, which is the contrapositive of the original statement.
(b) Prove that $\forall n \in \mathbb{N}$. $n \geq 5 \rightarrow 2 n^{2}>(n+1)^{2}$.

Suppose $n \in \mathbb{N}$ arbitrary, $n \geq 5$. Then

$$
2 n^{2}=n^{2}+n^{2}>n^{2}+4 n>n^{2}+2 n+1=(n+1)^{2}
$$

where we made the substitution $n>4$ and $2 n>1$.
(c) Let $E(x)$ be the proposition " x is even." Prove that

$$
\forall a, b \in \mathbb{Z} . E(a) \wedge E(b) \Longleftrightarrow E(a+b) \wedge E(a \cdot b)
$$

We first prove $E(a) \wedge E(b) \Longrightarrow E(a+b) \wedge E(a \cdot b)$. Consider $a, b \in \mathbb{Z}$ arbitrary, and $E(a) \wedge E(b)$ so let $a=2 h$ and $b=2 k$ for $h, k \in \mathbb{Z}$. Then $a+b=2 h+2 k=2(h+k)$ is even and $a \cdot b=(2 h)(2 k)=2(2 h k)$ is even, so $E(a+b) \wedge E(a \cdot b)$.

Now we prove $E(a) \wedge E(b) \Longleftarrow E(a+b) \wedge E(a \cdot b)$ by contraposition. Consider $a, b \in \mathbb{Z}$ arbitrary such that $\neg(E(a) \wedge E(b))$. Equivalently, $\neg E(a) \vee \neg E(b)$. Consider the case where $\neg E(a)$, so a is odd. Then if $a+b$ is even then b is odd. However, this means that $a \cdot b$ is odd which gives a contradiction. Now consider the case where $\neg E(b)$, so b is odd. Then if $a+b$ is even then a is odd, so $a \cdot b$ is odd which gives a contradiction.
3. Claim: There are no positive integer solutions to the equation $x^{2}-y^{2}=1$.

Symbolically, this is $\forall x, y \in \mathbb{N} x^{2}-y^{2} \neq 1$.
Suppose for sake of contradiction that $x, y \in \mathbb{N}$ such that $x^{2}-y^{2}=1$. Then note that

$$
(x+y)(x-y)=x^{2}-y^{2}=1
$$

so in particular $(x+y)$ divides 1 . However, since x, y are positive integers, $x+y \geq 2$, which is a contradiction because the only divisors of 1 are -1 and 1 .
4. Claim: If a and b are both real numbers such that the product $a b$ is irrational then either a or b must be irrational.

To write this out symbolically:

$$
\forall a, b \in \mathbb{R} . a b \notin \mathbb{Q} \rightarrow a \notin \mathbb{Q} \vee b \notin \mathbb{Q}
$$

Consider the contrapositive (with De Morgan's law): $\forall a, b \in \mathbb{R} . a \in \mathbb{Q} \wedge b \in \mathbb{Q} \rightarrow a b \in \mathbb{Q}$. Let $a, b \in \mathbb{R}$ be arbitrary, and suppose $a, b \in \mathbb{Q}$. Then let $a=\frac{s}{t}, b=\frac{u}{v}$ where $s, t, u, v \in \mathbb{Z}$ and $v, t \neq 0$. Then $a b=\frac{s u}{t v} \in \mathbb{Q}$ since $u v \neq 0$. Therefore, we have shown the contrapositive.
5. Claim: For any distinct integers p and q it is the case that $p-1$ is a multiple of $q-p$ if and only if $q-1$ is a multiple of $q-p$.

To write this out symbolically:

$$
\forall p, q \in \mathbb{Z} \cdot(p \neq q \Longrightarrow((q-p)|(p-1) \leftrightarrow(q-p)|(q-1)))
$$

Consider $p, q \in \mathbb{Z}$ arbitrary such that $p \neq q$.
Suppose $(q-p) \mid(p-1)$, then there is some $n \in \mathbb{Z}$ such that $(q-p) n=p-1$. It follows that

$$
\begin{array}{rlrl}
& & (q-p) n & =p-1 \\
\Longrightarrow & & (q-p) n-(p-q) & =p-1-(p-q) \\
\Longrightarrow & (q-p)(n-1) & =q-1
\end{array}
$$

so $(q-p) \mid(q-1)$ as desired.
On the other hand, suppose $(q-p) \mid(q-1)$, then there is some $n \in \mathbb{Z}$ such that $(q-p) n=q-1$, then

$$
\begin{array}{rlrl}
& & (q-p) n & =q-1 \\
& \Longrightarrow & (q-p) n+(p-q) & =q-1+(p-q) \\
\Longrightarrow & (q-p)(n+1) & =p-1
\end{array}
$$

so $(q-p) \mid(p-1)$ as desired.

