Lecture 8

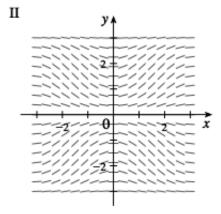
Enoch Cheung

February 6, 2014

1. Sketch the graphs of the solutions that satisfy the given initial conditions:

(a)
$$y(0) = 1$$
 (b) $y(0) = 2$ (c) $y(0) = -1$

6. $y' = \sin x \sin y$



2. Use Euler's method with step size 0.1 to estimate y(0.5), where y(x) is the solution of the initial-value problem y' = y + xy, y(0) = 1.

x	y	y'
0	1	1
0.1	1.1	1.21
0.2	1.221	1.465
0.3	1.368	1.778
0.4	1.545	2.163
0.5	1.762	
so $y(0.5) \approx 1.762$.		

3. P(t) measures the performance of someone learning a skill after a training time t, M is the maximum level of performance, and k is a positive constant.

$$\frac{dP}{dt} = k(M - P)$$

$$\int \frac{dP}{M - P} = \int kdt$$

$$-\ln|M - P| = kt + C$$

$$|M - P| = e^{-kt - C}$$

$$P = M - Ke^{-kt}$$

by letting $K = \pm e^{-C}$. Note that if we want P(0) = 0, then K = M so $P(t) = M - Me^{-kt}$. The limit of this expression is $\lim_{t\to\infty} P(t) = M$.

4. A glucose solution is administered intravenously into the bloodstream at a constant rate r. As the glucose is added, it is converted into other substances and removed from the bloodstream at a rate

that is proportional to the concentration at that time. Concentration at time t = 0 is C_0 .

$$\frac{dC}{dt} = r - kC$$

$$\int \frac{dC}{r - kC} = \int dt$$

$$-\frac{1}{k} \ln |r - kC| = t + D$$

$$r - kC = Ke^{-kt}$$

$$C = \frac{1}{k} (r - Ke^{-kt})$$

so $C(0) = \frac{1}{k}(r-K) = C_0$ so $K = r - kC_0$. Thus $C(t) = \frac{1}{k}(r - (r - kC_0)e^{-kt})$ so $C(t) = (C_0 - \frac{r}{k})e^{-kt} + \frac{r}{k}$

Assuming $C_0 < \frac{r}{k}$, $\lim_{t\to\infty} C(t) = \frac{r}{k}$ is the equalibrium amount of glucose in the blood, where it is administered and consumed at the same rate.

5. This is 7.7 #32 which was in your homework. The solution is

$$\int_0^{1.6} g(x)dx \approx S_8 = \frac{0.2}{3} [g(0) + 4 \cdot g(0.2) + 2 \cdot g(0.4) + 4 \cdot g(0.6) + 2 \cdot g(0.8) + \dots + 2 \cdot g(1.2) + 4 \cdot g(1.4) + g(1.6)] = 19.21$$

The error is given by K being an upper bound to $|g^{(4)}(x)| \leq K$ for $0 \leq x \leq 1.6$, so the tightest bound is K = 5, since $-5 \leq g^{(4)}(x) \leq 2$. Thus the error is

$$\frac{5(1.6)^5}{180\cdot 8^4}\approx .000071$$

6.

$$\int_{0}^{2} z^{2} \ln z dz = \lim_{t \to 0^{+}} \int_{t}^{2} z^{2} \ln z dz$$

now find the integral using integration by parts, with $u = \frac{z^3}{3}$, $du = z^2$, $v = \ln z$, $dv = \frac{1}{z}$

$$\int z^2 \ln z dz = \frac{z^3}{3} \ln z - \int \frac{z^3}{3} \frac{1}{z} dz = \frac{z^3}{3} \ln z - \frac{z^3}{9} + C$$

 \mathbf{SO}

$$\int_0^2 z^2 \ln z dz = \lim_{t \to 0^+} \int_t^2 z^2 \ln z dz = \lim_{t \to 0^+} \left[\frac{z^3}{3} \ln z - \frac{z^3}{9} \right]_t^2 = \frac{8}{3} \ln 2 - \frac{8}{9} - \frac{t^3}{3} \ln t + \frac{t^3}{9}$$

using L'Hoptial's rule

$$\lim_{t \to 0^+} t^3 \ln t = \lim_{t \to 0^+} \frac{\ln t}{1/t^3} = \lim_{t \to 0^+} \frac{1/t}{-3/t^4} = \lim_{t \to 0^+} -\frac{1}{3}t^3 = 0$$

thus the answer is

$$\int_0^2 z^2 \ln z dz = \frac{8}{3} \ln 2 - \frac{8}{9}$$