Charalampos (Babis) E. Tsourakakis charalampos.tsourakakis@aalto.fi

Modeling Intratumor Gene Copy Number Heterogeneity using
 Fluorescence in Situ Hybridization data

WABI 2013, France

Tumor heterogeneity

(2) Copy numbers for a single gene
(D)
(1)
(E)
(o)

Tumor heterogeneity

- Inverse problem approach
- High-throughput DNA sequencing data by Oesper, Mahmoody, Raphael (Genome Biology 2013)
- SNP array data by Van Loo et al. (PNAS 2010), Carter et al. (Nature Biotechnology 2012)

Tumor heterogeneity

FISH data, direct assessment

FISH data

Multidimensional histogram on the

 positive integer cone, e.g., for 2 dimensions

FISH data

- Let $x_{i j}$ be the number of copies of gene j in the i-th cell, where $\mathrm{i}=1, . ., \mathrm{n}(\sim 100)$ and $\mathrm{j}=1, . ., \mathrm{g}(\sim 10)$.
- The bounding box's size
$\left|\left[\min _{i} x_{i 1}, \max _{i} x_{i 1}\right] \times . . \times\left[\min _{i} x_{i g}, \max _{i} x_{i g}\right]\right|$ typically grows exponentially in the number of probes for the breast cancer datasets
- This feature seems to be tumor dependent, i.e., does not hold necessarily for all cancers

FISH data

- Breast and cervical cancer data publicly available from NIH

ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees/data

Motivation

- Understanding tumor heterogeneity is a key step towards:
- find first mutation events, hence identify new drugs and diagnostics
- predict response to selective pressure, hence develop strategies to avoid drug resistance
- identify tumors likely to progress, hence avoid over- and under-treatment.

Related work

- Pennington, Smith, Shackney and Schwartz (J. of Bioinf. and Comp. B. 2007)
- Two probes
- Random walk where coordinate i is picked independently and with probabilities pio, $\mathrm{pi}-1, \mathrm{pii}$ is modified by $\{0,-1,+1\}$ respectively.
- Efficient heuristic to maximize a likelihood function over all possible trees and parameters.

Related work

- Chowdhury, Shackney, Heselmeyer-Haddad, Ried, Schäffer, Schwartz (Best paper in ISMB'13). Among other contributions:
- Methods which are able to handle large number of cells and probes.
- Exponential-time exact algorithm and an efficient heuristic for optimizing their objective
- New test statistics, tumor classification
- Extensive experimental evaluation

Related work

Copies of Gene 2

Copies of gene 1

Chowdhury et al.:

- Problem: Find tree (and possibly Steiner nodes) to minimize cost of connecting all input (terminal) vertices

Contributions I

- Probabilistic approach
- We summarize the empirical distribution based on a model that captures complex dependencies among probes without over-fitting.
- Allows us to assign weights on the edges of the positive integer di-grid which capture how likely a transition is.
- And now, how do we derive a tumor phylogeny?..

Proposed method

- Let $X_{j}=$ \#copies of gene j
- integer valued random variable
- Let I_{j} be the domain of X_{j}
- We model the joint probability distribution $X=\left(X_{1}, . ., X_{g}\right)$ as

$$
\operatorname{Pr}(x)=\frac{1}{Z} \prod_{A \subseteq[g]} e^{\varphi_{A}(x)} \searrow_{\downarrow}
$$

$$
x=\left(x_{1}, \ldots, x_{g}\right)
$$

Potential function

Proposed method

- with the following properties of hierarchical log-linear model
- log-linearity: the logarithm of each potential depends linearly on the parameters, e.g., for $\mathrm{g}=2, \mathrm{I}_{1}=\mathrm{I}_{2}=\{0,1\}$ then,

$$
\begin{aligned}
\log \operatorname{Pr}[x] & =w_{0}+w_{(1) 0} \mathbb{1}\left\{x_{1}=0\right\}+w_{(1) 1} \mathbb{1}\left\{x_{1}=1\right\}+w_{(2) 0} \mathbb{1}\left\{x_{2}=0\right\} \\
& +w_{(2) 1} \mathbb{1}\left\{x_{2}=1\right\}+w_{(12) 00} \mathbb{\mathbb { 1 }}\left\{x_{1}=0, x_{2}=0\right\}+w_{(12) 01} \mathbb{1}\left\{x_{1}=0, x_{2}=1\right\} \\
& +w_{(12) 10} \mathbb{\mathbb { 1 }}\left\{x_{1}=1, x_{2}=0\right\}+w_{(12) 11} \mathbb{\mathbb { 1 }}\left\{x_{1}=1, x_{2}=1\right\},
\end{aligned}
$$

