Enoch Cheung

April 29, 2014

1. Find a unit vector that has the same direction as $v=8 i-j+4 k .|v|=\sqrt{8^{2}+(-1)^{2}+4^{2}}=\sqrt{81}=9$, so

$$
u=\frac{8}{9} i-\frac{1}{9} j+\frac{4}{9} k
$$

is a unit vector with the same direction as v.
2. Find $a \cdot b$ given $|a|=6,|b|=5$ and the angle between a and b is $2 \pi / 3$.

Using the formula

$$
a \cdot b=|a||b| \cos (\theta)=6 \cdot 5 \cos (2 \pi / 3)=6 \cdot 5\left(-\frac{1}{2}\right)=-15
$$

3. Find the angle between the vectors $a=\langle 3,-1,5\rangle$ and $b=\langle-2,4,3\rangle$.

$$
|a|=\sqrt{3^{2}+(-1)^{2}+5^{2}}=\sqrt{35},|b|=\sqrt{(-2)^{2}+4^{2}+3^{2}}=\sqrt{29}, a \cdot b=3 \cdot(-2)+(-1) \cdot 4+5 \cdot 3=5
$$

So

$$
\cos \theta=\frac{a \cdot b}{|a||b|}=\frac{5}{\sqrt{35} \sqrt{29}}=\frac{5}{\sqrt{1015}}
$$

so $\theta=\cos ^{-1}\left(\frac{5}{\sqrt{1015}}\right)$.
4. Find the angle between the vectors $a=4 i-3 j+k$ and $b=2 i-k$.
$|a|=\sqrt{4^{2}+(-3)^{2}+1^{2}}=\sqrt{26},|b|=\sqrt{2^{2}+0^{2}+(-1)^{2}}=\sqrt{5}, a \cdot b=4 \cdot 2+(-3) \cdot 0+1 \cdot(-1)=7$.
So

$$
\cos \theta=\frac{a \cdot b}{|a||b|}=\frac{7}{\sqrt{26} \sqrt{5}}=\frac{5}{\sqrt{130}}
$$

so $\theta=\cos ^{-1}\left(\frac{7}{\sqrt{130}}\right)$.
5. Find the acute angle between the lines $2 x-y=3$ and $3 x+y=7$.

The slope of the first line is 2 and the slope of the second line is -3 . Thus, the direction of the first line can be represented by either $\langle 1,2\rangle$ or $\langle-1,-2\rangle$. The direction of the second line can be represented by either $\langle 1,-3\rangle$ or $\langle-1,3\rangle$. Each line has two possible directions because it could go forward or backwards.

Looking at the lines, it is clear that to obtain an acute angle, we can look at $a=\langle 1,2\rangle$ and $b=\langle-1,3\rangle$ as a pair of vectors, because the angle between them is acute. $|a|=\sqrt{1^{2}+2^{2}}=\sqrt{5}$, $|b|=\sqrt{(-1)^{2}+3^{2}}=\sqrt{10}, a \cdot b=1 \cdot(-1)+2 \cdot 3=5$. Thus

$$
\cos \theta=\frac{a \cdot b}{|a||b|}=\frac{5}{\sqrt{5} \sqrt{10}}=\frac{5}{\sqrt{50}}=\frac{5}{\sqrt{25}}=\frac{\sqrt{2}}{2}
$$

so $\theta=\frac{\pi}{4}$.

