Enoch Cheung

October 3, 2013

Universal Claims: Of the form $\forall x \in S . P(x)$. (Note: Commonly $P(x)$ is a conditional statement. We'll revisit thse when we do the section on conditional claims.)

- Direct Proofs: General idea - Let $x \in S$ be arbitrary. Show that $P(x)$ must hold

Ex 1) Claim: For all $x, y \in \mathbb{R} . x^{2}+y^{2} \geq 2 x y$.
Let $x, y \in \mathbb{R}$ be arbitrary. Consider $(x-y)^{2} \geq 0$, which we know to be non-negative because squares of real numbers are non-negative. Through algebraic manipulation

$$
x^{2}+y^{2}-2 x y=(x-y)^{2} \geq 0
$$

so $x^{2}+y^{2} \geq 2 x y$
Ex 2) Claim: The sum of any 2 rational numbers is a rational number.
We will write this out symbolically: $\forall a, b \in \mathbb{Q} .(a+b) \in \mathbb{Q}$.
Let $a, b \in \mathbb{Q}$ be arbitrary, then by definition of rational numbers there exists $s, t, u, v \in \mathbb{Z}$ where $t \neq 0$ and $v \neq 0$ such that

$$
a=\frac{s}{t} \quad b=\frac{u}{v}
$$

Then it follows that

$$
a+b=\frac{s}{t}+\frac{u}{v}=\frac{s v+t u}{t v} \in \mathbb{Q}
$$

because $(s v+t u),(t v) \in \mathbb{Z}$ and $t v \neq 0$.

- Indirect Proofs: Observe that $\neg \forall x \in S . P(x) \Longleftrightarrow \exists x \in S . \neg P(x)$.

Proof strategy: Assume for sake of contradiction that there exists an $x \in S$ such that $\neg P(x)$ holds. Arrive at a contradiction.

Ex 3) Claim: $\forall m, n \in \mathbb{Z} .14 m+21 n \neq 1$.
Assume for the sake of contradiction that $m, n \in \mathbb{Z}$ are such that $14 m+21 n=1$. Then

$$
1=14 m+21 n=2 \cdot 7 m+3 \cdot 7 n=(2 m+3 n) \cdot 7
$$

However, this implies that 7 divides 1 , which is a contradiction.
Ex 4) Claim: $\sqrt{2}$ is irrational.
One way to write this out as a universal claim is $\forall x, y \in \mathbb{Z} \cdot \frac{x}{y} \neq \sqrt{2}$.
Assume for the sake of contradiction that there are such $x, y \in \mathbb{Z}$ such that $\frac{x}{y}=\sqrt{2}$. Additionally, we will require that the fraction $\frac{x}{y}$ is irreducible, meaning that x, y are coprime, meaning that x and y are not both multiples of the same natural number ($\neg \exists a, b, c \in \mathbb{Z} . a c=x \wedge b c=y$). The reason why we can make this assumption is because given a fraction $\frac{x}{y}$, we can divide by whatever x and y are both multiples of to obtain smaller values x_{1}, y_{1} such that $\left|x_{1}\right|<|x|$ and $\left|y_{1}\right|<|y|$ (simplify the fraction). We can iterate this process to eventually find x_{n}, y_{n} such that $\frac{x_{n}}{y_{n}}$ is irreducible, because if we cannot, then we have an infinite sequence y, y_{1}, y_{2}, \ldots such that $|y|>\left|y_{1}\right|>\left|y_{2}\right|>\ldots$ where each $\left|y_{i}\right| \in \mathbb{N}$. This is impossible because there can be no infinte descending chain of natural numbers.

Therefore, it is sufficient to arrive at a contradiction from assuming that there exists $x, y \in \mathbb{Z}$ such that $\frac{x}{y}=\sqrt{2}$ and the fraction is irreducible.

By assumption, $\frac{x^{2}}{y^{2}}=2$ or equivalently $x^{2}=2 y^{2}$. This implies that x^{2} is even, which means that x was even because the square of an odd number is odd, so let $x=2 z$ for some $x \in \mathbb{Z}$. Substitution into our original equation gives $4 z^{2}=(2 z)^{2}=2 y^{2}$ so $2 z^{2}=y^{2}$ so y^{2} is even as well, which by the same argument means that y is also even. However, if x and y are both even, then $\frac{x}{y}$ is not irreducible (since we can divide both by 2). This gives a contradiction.

Use the intermediate value theorem to come up with a non-constructive direct proof of the following existential claim:

Claim: $\exists x \in \mathbb{R} . x^{5}-3 x+1=0$.
Consider the continuous function $f(x)=x^{5}-3 x+1$. Note that $f(0)=1$ and $f(1)=-1$. Therefore, by the intermediate value theorem, since $f(1)=-1<0<1=f(0)$, there exists some $c \in \mathbb{R}$ where $0<c<1$ such that $f(c)=0$. It follows that $f(c)=c^{5}-3 c+1=0$, so c is a real number satisfying our requirement.

