Charalampos (Babis) E. Tsourakakis charalampos.tsourakakis@aalto.fi

Modeling Intratumor Gene Copy Number Heterogeneity using Fluorescence in Situ Hybridization data

WABI 2013, France

WABI '13

Tumor heterogeneity

Tumor heterogeneity

- Inverse problem approach
 - High-throughput DNA sequencing data by Oesper, Mahmoody, Raphael (Genome Biology 2013)
 - SNP array data by Van Loo et al. (PNAS 2010), Carter et al. (Nature Biotechnology 2012)

Tumor heterogeneity

Gene 2 3 5 FISH data, 2 2 direct 1 3 assessment 1 →Gene 1 0 3 1 Ο WABI '13 4

FISH data

Multidimensional histogram on the positive integer cone, e.g., for 2 dimensions

FISH data

- Let xij be the number of copies of gene j in the i-th cell, where i=1,..,n(~100) and j=1,..,g(~10).
- The bounding box's size

 [[min x_{i1}, max x_{i1}] × ... × [min x_{ig}, max x_{ig}] |
 typically grows exponentially in the number
 of probes for the breast cancer datasets
 - This feature seems to be tumor dependent, i.e., does not hold necessarily for all cancers

Breast and cervical cancer data publicly available from NIH

ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees/data

Motivation

- Understanding tumor heterogeneity is a key step towards:
 - find first mutation events, hence identify new drugs and diagnostics
 - predict response to selective pressure, hence develop strategies to avoid drug resistance
 - identify tumors likely to progress, hence avoid over- and under-treatment.

Related work

- Pennington, Smith, Shackney and Schwartz (J. of Bioinf. and Comp. B. 2007)
 - Two probes
 - Random walk where coordinate *i* is picked independently and with probabilities pio,pi-1,pi1 is modified by {0,-1,+1} respectively.
 - Efficient heuristic to maximize a likelihood function over all possible trees and parameters.

Related work

- Chowdhury, Shackney, Heselmeyer-Haddad, Ried, Schäffer, Schwartz (Best paper in ISMB'13). Among other contributions:
 - Methods which are able to handle large number of cells and probes.
 - Exponential-time exact algorithm and an efficient heuristic for optimizing their objective
 - New test statistics, tumor classification
 - Extensive experimental evaluation

Related work

- Chowdhury et al.:
 - Problem: Find tree

 (and possibly Steiner nodes) to minimize
 cost of connecting
 all input (terminal)
 vertices

Contributions I

Probabilistic approach

- We summarize the empirical distribution based on a model that captures complex dependencies among probes without over-fitting.
- Allows us to assign weights on the edges of the positive integer di-grid which capture how likely a transition is.

And now, how do we derive a tumor phylogeny?...

- Let X_j = #copies of gene j
 - integer valued random variable
 - Let I_j be the domain of X_j
- We model the joint probability distribution

$$X = (X_1, \ldots, X_g)$$
 as

$$\Pr(x) = \frac{1}{Z} \prod_{A \subseteq [g]} e^{\varphi_A(x)}$$

$$x = (x_1, \dots, x_g)$$
Potential funct

ion

WABI '13

- with the following properties of hierarchical log-linear model
 - log-linearity: the logarithm of each potential depends linearly on the parameters, e.g., for g = 2, $I_1 = I_2 = \{0,1\}$ then,

$$\log \Pr[x] = w_0 + w_{(1)0} \mathbb{1}\{x_1 = 0\} + w_{(1)1} \mathbb{1}\{x_1 = 1\} + w_{(2)0} \mathbb{1}\{x_2 = 0\} + w_{(2)1} \mathbb{1}\{x_2 = 1\} + w_{(12)00} \mathbb{1}\{x_1 = 0, x_2 = 0\} + w_{(12)01} \mathbb{1}\{x_1 = 0, x_2 = 1\} + w_{(12)10} \mathbb{1}\{x_1 = 1, x_2 = 0\} + w_{(12)11} \mathbb{1}\{x_1 = 1, x_2 = 1\},$$

Hierarchical:

• $A \subseteq B, w_A = 0 \rightarrow w_B = 0$

- For instance $w_{\{1,2,3\}}$ can be non-zero only if $w_{\{1,2\}}, w_{\{1,3\}}, w_{\{2,3\}}$ are non-zero.

- Allows significant computational savings compared to the general form
- Biologically meaningful: if a set A of genes does not interact, any superset of A maintains this property.

- A lot of related work and off-the-shelf software for learning the parameters
 - Based on Zhao, Rocha and Yu who provide a general framework that allows us to respect the 'hierarchical' property ..
 - Schmidt and Murphy provide efficient optimization algorithms for learning a hierarchical log-linear model

- We use the learned hierarchical log-linear model in two ways
 - The non-zero weights provide us insights into dependencies of factors

We use them to assign weights on the positive integer di-grid

Nicholas Metropolis

Given a probability distribution π on a state space we can define a Markov Chain whose stationary distribution is π .

Contributions II

Question: Can we use the wealth of

inter-tumor phylogenetic methods to understand intra-tumor cancer heterogeneity?

Contributions II

- Motivated by this question:
 - We prove necessary and sufficient conditions for the reconstruction of oncogenetic trees, a popular method for inter-tumor cancer inference
 - We exploit these to preprocess a FISH dataset into an inter-tumor cancer dataset that respects specific biological characteristics of the evolutionary process

Oncogenetic Trees

- Desper, Jiang, Kallioniemi, Moch, Papadimitriou, Schäffer
 - T(V,E,r) rooted branching
 - F={A1,..,Am} where Ai is the set of vertices of a rooted sub-branching of T.
 - What are the properties that F should have in order to uniquely reconstruct T?
 - Let T be consistent with F if it could give rise to F.

Example

Oncogenetic Trees

Theorem

- The necessary and sufficient conditions to reconstruct T from F are the following:
 - x,y such that (x,y) is an edge, there exists a set in the family that contains x but not y.

Oncogenetic Trees

- If x is not a descedant of y and vice versa then there exist two sets Ai, Aj such that
 - x is in Ai but not in Aj
 - y is in Aj but not in Ai

necessity

Oncogenetic trees

- It turns out that the necessary conditions are sufficient (constructive proof)
- Allows us to force an oncogenetic tree to capture certain aspects of intratumor heterogeneity dynamics

Contributions III

- We evaluate our method on real FISH data where we show findings consistent with cancer literature
 - Here, we show results for a breast cancer dataset

Experimental results

No ground truth, but

- concurrent loss of *cdh1* function and *p53* inactivation play a key role in breast cancer evolution
- subsequent changes in ccnd1, myc, znf217 according to our tree are consistent with oncogenetic literature

Conclusions

- There exists a lot of interest in understanding intra-tumor heterogeneity
 - Releasement of FISH data that assess it directly can promote this understanding
- Concerning our work:
 - Better algorithms for fitting the model
 - Allow higher-order interactions but use additional penalty (e.g., AIC)

Conclusions

- ... concerning our work
 - Other choices of inter-tumor methods
 - Tumor classification applications
 - Consensus FISH trees
 - Allow more mechanisms in copy number changes
- Understand better the connection between our work and Chowdhury et al.

Acknowledgements

Russell Schwartz

Alejandro Schäffer

Thanks!

Appendix

Experimental results

Experimental results

Generated with code available at <u>ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtree</u>