Lecture 9b

Enoch Cheung

February 11, 2014

Determine the number of intervals necessary to approximate the value the integral to within .0001 using the Trapezoid rule. $\int_{-1}^{3} \sqrt{2r+1} dr$

$$\int_{0}^{1} \sqrt{2x + 1} dx$$

Then $f(x) = \sqrt{2x + 1}$, so $f'(x) = \frac{1}{\sqrt{2x + 1}}$ so $f''(x) = -\frac{1}{(2x + 1)^{3/2}}$.
Note that $f'''(x) = \frac{3}{2} \frac{1}{(2x + 1)^{5/2}}$. Thus $f''(x) < 0$ and $f'''(x) > 0$ in the domain of $0 \le x \le 3$.
Thus $f''(x)$ is negative and increasing. Hence $|f''(x)|$ is bounded by $|f''(0)| = 1$ so $K = 1$ in the formula

$$E_T \le \frac{K(b-a)^3}{12n^2}$$

Since we want $E_T \leq .0001$, solve for n in

$$.0001 \geq \frac{1 \cdot (3-0)^3}{12n^2}$$

gives us

$$12n^{2} \ge \frac{3^{3}}{.0001} = 270000$$
$$n^{2} \ge 3240000$$
$$n \ge 1800$$