Proposed method

- Hierarchical:
- $A \subseteq B, w_{A}=0 \rightarrow w_{B}=0$
- For instance $w_{\{1,2,3\}}$ can be non-zero only if $\mathrm{w}_{\{1,2\}}, \mathrm{w}_{\{1,3\}}, \mathrm{w}_{\{2,3\}}$ are non-zero.
- Allows significant computational savings compared to the general form
- Biologically meaningful: if a set A of genes does not interact, any superset of A maintains this property.

Proposed method

- A lot of related work and off-the-shelf software for learning the parameters
- Based on Zhao, Rocha andYu who provide a general framework that allows us to respect the 'hierarchical' property ..
- ... Schmidt and Murphy provide efficient optimization algorithms for learning a hierarchical log-linear model

Proposed method

- We use the learned hierarchical log-linear model in two ways
- The non-zero weights provide us insights into dependencies of factors
- We use them to assign weights on the positive integer di-grid

Proposed method

Copies of Gene 2

Copies of gene 1

Nicholas Metropolis Given a probability distribution $\boldsymbol{\pi}$ on a state space we can define a Markov Chain whose stationary distribution is π.

Contributions II

- Question: Can we use the wealth of
 inter-tumor phylogenetic methods to understand intra-tumor cancer heterogeneity?

Contributions II

- Motivated by this question:
- We prove necessary and sufficient conditions for the reconstruction of oncogenetic trees, a popular method for inter-tumor cancer inference
- We exploit these to preprocess a FISH dataset into an inter-tumor cancer dataset that respects specific biological characteristics of the evolutionary process

Oncogenetic Trees

- Desper, Jiang, Kallioniemi, Moch, Papadimitriou, Schäffer
- T(V,E,r) rooted branching
- $\mathrm{F}=\left\{\mathrm{Al}_{1}, ., \mathrm{Am}\right\}$ where A_{i} is the set of vertices of a rooted sub-branching ofT.
- What are the properties that F should have in order to uniquely reconstruct T ?
- Let T be consistent with F if it could give rise to F.

Example

Onco-tree

Patient $1, A_{1}=\{r, a, b, c\}$

Patient $2, A 2=\{r, a, b\}$

Patient $3, A 3=\{r, a, b, d\}$

Also, consistent with $\left\{A_{1}, A_{2}, A_{3}\right\}$

Oncogenetic Trees

- Theorem
- The necessary and sufficient conditions to reconstruct T from F are the following:
- x, y such that (x, y) is an edge, there exists a set in the family that contains x but not y.

Oncogenetic Trees

- If x is not a descedant of y and vice versa then there exist two sets $\mathrm{Ai}_{1} \mathrm{Aj}_{\mathrm{j}}$ such that
- x is in A_{i} but not in A_{j}
- y is in A_{j} but not in A_{i}
necessity

Oncogenetic trees

- It turns out that the necessary conditions are sufficient (constructive proof)
- Allows us to force an oncogenetic tree to capture certain aspects of intratumor heterogeneity dynamics

Contributions III

- We evaluate our method on real FISH data where we show findings consistent with cancer literature
- Here, we show results for a breast cancer dataset

Experimental results

- No ground truth, but
- concurrent loss of cdhı function and p53 inactivation play a key role in breast cancer evolution
- subsequent changes in ccndı, myc, znf217 according to our tree are consistent with oncogenetic literature

Conclusions

- There exists a lot of interest in understanding intra-tumor heterogeneity
- Releasement of FISH data that assess it directly can promote this understanding
- Concerning our work:
- Better algorithms for fitting the model
- Allow higher-order interactions but use additional penalty (e.g., AIC)

Conclusions

- ... concerning our work
- Other choices of inter-tumor methods
- Tumor classification applications
- Consensus FISH trees
- Allow more mechanisms in copy number changes
- Understand better the connection between our work and Chowdhury et al.

Acknowledgements

Russell Schwartz

Alejandro Schäffer

Carnegie
Mellon
University

NSF Grant
CCF-1013110

Thanks!

Appendix

Experimental results

Experimental results

Generated with code available at ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtree

