Lecture 10

Enoch Cheung

February 19, 2014

1. Find a formula for the sequence $\left\{-3,2,-\frac{4}{3}, \frac{8}{9},-\frac{16}{27}, \ldots\right\}$.

Notice that $a_{n+1}=-\frac{2}{3} a_{n}$. Therefore, $a_{n}=\left(-\frac{2}{3}\right)^{n-1}(-3)=\left(-\frac{2}{3}\right)^{n} \frac{9}{2}$.
2. Determine whether the sequence converges or diverges

$$
\left\{\frac{(2 n-1)!}{(2 n+1)!}\right\}
$$

Note that

$$
\frac{(2 n-1)!}{(2 n+1)!}=\frac{(2 n-1)!}{(2 n-1)!(2 n)(2 n+1)}=\frac{1}{4 n^{2}+2 n}
$$

and clearly $\lim _{n \rightarrow \infty} 4 n^{2}+2 n=\infty$, so $\lim _{n \rightarrow \infty} \frac{(2 n-1)!}{(2 n+1)!}=0$.
3.

$$
a_{n}=\left(1+\frac{2}{n}\right)^{n}
$$

Recall the limit definition of e (p.418)

$$
e=\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

Observe that the sequence

$$
\sqrt{a_{n}}=\left(1+\frac{2}{n}\right)^{n / 2}
$$

and the function $f(x)=(1+x)^{1 / x}$ is continuous, therefore

$$
\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{n / 2}=\lim _{n \rightarrow \infty} f\left(\frac{2}{n}\right)
$$

Since f is continuous, and $\lim _{n \rightarrow \infty} \frac{2}{n}=0$, so $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\lim _{x \rightarrow 0} f(x)=e$ so $\lim _{n \rightarrow \infty} a^{n}=e^{2}$ (it is clear that it has to be the positive square root).
4.

$$
a_{n}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{(2 n)^{n}}
$$

Note that

$$
a_{n}=\frac{1}{2 n}\left(\frac{3 \cdot 5 \cdots(2 n-1)}{(2 n)^{n-1}}\right)
$$

and the fraction on the right is less than 1 since the denumerate is greater than or equal to the numerator. Therefore

$$
0 \leq a_{n} \leq \frac{1}{2 n}
$$

so by the Squeez Theorem $\lim _{n \rightarrow \infty} a_{n}=0$.
5.

$$
3-4+\frac{16}{3}-\frac{64}{9}+\cdots=\sum_{n=1}^{\infty}\left(-\frac{4}{3}\right)^{n-1} 3
$$

so it is divergent, since the ratio $|r| \geq 1$.
6.

$$
10-2+0.4-0.08+\cdots=\sum_{n=1}^{\infty}\left(-\frac{1}{5}\right) 10=\frac{10}{1-\left(-\frac{1}{5}\right)}=\frac{50}{6}=\frac{25}{3}
$$

using the formula $\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}$ for $|r|<1$.
7.

$$
\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)+\cdots=\frac{1}{\sqrt{1}}=1
$$

