Lecture 7

Enoch Cheung

February 4, 2014
1.

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{t}{y e^{y+t^{2}}} \\
\int y e^{y} d y & =\int t e^{-t^{2}} d t
\end{aligned}
$$

Using integration by parts

$$
\int y e^{y} d y=y e^{y}-\int e^{y} d y=y e^{y}-e^{y}+C_{1}
$$

Clearly

$$
\int t e^{-t^{2}} d t=-\frac{1}{2} e^{-t^{2}}+C_{2}
$$

Thus a solution is

$$
(y-1) e^{y}=-\frac{1}{2} e^{-t^{2}}+C
$$

2.

$$
\begin{aligned}
\frac{d p}{d t} & =t^{2} p-p+t^{2}-1 \\
\frac{d p}{d t} & =\left(t^{2}-1\right)(p+1) \\
\int \frac{d p}{p+1} & =\int\left(t^{2}-1\right) d t \\
\ln |p+1|+C_{1} & =\frac{1}{3} t^{3}-t+C_{2} \\
p+1 & =e^{\frac{1}{3} t^{3}-t}+C \\
p & =K e^{\frac{1}{3} t^{3}-t}-1
\end{aligned}
$$

by letting $K=e^{C}$.
3. Given $u(0)=-5$ and

$$
\begin{aligned}
\frac{d u}{d t} & =\frac{2 t+\sec ^{2} t}{2 u} \\
\int 2 u d u & =\int 2 t+\sec ^{2} t d t \\
u^{2}+C_{1} & =t^{2}+\tan t+C_{2} \\
u & = \pm \sqrt{t^{2}+\tan t+C}
\end{aligned}
$$

then using $u(0)= \pm \sqrt{0^{2}+0+C}=-5$ gives

$$
u=-\sqrt{t^{2}+\tan t+25}
$$

4. Given $y(\pi / 3)=a$ and $0<x<\frac{\pi}{2}$ and

$$
\begin{aligned}
y^{\prime} \tan x & =a+y \\
\frac{d y}{d x} \tan x & =a+y \\
\int \frac{d y}{a+y} & =\int \cot (x) d x \\
\ln |a+y|+C_{1} & =\ln |\sin x|+C_{2} \\
a+y & =e^{\ln (\sin x)+C} \\
y & =K \sin x-a
\end{aligned}
$$

noting that since $0<x<\frac{\pi}{2}$ so $\sin x$ is positive.
Now using $y(\pi / 3)=K \sin \frac{\pi}{3}-a=a$ gives $K \frac{\sqrt{3}}{2}-a=a$ so $K=\frac{4 a}{\sqrt{3}}$ thus the solution is

$$
y=\frac{4 a}{\sqrt{3}} \sin x-a
$$

5. Find an equation of the curve that passes through the point $(0,1)$ and whose slope at (x, y) is $x y$. We want $\frac{d y}{d x}=x y$ with $y(0)=1$. To solve,

$$
\begin{aligned}
\frac{d y}{d x} & =x y \\
\int \frac{d y}{y} & =\int x d x \\
\ln |y|+C_{1} & =\frac{x^{2}}{2}+C_{2} \\
y & =K e^{x^{2} / 2}
\end{aligned}
$$

then using $y(0)=K e^{0^{2} / 2}=1$ so $K=1$ so the solution is

$$
y=e^{x^{2} / 2}
$$

