Outline

- Introduction
- Degree Distribution
- Diameter
- Highest Degrees
- Eigenvalues
- Open Problems

Motivation

Internet Map
[lumeta.com]

Friendship Network [Moody '01]

Food Web [Martinez '91]

Protein Interactions [genomebiology.com]

Motivation

- Modelling "real-world" networks has attracted a lot of attention. Common characteristics include:
- Skewed degree distributions (e.g., power laws).
- Large Clustering Coefficients
- Small diameter
- A popular model for modeling real-world planar graphs are Random Apollonian Networks.

Problem of Apollonius

Apollonius
(262-190 вс)

Construct circles that are tangent to

 three given circles on the plane.

Apollonian Packing

Apollonian Gasket

Higher Dimensional Packings

Higher Dimensional (3d) Apollonian Packing. From now on, we shall discuss the 2d case.

Apollonian Network

- Dual version of Apollonian Packing

Random Apollonian Networks

- Start with a triangle ($\mathrm{t}=0$).
- Until the network reaches the desired size
- Pick a face F uniformly at random, insert a new vertex in it and connect it with the three vertices of F

(A) $t=1$
(B) $t=2$
(C) $t=3$
(D) $t=100$

Random Apollonian Networks

For any $t \geq 0$

- Number of vertices $n_{t}=t+3$
- Number of vertices $m_{t}=3 t+3$
- Number of faces $F_{t}=2 t+1$

Note that a RAN is a maximal planar graph since for any planar graph

$$
m_{t} \leq 3 n_{t}-6=3 t+3
$$

Outline

- Introduction
- Degree Distribution
- Diameter
- Highest Degrees
- Eigenvalues
- Open Problems

Degree Distribution

- Let $\mathrm{N}_{\mathrm{k}}(\mathrm{t})=\mathrm{E}\left[\mathrm{Z}_{\mathrm{k}}(\mathrm{t})\right]=$ expected \#vertices of degree k at time t. Then:
$-N_{3}(t+1)=N_{3}(t)+1-\frac{3 N_{3}(t)}{2 t+1}$
- $N_{k}(t+1)=N_{k}(t)\left(1-\frac{k}{2 t+1}\right)+N_{k-1}(t) \frac{k-1}{2 t+1}$

Solving the recurrence results in a power law with "slope 3".

Degree Distribution

$Z_{k}(t)=\#$ of vertices of degree k at time $t, k \geq 3$

- $b_{3}=\frac{2}{5}, b_{4}=\frac{1}{5}, b_{5}=\frac{4}{35}, b_{k}=\frac{24}{k(k+1)(k+2)} k \geq 6$
- For t sufficiently large

$$
\left|E\left[Z_{k}(t)\right]-b_{k} t\right| \leq 3.6
$$

- Furthermore, for all possible degrees k $\operatorname{Prob}\left(\left|\mathrm{Z}_{\mathrm{k}}(\mathrm{t})-E\left[Z_{k}(t)\right]\right| \geq 10 \sqrt{\operatorname{tlog}(t)}\right)=o(1)$

Simulation (10000 vertices, results averaged over 10 runs, 10 smallest degrees shown)

Degree	Theorem	Simulation
3	0.4	0.3982
4	0.2	0.2017
5	0.1143	0.1143
6	0.0714	0.0715
7	0.0476	0.0476
8	0.0333	0.0332
9	0.0242	0.0243
10	0.0182	0.0179
11	0.0140	0.0137
12	0.0110	0.0111

Outline

- Introduction
- Degree Distribution
- Diameter
- Highest Degrees
- Eigenvalues
- Open Problems

Diameter

Depth of a face (recursively): Let α be the initial face, then depth $(\alpha)=1$. For a face β created by picking face γ $\operatorname{depth}(\beta)=\operatorname{depth}(\gamma)+1$.

Diameter

- Note that if k^{*} is the maximum depth of a face at time t , then $\operatorname{diam}\left(\mathrm{G}_{\mathrm{t}}\right)=\mathrm{O}\left(\mathrm{k}^{*}\right)$.
- Let $\mathrm{F}_{\mathrm{t}}(\mathrm{k})=\#$ faces of depth k at time t . Then, $E\left[F_{t}(k)\right]$ is equal to
$\sum_{1 \leq t_{1}<t_{2}<. .<t_{k} \leq t} \prod_{j=1}^{k} \frac{1}{2 t_{j}+1} \leq \frac{1}{k!}\left(\sum_{j=1}^{t} \frac{1}{2 j+1}\right)^{t} \leq\left(\frac{e \log (t)}{2 k}\right)^{k+1}$
Therefore by a first moment argument $k *=\mathrm{O}(\log (\mathrm{t})) \mathrm{whp}$.

