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Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

Protein Interactions 
[genomebiology.com] 

Friendship Network 
[Moody ’01] 



 Modelling “real-world” networks has 
attracted a lot of attention.  Common 
characteristics include: 

 Skewed degree distributions (e.g., power laws). 

 Large Clustering Coefficients  

 Small diameter 

 A popular model for modeling real-world 
planar graphs  are Random Apollonian 
Networks. 
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Apollonius 
(262-190 BC) 

Construct circles that are  tangent to  
three given circles οn the plane.  
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         Apollonian Gasket 



WAW '12 7 

Higher Dimensional (3d) Apollonian Packing. From 
now on, we shall discuss the 2d case. 



 Dual version of Apollonian Packing 

WAW '12 8 



 Start with a triangle (t=0). 
 Until the network reaches the desired size 

 Pick a face F uniformly at random, insert a new 
vertex in it and connect it with the three vertices 
of F 
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For any 𝑡 ≥ 0 
 Number of vertices nt =t+3 
 Number of vertices mt=3t+3 
 Number of faces Ft=2t+1 
 
Note that a RAN is a maximal planar graph 
since for any planar graph  

 𝑚𝑡 ≤ 3𝑛𝑡 − 6 = 3𝑡 + 3 
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 Let Nk(t)=E[Zk(t)]=expected #vertices of degree 
k at time t. Then: 

 𝑁3 𝑡 + 1 = 𝑁3 𝑡 + 1 −
3𝑁3(𝑡)

2𝑡+1
 

 𝑁𝑘 𝑡 + 1 = 𝑁𝑘 𝑡 1 −
𝑘

2𝑡+1
+𝑁𝑘−1 𝑡

𝑘−1

2𝑡+1
 

Solving the recurrence results in a power law with 
“slope 3”. 

WAW '12 12 



 Zk(t)=#of vertices of degree k at time t, 𝑘 ≥ 3 

 𝑏3 =
2

5
, 𝑏4 =

1

5
, 𝑏5 =

4

35
, 𝑏𝑘 =

24

𝑘(𝑘+1)(𝑘+2)
 𝑘 ≥ 6 

 For t sufficiently large  
|𝐸 𝑍𝑘 𝑡 − 𝑏𝑘𝑡| ≤ 3.6 

 Furthermore, for all possible degrees k   

   Prob |Zk t − 𝐸 𝑍𝑘 𝑡 ≥ 10 𝑡𝑙𝑜𝑔(𝑡) = 𝑜(1)   
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Degree Theorem Simulation 

3 0.4 0.3982 

4 0.2 0.2017 

5 0.1143 0.1143 

6 0.0714 0.0715 

7 0.0476 0.0476 

8 0.0333 0.0332 

9 0.0242 0.0243 

10 0.0182 0.0179 

11 0.0140 0.0137 

12 0.0110 0.0111 
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Depth of a face (recursively): Let α be the initial face, then 
depth(α)=1. For a face β created by picking face γ 
depth(β)=depth(γ)+1. 
 
                                                   e.g., 
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 Note that if k* is the maximum depth of a face at time 
t, then diam(Gt)=O(k*). 
 

 Let Ft(k)=#faces of depth k at time t. Then, 𝐸 𝐹𝑡 𝑘  is 
equal to 

   
1

2𝑡𝑗 + 1

𝑘

𝑗=1

≤
1

𝑘!
 
1

2𝑗 + 1

𝑡

𝑗=1

𝑡

≤
𝑒𝑙𝑜𝑔 𝑡

2𝑘

𝑘+1

1≤𝑡1<𝑡2<..<𝑡𝑘≤𝑡

 

Therefore by a first moment argument k*=O(log(t)) whp. 
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Broutin Devroye 

Large Deviations for the Weighted  
Height of an Extended Class of Trees. 
Algorithmica 2006 

The depth of  the random ternary tree T in probability  
is  ρ/2 log(t)  where 1/ρ=η is the unique solution greater than 1 
of the equation  η-1-log(η)=log(3). 
 
Therefore we obtain an upper bound in probability 

𝑑𝑖𝑎𝑚 𝐺𝑡 ≤ 𝜌log (𝑡) 



 This cannot be used though to get a lower 
bound: 
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Diameter=2, 
Depth arbitrarily large 
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Let Δ1 ≥ Δ2 ≥ ⋯ ≥ Δk be the k highest 
degrees of the RAN Gt where k=O(1). Also let 
f(t) be a function s.t. 𝑓 𝑡

𝑡→∞
+∞. Then whp  

𝑡

𝑓(𝑡)
≤ Δ1 ≤ 𝑡𝑓(𝑡) 

 
and for i=2,..,k 

𝑡

𝑓(𝑡)
≤ Δ𝑖 ≤ Δ𝑖−1 −

𝑡

𝑓(𝑡)
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• Break up time in periods  
• Create appropriate supernodes 

according to their age.  
• Let Xt be the degree of a supernode. 

Couple RAN process with a simpler 
process Y such that 
𝑋𝑡 ≥ 𝑌𝑡 , 𝑋𝑡0 = 𝑌𝑡0 = 𝑑0 

        Upper bound the probability 
        p*(r)=Pr 𝑌𝑡 = 𝑑0 + 𝑟   
• Union bound and k-th moment 

arguments 

 

𝑡0 = log log (𝑓 𝑡 ) 𝑡1 = log (𝑓 𝑡 ) 𝑡 
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 Let 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑘  be the largest k 
eigenvalues of the adjacency matrix of Gt. 

Then 𝜆𝑖 = 1 ± 𝑜 1 Δi whp. 

 Proof comes for “free” from our previous 
theorem due to the work of two groups: 
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Chung Lu Vu 

Mihail Papadimitriou 
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𝑡0 = 0 𝑡1 = 𝑡
1/8 𝑡 

S1 

𝑡2 = 𝑡
9/16 

S2 S3 

…. …. 

…. 

Star forest consisting of edges between S1 and S3-S’3  
where S’3 is the subset of vertices of S3 with two or more  
neighbors in S1. 



 Lemma: |𝑆 3
′ | ≤ 𝑡1/6 

 This lemma allows us to prove that in F 
 
 
 
 
 

λ𝑖 𝐹 = 1 − 𝑜 1 Δi 
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…. …. 

…. 



Finally we prove that in H=G-F   
𝜆1 Η = o λk F  

Proof Sketch 
 First we prove a lemma. For any ε>0 and any 

f(t) s.t. 𝑓 𝑡
𝑡→∞
+∞ the following holds 

whp: for all s with 𝑓 𝑡 ≤ 𝑠 ≤ 𝑡 for all vertices 

𝑟 ≤ 𝑠 then 𝑑𝑠 𝑟 ≤ 𝑠
𝜀+
1

2 𝑟−
1

2. 
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 Consider six induced subgraphs Hi=H[Si] and 
Hij=H(Si,Sj). The following holds: 

𝜆1 𝐻 ≤ 𝜆1 𝐻𝑖
3

𝑖=1
+ 𝜆1(𝐻𝑖 , 𝐻𝑗)

𝑖<𝑗

 

 Bound each term in the summation using the 
lemma and the fact that the maximum 
eigenvalue is bounded by the maximum 
degree. 
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Conductance Φ is at most t-1/2 . 
Conjecture: Φ= Θ(t-1/2) 
 
Are RANs Hamiltonian? 
Conjecture: No   
Length of the longest  
path?  
Conjecture:  Θ(n)  



 
          Thank you! 
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