Lecture 13

Enoch Cheung

March 4, 2014
1.

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{n^{3}+4}
$$

Let $b_{n}=\frac{n^{2}}{n^{3}+4}$. To see $b_{n+1} \geq b_{n}$, we look at the function $f(x)=\frac{x^{2}}{x^{3}+4}$. Then

$$
f^{\prime}(x)=\frac{\left(x^{3}+4\right) 2 x-\left(3 x^{2}\right) x^{2}}{\left(x^{3}+4\right)^{2}}=\frac{2 x^{4}+8 x-3 x^{4}}{\left(x^{3}+4\right)^{2}}=\frac{-x^{4}+8 x}{\left(x^{3}+4\right)^{2}}=\frac{-x\left(x^{3}-8\right)}{\left(x^{3}+4\right)^{2}}
$$

so $f^{\prime}(x)<0$ for $x>2$. Therefore, for $n>2$ we know that $b_{n+1}>b_{n}$, so the sequence is eventually decreasing.

We also check that

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{3}+4}=\lim _{n \rightarrow \infty} \frac{1}{n+\frac{4}{n^{2}}}=0
$$

Therefore, the alternating series converges.
2.

$$
\sum_{n=0}^{\infty} \frac{\sin \left(\left(n+\frac{1}{2}\right) \pi\right)}{1+\sqrt{n}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{1+\sqrt{n}}
$$

we know that $\sin \left(\left(n+\frac{1}{2}\right) \pi\right)=(-1)^{n}$ for all integers n.
Clearly $\frac{1}{1+\sqrt{n+1}}<\frac{1}{1+\sqrt{n}}$ and $\lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{n}}=0$. Thus the alternating series converges.
3. Approximate the sum of the series correct to four decimal places.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n)!}
$$

We know that if $b_{n+1} \leq b_{n}$ and $\lim _{n \rightarrow \infty} b_{n}=0$ then $\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}$. We want $\left|R_{n}\right|<0.0001$ so we need to find n such that $b_{n+1}<0.0001$

$$
\frac{1}{2!}=\frac{1}{2} \quad \frac{1}{4!}=\frac{1}{24} \quad \frac{1}{6!}=\frac{1}{720} \quad \frac{1}{8!}=\frac{1}{40320}
$$

so we need $n=3$.

$$
s_{3}=-\frac{1}{2}+\frac{1}{24}-\frac{1}{720}=-0.4597
$$

4.

$$
1-\frac{1 \cdot 3}{3!}+\frac{1 \cdot 3 \cdot 5}{5!}-\frac{1 \cdot 3 \cdot 5 \cdot 7}{7!}+\cdots+(-1)^{n-1} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{(2 n-1)!}+\ldots
$$

Trying the ratio test
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)(2 n+1)}{(2 n+1)!} \frac{(2 n-1)!}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}=\lim _{n \rightarrow \infty} \frac{2 n+1}{(2 n)(2 n+1)}=\lim _{n \rightarrow \infty} \frac{1}{2 n}=0<1$
so by the ratio test the series absolutely converges.
5. The terms of a series are defined recursively by

$$
a_{1}=2 \quad a_{n+1}=\frac{5 n+1}{4 n+3} a_{n}
$$

Determine whether $\sum a_{n}$ converges or diverges.

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{5 n+1}{4 n+3} a_{n} \frac{1}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{5 n+1}{4 n+3}=\frac{5}{4}>1
$$

so the series diverges.

