Lecture 21

Enoch Cheung

April 24, 2014

1. Sketch and find the area of $r=3+2 \cos \theta$.

Notice that $r \geq 0$ for all θ. Thus we can get the area by consider $0 \leq \theta \leq 2 \pi$.

$$
\begin{aligned}
A & =\int_{0}^{2 \pi} \frac{1}{2}(3+2 \cos \theta)^{2} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{2}\left(9+12 \cos \theta+4 \cos ^{2} \theta\right) d \theta \\
& =\int_{0}^{2 \pi} \frac{9}{2}+6 \cos \theta+\cos (2 \theta)+1 d \theta \\
& =\left[\frac{11}{2} \theta+6 \sin \theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{2 \pi} \\
& =11 \pi+0+0=11 \pi
\end{aligned}
$$

2. Find the area of $r=1+2 \sin \theta$ (inner loop).

Think about what the graph looks like:

and the inner loop happens when $r<0$. Consider $0=r=1+2 \sin \theta$, then $-\frac{1}{2}=\sin \theta$, then $\theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}$. Notice that the region we are considering is $\frac{7 \pi}{6} \leq \theta \leq \frac{11 \pi}{6}$.

Therefore, the area of the inner loop is given by

$$
\begin{aligned}
A & =\int_{7 \pi / 6}^{11 \pi / 6} \frac{1}{2}(1+2 \sin \theta)^{2} d \theta \\
& =\int_{7 \pi / 6}^{11 \pi / 6} \frac{1}{2}\left(1+4 \sin \theta+4 \sin ^{2} \theta\right) d \theta \\
& =\int_{7 \pi / 6}^{11 \pi / 6} \frac{1}{2}+2 \sin \theta+(1-\cos 2 \theta) d \theta \\
& =\left[\frac{3}{2} \pi-2 \cos \pi-\frac{1}{2} \sin 2 \theta\right]_{7 \pi / 6}^{11 \pi / 6} \\
& =\frac{3}{2}\left(\frac{11 \pi}{6}-\frac{7 \pi}{6}\right)-2\left(\frac{\sqrt{3}}{2}-\left(-\frac{\sqrt{3}}{2}\right)-\frac{1}{2}\left(-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}\right)\right. \\
& =\pi-\frac{3}{2} \sqrt{3}
\end{aligned}
$$

3. Find all common points of $r=2 \sin 2 \theta$ and $r=1$.

First, consider the points where $2 \sin 2 \theta=1$, so $\sin 2 \theta=\frac{1}{2}$, so $2 \theta=\frac{\pi}{6}+k 2 \pi, \frac{5 \pi}{6}+k 2 \pi$ for $k \in \mathbb{Z}$, so $\theta=\frac{\pi}{12}+k \pi, \frac{5 \pi}{12}+k \theta$. This gives $(1, \theta)$ for $\theta=\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{13 \pi}{12}, \frac{17 \pi}{12}$.

We also need to consider the case where $2 \sin 2 \theta=-1$, because those points will are intersections of the lines too (despite having different θ at the points). $\sin 2 \theta=\frac{1}{2}$, so $2 \theta=\frac{7 \pi}{6}+k 2 \pi, \frac{11 \pi}{6}+k 2 \pi$ for $k \in \mathbb{Z}$, so $\theta=\frac{7 \pi}{12}+k \pi, \frac{11 \pi}{12}+k \theta$. This gives $(-1, \theta)$ for $\theta=\frac{7 \pi}{12}, \frac{11 \pi}{12}, \frac{19 \pi}{12}, \frac{23 \pi}{12}$.
4. Find all common points of $r=\sin \theta$ and $r=\sin 2 \theta$.

First, observe consider situation where $\sin \theta=\sin 2 \theta=2 \sin \theta \cos \theta$, so $\frac{1}{2}=\cos \theta$, so we are considering when $\theta=\frac{\pi}{3}, \frac{5 \pi}{3}$, or $\sin \theta=0$. Plugging in gives us $r=\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}$ respectively. This gives us the points $\left(\frac{\sqrt{3}}{2}, \frac{\pi}{3}\right)$ and $\left(-\frac{\sqrt{3}}{2}, \frac{5 \pi}{3}\right)=\left(\frac{\sqrt{3}}{2}, \frac{2 \pi}{3}\right)$ and the pole. We can also observe that since both r are 0 at some θ, the pole is an intersection (they intersect at the pole as long as they are 0 at any θ).

To see that there are no other points, observe that the other way they can intersect is when $-\sin (\theta+\pi)=\sin 2 \theta$. However, since $\sin \theta=-\sin (\theta+\pi)$, we have actually already considered these cases.

Therefore, the points are $\left(\frac{\sqrt{3}}{2}, \frac{\pi}{3}\right)$ and $\left(\frac{\sqrt{3}}{2}, \frac{2 \pi}{3}\right)$ and the pole.
5. Find the length of $r=2 \cos \theta$ for $0 \leq \theta \leq \pi$.

$$
L=\int_{0}^{\pi} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{0}^{\pi} \sqrt{(2 \cos \theta)^{2}+(2 \sin \theta)^{2}} d \theta=\int_{0}^{\pi} \sqrt{4\left(\cos ^{2} \theta+\sin ^{2} \theta\right)} d \theta=\int_{0}^{\pi} 2 d \theta=2 \pi
$$

