Lecture 18

Enoch Cheung
April 3, 2014
1.

$$
\begin{aligned}
f(x) & =\frac{x}{9+x^{2}} \\
& =\frac{x}{9} \frac{1}{1+\frac{x^{2}}{9}} \\
& =\frac{x}{9} \frac{1}{1-\left(-\frac{x^{2}}{9}\right)} \\
& =\frac{x}{9} \sum_{n=0}^{\infty}\left(-\frac{x^{2}}{9}\right)^{n} \\
& =\frac{x}{9} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{9^{n}} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{9^{n+1}}
\end{aligned}
$$

note the substitution is for $\left|-\frac{x^{2}}{9}\right|<1$, equivalently $|x|<3$. Thus $R=3$.
2.

$$
\begin{aligned}
f(x) & =\frac{x}{x^{2}+16} \\
& =\frac{x}{16} \frac{1}{\frac{x^{2}}{16}+1} \\
& =\frac{x}{16} \frac{1}{1-\left(-\frac{x^{2}}{16}\right)} \\
& =\frac{x}{16} \sum_{n=0}^{\infty}\left(-\frac{x^{2}}{16}\right)^{n} \\
& =\frac{x}{16} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{16^{n}} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{16^{n+1}}
\end{aligned}
$$

note the substitution is for $\left|-\frac{x^{2}}{16}\right|<1$, equivalently $|x|<4$. Thus $R=4$.
3.

$$
\frac{1}{(1-x)^{2}}=\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{d}{d x}\left(\sum_{n=0}^{\infty} x^{n}\right)=\sum_{n=0}^{\infty} n x^{n-1}
$$

$$
\begin{aligned}
f(x) & =\frac{1+x}{(1-x)^{2}} \\
& =\frac{1}{(1-x)^{2}}+\frac{x}{(1-x)^{2}} \\
& =\sum_{n=0}^{\infty} n x^{n-1}+x \sum_{n=0}^{\infty} n x^{n-1} \\
& =\sum_{n=1}^{\infty} n x^{n-1}+\sum_{n=0}^{\infty} n x^{n} \\
& =\sum_{n=0}^{\infty}(n+1) x^{n}+\sum_{n=0}^{\infty} n x^{n} \\
& =\sum_{n=0}^{\infty}(2 n+1) x^{n}
\end{aligned}
$$

4.

$$
\ln (1+x)=\int \frac{1}{1+x} d x=\int \sum_{n=0}^{\infty}(-1)^{n} x^{n} d x=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}=C+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}
$$

The substitution was with $|x|<1$. Now we need to determine what C is. For $x=0, \ln (1+0)=C+0$, thus $C=\ln (1)=0$.

Therefore,

$$
\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}
$$

with $R=1$.
Now

$$
\begin{aligned}
\int x^{2} \ln (1+x) d x & =\int x^{2} \sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n} d x \\
& =\int \sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n+2}}{n} d x \\
& =C+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n+3}}{n(n+3)}
\end{aligned}
$$

5. Using $\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$ with $R=\infty$.

$$
\begin{aligned}
f(x) & =x \cos \left(\frac{1}{2} x^{2}\right) \\
& =x \sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{2} x^{2}\right)^{2 n}}{(2 n)!} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+1}}{(2 n)!2^{2 n}}
\end{aligned}
$$

with $R=\infty$

