Lecture 8

Enoch Cheung

February 6, 2014

1. Sketch the graphs of the solutions that satisfy the given initial conditions:
(a) $y(0)=1$
(b) $y(0)=2$
(c) $y(0)=-1$

6. $y^{\prime}=\sin x \sin y$

2. Use Euler's method with step size 0.1 to estimate $y(0.5)$, where $y(x)$ is the solution of the initial-value problem $y^{\prime}=y+x y, y(0)=1$.

x	y	y^{\prime}
0	1	1
0.1	1.1	1.21
0.2	1.221	1.465
0.3	1.368	1.778
0.4	1.545	2.163
0.5	1.762	

so $y(0.5) \approx 1.762$.
3. $P(t)$ measures the performance of someone learning a skill after a training time t, M is the maximum level of performance, and k is a positive constant.

$$
\begin{aligned}
\frac{d P}{d t} & =k(M-P) \\
\int \frac{d P}{M-P} & =\int k d t \\
-\ln |M-P| & =k t+C \\
|M-P| & =e^{-k t-C} \\
P & =M-K e^{-k t}
\end{aligned}
$$

by letting $K= \pm e^{-C}$. Note that if we want $P(0)=0$, then $K=M$ so $P(t)=M-M e^{-k t}$. The limit of this expression is $\lim _{t \rightarrow \infty} P(t)=M$.
4. A glucose solution is adminstered intravenously into the bloodstream at a constant rate r. As the glucose is added, it is convereted into other substances and removed from the bloodstream at a rate
that is proportional to the concentration at that time. Concentration at time $t=0$ is C_{0}.

$$
\begin{aligned}
\frac{d C}{d t} & =r-k C \\
\int \frac{d C}{r-k C} & =\int d t \\
-\frac{1}{k} \ln |r-k C| & =t+D \\
r-k C & =K e^{-k t} \\
C & =\frac{1}{k}\left(r-K e^{-k t}\right)
\end{aligned}
$$

so $C(0)=\frac{1}{k}(r-K)=C_{0}$ so $K=r-k C_{0}$. Thus $C(t)=\frac{1}{k}\left(r-\left(r-k C_{0}\right) e^{-k t}\right)$ so

$$
C(t)=\left(C_{0}-\frac{r}{k}\right) e^{-k t}+\frac{r}{k}
$$

Assuming $C_{0}<\frac{r}{k}, \lim _{t \rightarrow \infty} C(t)=\frac{r}{k}$ is the equalibrium amount of glucose in the blood, where it is adminstered and consumed at the same rate.
5. This is $7.7 \# 32$ which was in your homework. The solution is

$$
\int_{0}^{1.6} g(x) d x \approx S_{8}=\frac{0.2}{3}[g(0)+4 \cdot g(0.2)+2 \cdot g(0.4)+4 \cdot g(0.6)+2 \cdot g(0.8)+\cdots+2 \cdot g(1.2)+4 \cdot g(1.4)+g(1.6)]=19.21
$$

The error is given by K being an upper bound to $\left|g^{(4)}(x)\right| \leq K$ for $0 \leq x \leq 1.6$, so the tightest bound is $K=5$, since $-5 \leq g^{(4)}(x) \leq 2$. Thus the error is

$$
\frac{5(1.6)^{5}}{180 \cdot 8^{4}} \approx .000071
$$

6.

$$
\int_{0}^{2} z^{2} \ln z d z=\lim _{t \rightarrow 0^{+}} \int_{t}^{2} z^{2} \ln z d z
$$

now find the integral using integration by parts, with $u=\frac{z^{3}}{3}, d u=z^{2}, v=\ln z, d v=\frac{1}{z}$

$$
\int z^{2} \ln z d z=\frac{z^{3}}{3} \ln z-\int \frac{z^{3}}{3} \frac{1}{z} d z=\frac{z^{3}}{3} \ln z-\frac{z^{3}}{9}+C
$$

so

$$
\int_{0}^{2} z^{2} \ln z d z=\lim _{t \rightarrow 0^{+}} \int_{t}^{2} z^{2} \ln z d z=\lim _{t \rightarrow 0^{+}}\left[\frac{z^{3}}{3} \ln z-\frac{z^{3}}{9}\right]_{t}^{2}=\frac{8}{3} \ln 2-\frac{8}{9}-\frac{t^{3}}{3} \ln t+\frac{t^{3}}{9}
$$

using L'Hoptial's rule

$$
\lim _{t \rightarrow 0^{+}} t^{3} \ln t=\lim _{t \rightarrow 0^{+}} \frac{\ln t}{1 / t^{3}}=\lim _{t \rightarrow 0^{+}} \frac{1 / t}{-3 / t^{4}}=\lim _{t \rightarrow 0^{+}}-\frac{1}{3} t^{3}=0
$$

thus the answer is

$$
\int_{0}^{2} z^{2} \ln z d z=\frac{8}{3} \ln 2-\frac{8}{9}
$$

