Enoch Cheung

October 1, 2013

1. Write each of the following mathematical satements in symbolic form and then determine wether it is true of false.
(a) There is a real number that is strictly bigger than every integer.

$$
\exists x \in \mathbb{R} . \forall n \in \mathbb{Z} . x>n \quad \text { False }
$$

(b) Every subset of \mathbb{N} has the number 3 as an element.

$$
\forall S \subseteq \mathbb{N} .3 \in S \quad \text { False }
$$

(c) Every natural number's square root is a real number.

$$
\begin{aligned}
& \forall n \in \mathbb{N} . \sqrt{n} \in \mathbb{R} \quad \text { Or alternatively } \\
& \forall n \in \mathbb{N} . \exists x \in \mathbb{R} . x^{2}=n \quad \text { True }
\end{aligned}
$$

2. For each of the following quantified statements, say it out load by reading the symbolic notation. Then determine wether the statement is true or false.
(a) $\forall x \in \mathbb{N} . \exists y \in \mathbb{Z} . x+y<0 \quad$ True
(b) $\exists y \in \mathbb{Z} . \forall x \in \mathbb{N} . x+y<0 \quad$ False
(c) $\forall a \in \mathbb{N} . \exists b \in \mathbb{Z} . \forall c \in \mathbb{N} . a+b<c \quad$ True
3. Write the logical negation of the statements in the previous problem.
(a) $\exists x \in \mathbb{N} . \forall y \in \mathbb{Z} . x+y \geq 0$
(b) $\forall y \in \mathbb{Z} . \exists x \in \mathbb{N} . x+y \geq 0$
(c) $\exists a \in \mathbb{N} . \forall b \in \mathbb{Z} . \exists c \in \mathbb{N} . a+b \geq c$
4. Define the set V below using set builder notation and quantifiers.

$$
\begin{gathered}
V=\bigcup_{x \in I}\{y \in \mathbb{R} \mid-3 x<y<4 x\} \\
V=\{y \in \mathbb{R} \mid \exists x \in I .-3 x<y<4 x\}
\end{gathered}
$$

5. Let's define the following variable propositions:

$$
\begin{array}{ll}
P(x) \text { is " } \frac{1}{2}<x " & Q(x) \text { is " } x<\frac{3}{2} " \\
R(x) \text { is " } x^{2}=4 " & S(x) \text { is " } x+1 \in \mathbb{N} "
\end{array}
$$

(a) $\forall x \in \mathbb{N} . P(x) \quad$ True
(b) $\forall x \in \mathbb{N}$. $Q(x) \Longrightarrow P(x) \quad$ True
(c) $\forall x \in \mathbb{Z} \cdot Q(x) \Longrightarrow P(x) \quad$ False
(d) $\forall x \in \mathbb{R} . R(x) \Longrightarrow S(x) \quad$ False
6. (See Example 4.6 .5 (p.264) for more details) Let $P(x)$ be the proposition " x is an integer that is divisible by 6 ". For each of the following conditions, identify whether it is necessary or sufficient condition for $P(x)$ to hold.
(a) Let $Q(x)$ be " x is an integer that is divisible by 3 ."
$Q(x)$ is necessary but not sufficient, so $\forall x \in \mathbb{Z} \cdot P(x) \Longrightarrow Q(x)$
(b) Let $R(x)$ be " x is an integer that is divisible by $12 . "$
$R(x)$ is sufficient but not necessary, so $\forall x \in \mathbb{Z} \cdot R(x) \Longrightarrow P(x)$
(c) Let $S(x)$ be " x is an integer such that x^{2} is divisble by 6 "
$S(x)$ is necessary and sufficient, so $\forall x \in \mathbb{Z} P(x) \Longleftrightarrow S(x)$

