Carnegie Mellon

Alan Frieze <u>af1p@random.math.cmu.edu</u> Charalampos (Babis) E. Tsourakakis <u>ctsourak@math.cmu.edu</u>

On Certain Properties of Random Apollonian Networks http://www.math.cmu.edu/~ctsourak/ran.html

WAW 2012 22 June **`**12

WAW '12

Outline

Introduction

- Degree Distribution
- Diameter
- Highest Degrees
- Eigenvalues
- Open Problems

Motivation

WAW '12

Motivation

- Modelling "real-world" networks has attracted a lot of attention. Common characteristics include:
 - Skewed degree distributions (e.g., power laws).
 - Large Clustering Coefficients
 - Small diameter
- A popular model for modeling real-world *planar* graphs are Random Apollonian Networks.

Problem of Apollonius

Apollonius (262-190 вс) Construct circles that are tangent to three given circles on the plane.

Apollonian Packing

Apollonian Gasket

Higher Dimensional Packings

Higher Dimensional (3d) Apollonian Packing. From now on, we shall discuss the 2d case.

Apollonian Network

Dual version of Apollonian Packing

Random Apollonian Networks

- Start with a triangle (t=o).
- Until the network reaches the desired size
 - Pick a face F uniformly at random, insert a new vertex in it and connect it with the three vertices of F

Random Apollonian Networks

For any $t \ge 0$

- Number of vertices n_t =t+3
- Number of vertices m_t=3t+3
- Number of faces F_t=2t+1

Note that a RAN is a maximal planar graph since for any planar graph $m_t \leq 3n_t - 6 = 3t + 3$

Outline

- Introduction
- Degree Distribution
- Diameter
- Highest Degrees
- Eigenvalues
- Open Problems

Degree Distribution

- Let N_k(t)=E[Z_k(t)]=expected #vertices of degree k at time t. Then:
- N₃(t + 1) = N₃(t) + 1 ^{3N₃(t)}/_{2t+1}
 N_k(t + 1) = N_k(t) (1 ^k/_{2t+1}) + N_{k-1}(t) ^{k-1}/_{2t+1}
 Solving the recurrence results in a power law with "slope 3".

Degree Distribution

Z_k(t)=#of vertices of degree k at time t, k ≥ 3
b₃ = ²/₅, b₄ = ¹/₅, b₅ = ⁴/₃₅, b_k = ²⁴/_{k(k+1)(k+2)} k ≥ 6
For t sufficiently large $|E[Z_k(t)] - b_k t| \le 3.6$ Furthermore, for all possible degrees k $Prob(|Z_k(t) - E[Z_k(t)]| \ge 10\sqrt{tlog(t)} = o(1)$

Simulation (10000 vertices, results averaged over 10 runs, 10 smallest degrees shown)

Degree	Theorem	Simulation
3	0.4	0.3982
4	0.2	0.2017
5	0.1143	0.1143
6	0.0714	0.0715
7	0.0476	0.0476
8	0.0333	0.0332
9	0.0242	0.0243
10	0.0182	0.0179
11	0.0140	0.0137
12	0.0110	0.0111

Outline

- Introduction
- Degree Distribution
- Diameter
- Highest Degrees
- Eigenvalues
- Open Problems

Diameter

Depth of a face (recursively): Let α be the initial face, then depth(α)=1. For a face β created by picking face γ depth(β)=depth(γ)+1.

Diameter

- Note that if k* is the maximum depth of a face at time t, then diam(G_t)=O(k*).
- Let F_t(k)=#faces of depth k at time t. Then, E[F_t(k)] is equal to

$$\sum_{1 \le t_1 < t_2 < \dots < t_k \le t} \prod_{j=1}^k \frac{1}{2t_j + 1} \le \frac{1}{k!} \left(\sum_{j=1}^t \frac{1}{2j + 1} \right)^t \le \left(\frac{e \log(t)}{2k} \right)^{k+1}$$

Therefore by a first moment argument k*=O(log(t)) whp.