Bjection with random ternary trees

Diameter

Broutin

Devroye

Large Deviations for the Weighted Height of an Extended Class of Trees. Algorithmica 2006

The depth of the random ternary tree T in probability is $\rho / 2 \log (t)$ where $1 / \rho=\eta$ is the unique solution greater than 1 of the equation $\eta-1-\log (\eta)=\log (3)$.

Therefore we obtain an upper bound in probability

$$
\operatorname{diam}\left(G_{t}\right) \leq \rho \log (t)
$$

Diameter

- This cannot be used though to get a lower bound:

Diameter=2,
Depth arbitrarily large

Outline

- Introduction
- Degree Distribution
- Diameter
- Highest Degrees
- Eigenvalues
- Open Problems

Highest Degrees, Main Result

Let $\Delta_{1} \geq \Delta_{2} \geq \cdots \geq \Delta_{\mathrm{k}}$ be the k highest degrees of the RAN G_{t} where $k=O(1)$. Also let $\mathrm{f}(\mathrm{t})$ be a function s.t. $f(t) \underset{t \rightarrow \infty}{\longrightarrow}+\infty$. Then whp

$$
\frac{\sqrt{t}}{f(t)} \leq \Delta_{1} \leq \sqrt{t} f(t)
$$

and for $\mathrm{i}=2, . ., \mathrm{k}$

$$
\frac{\sqrt{t}}{f(t)} \leq \Delta_{i} \leq \Delta_{i-1}-\frac{\sqrt{t}}{f(t)}
$$

Proof techniques

- Break up time in periods
- Create appropriate supernodes according to their age.
- Let Xt be the degree of a supernode. Couple RAN process with a simpler process Y such that

$$
X_{t} \geq Y_{t}, X_{t_{0}}=Y_{t_{0}}=d_{0}
$$

Upper bound the probability $\mathrm{p} *(\mathrm{r})=\operatorname{Pr}\left(Y_{t}=d_{0}+r\right)$

- Union bound and k-th moment arguments

Outline

- Introduction
- Degree Distribution
- Diameter
- Highest Degrees
- Eigenvalues
- Open Problems

Eigenvalues, Main Result

- Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}$ be the largest k eigenvalues of the adjacency matrix of G_{t}. Then $\lambda_{i}=(1 \pm o(1)) \sqrt{\Delta_{\mathrm{i}}} w h p$.
- Proof comes for "free" from our previous theorem due to the work of two groups:

Chung

Lu

Mihail

Papadimitriou

Eigenvalues, Proof Sketch

Star forest consisting of edges between S_{1} and $\mathrm{S}_{3}-\mathrm{S}_{3}^{\prime}$ where S_{3}^{\prime} is the subset of vertices of S_{3} with two or more neighbors in S_{1}.

Eigenvalues, Proof Sketch

- Lemma: $\left|S_{3}^{\prime}\right| \leq t^{1 / 6}$
- This lemma allows us to prove that in F

$$
\lambda_{i}(F)=(1-o(1)) \sqrt{\Delta_{\mathrm{i}}}
$$

Eigenvalues, Proof Sketch

Finally we prove that in $\mathrm{H}=\mathrm{G}-\mathrm{F}$

$$
\lambda_{1}(H)=o\left(\lambda_{k}(F)\right)
$$

Proof Sketch

- First we prove a lemma. For any $\varepsilon>0$ and any $\mathrm{f}(\mathrm{t})$ s.t. $f(t) \underset{t \rightarrow \infty}{\longrightarrow}+\infty$ the following holds $w h p$: for all s with $f(t) \leq s \leq t$ for all vertices $r \leq s$ then $d_{s}(r) \leq s^{\varepsilon+\frac{1}{2}} r^{-\frac{1}{2}}$.

Eigenvalues, Proof Sketch

- Consider six induced subgraphs $\mathrm{H}_{\mathrm{i}}=\mathrm{H}\left[\mathrm{S}_{\mathrm{i}}\right]$ and $\mathrm{H}_{\mathrm{ij}}=\mathrm{H}\left(\mathrm{S}_{\mathrm{i}} \mathrm{S}_{\mathrm{j}}\right)$. The following holds:

$$
\lambda_{1}(H) \leq \sum_{i=1}^{3} \lambda_{1}\left(H_{i}\right)+\sum_{i<j} \lambda_{1}\left(H_{i}, H_{j}\right)
$$

- Bound each term in the summation using the lemma and the fact that the maximum eigenvalue is bounded by the maximum degree.

Outline

- Introduction
- Degree Distribution
- Diameter
- Highest Degrees
- Eigenvalues

Open Problems

Open Problems

Conductance Φ is at most $\mathrm{t}^{-1 / 2}$. Conjecture: $\Phi=\Theta\left(\mathrm{t}^{-1 / 2}\right)$

Are RANs Hamiltonian? Conjecture: No Length of the longest path?
Conjecture: $\Theta(n)$

Thank you!

