Lecture 9b

Enoch Cheung

February 11, 2014

Determine the number of intervals necessary to approximate the value the integral to within .0001 using the Trapezoid rule.

$$
\int_{0}^{3} \sqrt{2 x+1} d x
$$

Then $f(x)=\sqrt{2 x+1}$, so $f^{\prime}(x)=\frac{1}{\sqrt{2 x+1}}$ so $f^{\prime \prime}(x)=-\frac{1}{(2 x+1)^{3 / 2}}$.
Note that $f^{\prime \prime \prime}(x)=\frac{3}{2} \frac{1}{(2 x+1)^{5 / 2}}$. Thus $f^{\prime \prime}(x)<0$ and $f^{\prime \prime \prime}(x)>0$ in the domain of $0 \leq x \leq 3$.
Thus $f^{\prime \prime}(x)$ is negative and increasing. Hence $\left|f^{\prime \prime}(x)\right|$ is bounded by $\left|f^{\prime \prime}(0)\right|=1$ so $K=1$ in the formula

$$
E_{T} \leq \frac{K(b-a)^{3}}{12 n^{2}}
$$

Since we want $E_{T} \leq .0001$, solve for n in

$$
.0001 \geq \frac{1 \cdot(3-0)^{3}}{12 n^{2}}
$$

gives us

$$
\begin{aligned}
12 n^{2} & \geq \frac{3^{3}}{.0001}=270000 \\
n^{2} & \geq 3240000 \\
n & \geq 1800
\end{aligned}
$$

