Lecture 15

Enoch Cheung

March 18, 2014
1.

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2} x^{n}}{2^{n}}
$$

Let $a_{n}=(-1)^{n} \frac{n^{2} x^{n}}{2^{n}}$. By Ratio Test, consider

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2} x^{n+1}}{2^{n+1}} \frac{2^{n}}{n^{2} x^{n}}\right|=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{2} \frac{|x|}{2}=\frac{|x|}{2}
$$

so the limit is <1 when $|x|<2$ and >1 when $|x|>2$. Thus by the Ratio Test the series converges when $|x|<2$ and diverges when $|x|>2$.

Now to consider the end points of $x=2$ and $x=-2$. When $x=2$, we are considering

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2} 2^{n}}{2^{n}}=\sum_{n=1}^{\infty}(-1)^{n} n^{2}
$$

which diverges since $\left|a_{n+1}\right|>\left|a_{n}\right|$. Similarly, when $x=-2$,

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}(-2)^{n}}{2^{n}}=\sum_{n=1}^{\infty} n^{2}
$$

which also diverges.
Therefore, the interval of convergence is $(-2,2)$ and the radius of convergence is 2 .
2.

$$
\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n \sqrt{n}} x^{n}
$$

By Ratio Test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-3)^{n+1} x^{n+1}}{(n+1)^{1.5}} \frac{n^{1.5}}{(-3)^{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|(-3) x\left(\frac{n}{n+1}\right)^{1.5}\right|=\lim _{n \rightarrow \infty}|3 x|
$$

thus by the Ratio test, this converges when $|x|<\frac{1}{3}$ and diverges when $|x|>\frac{1}{3}$.
Now to look at the endpoints $x=\frac{1}{3}$ and $x=-\frac{1}{3}$. When $x=\frac{1}{3}$,

$$
\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n \sqrt{n}}\left(\frac{1}{3}\right)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{1.5}}
$$

converges absolutely by p-test, so converges.
Similarly, when $x=-\frac{1}{3}$,

$$
\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n \sqrt{n}}\left(-\frac{1}{3}\right)^{n}=\sum_{n=1}^{\infty} \frac{1}{n^{1.5}}
$$

converges by p-test.
Thus the interval is $\left[-\frac{1}{3}, \frac{1}{3}\right]$ and the radius is $\frac{1}{3}$.
3.

$$
\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n^{2}+1}
$$

By Ratio Test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n+1}}{(n+1)^{2}+1} \frac{n^{2}+1}{(x-2)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{n^{2}+1}{(n+1)^{2}+1}\right)(x-2)\right|=\lim _{n \rightarrow \infty}|x-2|
$$

so by the Ratio test, converges when $|x-2|<1$ and diverges when $|x-2|>1$.
Now consider the end points. When $x=1$,

$$
\sum_{n=0}^{\infty} \frac{(1-2)^{n}}{n^{2}+1}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

When $x=3$,

$$
\sum_{n=0}^{\infty} \frac{(3-2)^{n}}{n^{2}+1}=\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}
$$

Thus both of them converges absolutely, by limit comparison test with $\sum \frac{1}{n^{2}}$.
Therefore the interval is when $|x-2| \leq 1$ so the interval is $[1,3]$ and the radius is 1 .
4.

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}
$$

By Ratio Test

$$
\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{1 \cdot 3 \cdot 5 \cdots(2 n+1)} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{2 n+1}\right|=0
$$

thus the series converges for every x, so the interval is $(-\infty, \infty)$ and the radius is ∞.
5. If $\sum_{n=0}^{\infty} c_{n} 4^{n}$ is convergent, does it follow that the following series are convergent?
(a)

$$
\sum_{n=0}^{\infty} c_{n}(-2)^{n}
$$

Consider the power series

$$
\sum_{n=0}^{\infty} c_{n} x^{n}
$$

which is centered around $a=0$. Since this is a power series, and $\sum_{n=0}^{\infty} c_{n} 4^{n}$ is convergent, the radius of convergence is at least 4 . So we know that since -2 is in the interval $(-4,4)$ of radius $4, \sum_{n=0}^{\infty} c_{n}(-2)^{n}$ is convergent.
(b)

$$
\sum_{n=0}^{\infty} c_{n}(-4)^{n}
$$

There is not enough information to conclude that the series is convergent. Consider

$$
c_{n}=(-1)^{n} \frac{1}{n}\left(\frac{1}{4}\right)^{n}
$$

so

$$
\sum_{n=0}^{\infty} c_{n} 4^{n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n}
$$

which converges because it is an alternating series.
However,

$$
\sum_{n=0}^{\infty} c_{n}(-4)^{n}=\sum_{n=0}^{\infty} \frac{1}{n}
$$

which diverges.

