Enoch Cheung

April 8, 2014

1. Sketch the curve $x=\cos ^{2} t, y=1-\sin t, 0 \leq t \leq \pi / 2$.
2.

2. Sketch the curve $x=1-t^{2}, y=t-2,-2 \leq t \leq 2$.
(a)

Eliminate the parameter to find a Cartesian equation for the curve. Use $t=y+2$ and substitute $x=1-(y+2)^{2}$, and $-4 \leq y \leq 0$.
3. Describe the motion of a particle with position (x, y) as t varies in the given interval. $x=3+2 \cos t, y=$ $1+2 \sin t, \pi / 2 \leq t \leq 3 \pi / 2$.

From the parametric equation, we can see that it is a circle centered around $(3,1)$ with radius 2 , which has equation $(x-3)^{2}+(y-1)^{2}=4$. Also, notice that we are moving counterclockwise. At $t=\pi / 2$, we are at $(3,3)$, and at $t=3 \pi / 2$, we are at $(3,-1)$. Also, note that since the interval of t has width π, so we make less than one revolution.

Therefore, the particle moves counterclockwise along the circle $(x-3)^{2}+(y-1)^{2}=4$, moving from $(3,3)$ to $(3,-1)$.
4. Find an equation of the tangent to the curve $x=1+4 t-t^{2}, y=2-t^{3}$ at $t=1$.

At $t=1, x=1+4-1=4$ and $y=2-1=1$. Also, $\frac{d x}{d t}=4-2 t$, and $\frac{d y}{d t}=-3 t^{2}$.
Thus, at $t=1$,

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{-3(1)^{2}}{4-2(1)}=-\frac{3}{2}
$$

thus the tangent line is $y=-\frac{3}{2}(x-4)+1$.
5. Find the equation of the tangent(s) to the curve $x=6 \sin t, y=t^{2}+t$ at the point $(0,0)$.

Notice $0=x=6 \sin t \Longrightarrow t=k \pi$ for some $k \in \mathbb{Z}$. Also $0=y=t^{2}+t=(t+1) t$ so $t=-1,0$. Therefore, the only possible t is $t=0$.

Then since $\frac{d x}{d t}=6 \cos t$ and $\frac{d y}{d t}=2 t+1$, so

$$
\frac{d y}{d x}=\frac{2(0)+1}{6 \cos 0}=\frac{1}{6}
$$

so the tangent line is $y=\frac{1}{6}(x-0)+0$ so $y=\frac{1}{6} x$.

6. At what points on the curve $x=2 t^{3}$ and $y=1+4 t-t^{2}$ does the tangent line have slope 1 ?

First $\frac{d x}{d t}=6 t^{2}$ and $\frac{d y}{d t}=4-2 t$ so when $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=1$, we know that

$$
\begin{aligned}
6 t^{2} & =4-2 t \\
6 t^{2}+2 t-4 & =0 \\
(2 t+2)(3 t-2) & =0
\end{aligned}
$$

so $t=-1, \frac{2}{3}$.
At $t=-1, x=2(-1)^{3}=-2$ and $y=1+4(-1)-(-1)^{2}=-4$.
At $t=\frac{2}{3}, x=2\left(\frac{2}{3}\right)^{3}=\frac{16}{27}$ and $y=1+4\left(\frac{2}{3}\right)-\left(\frac{2}{3}\right)^{2}=1+\frac{8}{3}-\frac{4}{9}=\frac{9}{9}+\frac{24}{9}-\frac{4}{9}=\frac{29}{9}$.
Thus the points are $(-2,-4)$ and $\left(\frac{16}{27}, \frac{29}{9}\right)$.

