Lecture 17

Enoch Cheung

March 25, 2014

1. Find the Maclaurin series for $f(x)$ using the definition of a MacLaurin series. [Assuem that f has a power series expansion. Do not show that $R_{n}(x) \rightarrow 0$.] Also find the associated radius of convergence.

$$
f(x)=\sin (\pi x)
$$

Recall the definition of Maclaurin series

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots
$$

so note that

$$
\begin{aligned}
f(x) & =\sin (\pi x) & f(0) & =0 \\
f^{\prime}(x) & =\pi \cos (\pi x) & f^{\prime}(0) & =\pi \\
f^{\prime \prime}(x) & =-\pi^{2} \sin (\pi x) & f^{\prime \prime}(0) & =0 \\
f^{\prime \prime \prime}(x) & =-\pi^{3} \cos (\pi x) & f^{\prime \prime \prime}(0) & =-\pi^{3} \\
f^{(4)}(x) & =\pi^{4} \sin (\pi x) & f^{(4)}(0) & =0
\end{aligned}
$$

and clearly the pattern continues, because $f^{(4)}(x)=\pi^{4} f(x)$, so

$$
f^{(2 n+1)}(0)=(-1)^{n} \pi^{2 n+1} \quad f^{(2 n)}(0)=0
$$

therefore

$$
f(x)=\frac{\pi}{1!} x+\frac{-\pi^{3}}{3!} x^{3}+\frac{\pi^{5}}{5!} x^{5}+\frac{-\pi^{7}}{7!} x^{7}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{(2 n+1)!} x^{2 n+1}
$$

Using the ratio test, we can find the radius of convergence

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{(-1)^{n+1} \pi^{2 n+3} x^{2 n+3}}{(2 n+3)!} \frac{(2 n+1)!}{(-1)^{n} \pi^{2 n+1} x^{2 n+1}}\right|=\frac{\pi^{2} x^{2}}{(2 n+3)(2 n+2)} \longrightarrow 0 \text { as } n \rightarrow \infty
$$

so converges for all x, so the radius of convergence is ∞.
2. Use the binomial series to expand the function as a power series. State the radius of convergence.

$$
\begin{aligned}
\frac{1}{(2+x)^{3}} & =\left(\frac{1}{2} \frac{1}{1+\frac{x}{2}}\right)^{3}=\frac{1}{8}\left(1+\frac{x}{2}\right)^{-3}=\frac{1}{8} \sum_{n=0}^{\infty}\binom{-3}{n}\left(\frac{x}{2}\right)^{n} \\
& =\frac{1}{8}\left[1+\frac{-3}{1!} \frac{x}{2}+\frac{(-3)(-4)}{2!}\left(\frac{x}{2}\right)^{2}+\ldots\right] \\
& =\frac{1}{8}\left[1+\frac{-3}{1!} \frac{x}{2}+\frac{3 \cdot 4}{2!}\left(\frac{x}{2}\right)^{2}+\cdots+\frac{(-1)^{n} 3 \cdot 4 \cdots(n+2)}{n!2^{n}} x^{n}+\ldots\right] \\
& =\frac{1}{8}\left[\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+1)(n+2)}{2!2^{n}} x^{n}\right] \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+1)(n+2)}{2^{n+4}} x^{n}
\end{aligned}
$$

has radius of convergenece $R=2$ using the binomial series theorem.
3.

$$
\begin{aligned}
f(x) & =\sin ^{2} x=\frac{1}{2}(1-\cos (2 x))=\frac{1}{2}\left(1-\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 x)^{2 n}}{(2 n)!}\right) \\
& =\frac{1}{2}\left(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(2 x)^{2 n}}{(2 n)!}\right) \\
& =\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{2 n-1} x^{2 n}}{(2 n)!}
\end{aligned}
$$

with $R=\infty$.
We used the expansion

$$
\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

with $R=\infty$.
4.

$$
\begin{aligned}
\int \frac{\cos x-1}{x} d x & =\int \frac{\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}\right)-1}{x} d x \\
& =\int \sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n-1}}{(2 n)!} d x \\
& =\sum_{n=1}^{\infty} \int(-1)^{n} \frac{x^{2 n-1}}{(2 n)!} d x \\
& =\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)(2 n)!}+C
\end{aligned}
$$

with $R=\infty$.

