Enoch Cheung

April 14, 2014

1. Sketch the region $r \geq 0, \pi / 4 \leq \theta \leq 3 \pi / 4$. Sketch the region $2<r<3,5 \pi / 3 \leq \theta \leq 7 \pi / 3$.
2.

2. Identify the curve by finding a Cartesian equation for the curve $r=2 \cos \theta$.

Recall $x=r \cos \theta$ and $y=r \sin \theta$, so

$$
\begin{aligned}
& x=2 \cos ^{2} \theta=1+\cos (2 \theta) \\
& y=2 \cos \theta \sin \theta=\sin 2 \theta
\end{aligned}
$$

so this is a circle centered around $(1,0)$ with radius 1 . It has equation $(x-1)^{2}+y^{2}=1$.
3. Identify the curve by finding a Cartesian equation for the curve $r^{2} \cos 2 \theta=1$.

Note that $r^{2}=x^{2}+y^{2}$ and $\cos 2 \theta=2 \cos ^{2} \theta-1=2\left(\frac{x}{r}\right)^{2}-1$. Therefore

$$
1=r^{2} \cos 2 \theta=r^{2}\left(2\left(\frac{x}{r}\right)^{2}-1\right)=2 x^{2}-r^{2}=2 x^{2}-\left(x^{2}+y^{2}\right)=x^{2}-y^{2}
$$

which is a hyperbola, centered around $(0,0)$, with foci on x-axis.
4. Sketch the curve with the given polar equation by first sketching the graph of r as a function of θ in Cartesian coordinates.

$$
r=2(1+\cos \theta) \quad r=4 \sin 3 \theta \quad r=1+2 \cos 2 \theta
$$

31.

35.

45.