Diameter

Large Deviations for the Weighted Height of an Extended Class of Trees. Algorithmica 2006

Broutin

Devroye

The depth of the random ternary tree T in probability is $\rho/2 \log(t)$ where $1/\rho=\eta$ is the unique solution greater than 1 of the equation $\eta-1-\log(\eta)=\log(3)$.

Therefore we obtain an upper bound in probability $diam(G_t) \leq \rho \log(t)$

Diameter

This cannot be used though to get a lower bound:

Diameter=2, Depth arbitrarily large

Outline

- Introduction
- Degree Distribution
- Diameter
- Highest Degrees
- Eigenvalues
- Open Problems

Highest Degrees, Main Result

Let $\Delta_1 \ge \Delta_2 \ge \cdots \ge \Delta_k$ be the k highest degrees of the RAN G_t where k=O(1). Also let f(t) be a function s.t. $f(t) \xrightarrow[t \to \infty]{} + \infty$. Then whp $\frac{\sqrt{t}}{f(t)} \le \Delta_1 \le \sqrt{t}f(t)$

and for i=2,..,k
$$\frac{\sqrt{t}}{f(t)} \leq \Delta_i \leq \Delta_{i-1} - \frac{\sqrt{t}}{f(t)}$$

WAW '12

Proof techniques

 t_0

$$= \log \log(f(t))$$

$$t_1 = \log(f(t)) \qquad t$$

- Create appropriate supernodes according to their age.
- Let Xt be the degree of a supernode. Couple RAN process with a simpler process Y such that

 $\begin{aligned} X_t \geq Y_t, X_{t_0} &= Y_{t_0} = d_0 \\ \text{Upper bound the probability} \\ \mathsf{p*}(\mathsf{r}) = \Pr(Y_t = d_0 + r) \end{aligned}$

 Union bound and k-th moment arguments

Outline

- Introduction
- Degree Distribution
- Diameter
- Highest Degrees
- Eigenvalues
- Open Problems

Eigenvalues, Main Result

- Let λ₁ ≥ λ₂ ≥ ··· ≥ λ_k be the largest k eigenvalues of the adjacency matrix of G_t. Then λ_i = (1 ± o(1))√Δ_i whp.
 Proof comes for "free" from our previous
- theorem due to the work of two groups:

Chung

Lu

Vυ

Mihail

Papadimitriou

Star forest consisting of edges between S_1 and S_3 - S'_3 where S'_3 is the subset of vertices of S_3 with two or more neighbors in S_1 .

- Lemma: $|S'_3| \le t^{1/6}$
- This lemma allows us to prove that in F

Finally we prove that in H=G-F $\lambda_1(H) = o(\lambda_k(F))$ <u>Proof Sketch</u>

• First we prove a lemma. For any $\varepsilon > 0$ and any $f(t) \text{ s.t. } f(t) \xrightarrow[t \to \infty]{} + \infty$ the following holds whp: for all s with $f(t) \leq s \leq t$ for all vertices $r \leq s$ then $d_s(r) \leq s^{\varepsilon + \frac{1}{2}} r^{-\frac{1}{2}}$.

- Consider six induced subgraphs $H_i = H[S_i]$ and $H_{ij} = H(S_i, S_j)$. The following holds: $\lambda_1(H) \le \sum_{i=1}^3 \lambda_1(H_i) + \sum_{i < j} \lambda_1(H_i, H_j)$
- Bound each term in the summation using the lemma and the fact that the maximum eigenvalue is bounded by the maximum degree.

Outline

- Introduction
- Degree Distribution
- Diameter
- Highest Degrees
- Eigenvalues
- Open Problems

Open Problems

Conductance Φ is at most t^{-1/2} Conjecture: $\Phi = \Theta(t^{-1/2})$

Are RANs Hamiltonian? Conjecture: No Length of the longest path? Conjecture: Θ(n)

Thank you!