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Given large, multi-million node graphs (e.g., Facebook, web-crawls, etc.), how do they evolve over
time? How are they connected? What are the central nodes and the outliers? In this paper
we define the Radius plot of a graph and show how it can answer these questions. However,
computing the Radius plot is prohibitively expensive for graphs reaching the planetary scale.

There are two major contributions in this paper: (a) We propose HADI (HAdoop DIameter
and radii estimator), a carefully designed and fine-tuned algorithm to compute the radii and
the diameter of massive graphs, that runs on the top of the Hadoop/MapReduce system, with
excellent scale-up on the number of available machines (b) We run HADI on several real world
datasets including YahooWeb (6B edges, 1/8 of a Terabyte), one of the largest public graphs ever
analyzed.

Thanks to HADI, we report fascinating patterns on large networks, like the surprisingly small
effective diameter, the multi-modal/bi-modal shape of the Radius plot, and its palindrome motion
over time.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications –
Data Mining

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: radius plot, small web, HADI, hadoop, graph mining

1. INTRODUCTION

How do real, Terabyte-scale graphs look like? Is it true that the nodes with the
highest degree are the most central ones, i.e., have the smallest radius? How do we
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compute the diameter and node radii in graphs of such size?
Graphs appear in numerous settings, such as social networks (Facebook, LinkedIn),

computer network intrusion logs, who-calls-whom phone networks, search engine
clickstreams (term-URL bipartite graphs), and many more. The contributions of
this paper are the following:

(1) Design: We propose HADI, a scalable algorithm to compute the radii and
diameter of network. As shown in Figure 1 (c), our method is 7.6× faster than
the naive version.

(2) Optimization and Experimentation: We carefully fine-tune our algorithm, and
we test it on one of the largest public web graph ever analyzed, with several
billions of nodes and edges, spanning 1/8 of a Terabyte.

(3) Observations: Thanks to HADI, we find interesting patterns and observations,
like the “Multi-modal and Bi-modal” pattern, and the surprisingly small ef-
fective diameter of the Web. For example, see the Multi-modal pattern in the
radius plot of Figure 1, which also shows the effective diameter and the center
node of the Web(‘google.com’).

The HADI algorithm (implemented in Hadoop) and several datasets are avail-
able at http://www.cs.cmu.edu/∼ukang/HADI. The rest of the paper is organized
as follows: Section 2 defines related terms and a sequential algorithm for the Radius
plot. Section 3 describes large scale algorithms for the Radius plot, and Section 4
analyzes the complexity of the algorithms and provides a possible extension. In Sec-
tion 5 we present timing results, and in Section 6 we observe interesting patterns.
After describing backgrounds in Section 7, we conclude in Section 8.

2. PRELIMINARIES; SEQUENTIAL RADII CALCULATION

2.1 Definitions

In this section, we define several terms related to the radius and the diameter.
Recall that, for a node v in a graph G, the radius r(v) is the distance between v
and a reachable node farthest away from v. The diameter d(G) of a graph G is the
maximum radius of nodes v ∈ G. That is, d(G) = maxv r(v) [Lewis. 2009].

Since the radius and the diameter are susceptible to outliers (e.g., long chains),
we follow the literature [Leskovec et al. 2005] and define the effective radius and
diameter as follows.

Definition 1 Effective Radius. For a node v in a graph G, the effective
radius reff (v) of v is the 90th-percentile of all the shortest distances from v.

Definition 2 Effective Diameter. The effective diameter deff (G) of a graph
G is the minimum number of hops in which 90% of all connected pairs of nodes can
reach each other.

The effective radius is very related to closeness centrality that is widely used in
network sciences to measure the importance of nodes [Newman. 2005]. Closeness
centrality of a node v is the mean shortest-path distance between v and all other
nodes reachable from it. On the other hand, the effective radius of v is 90% quantile
of the shortest-path distances. Although their definitions are slightly different, they
ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) Radius plot of YahooWeb (b) Radius plot of GCC of YahooWeb

(c) Running time of HADI

Fig. 1. (a) Radius plot(Count versus Radius) of the YahooWeb graph. Notice the
effective diameter is surprisingly small. Also notice the peak(marked ‘S’) at radius
2, due to star-structured disconnected components.
(b) Radius plot of GCC(Giant Connected Component) of YahooWeb graph. The
only node with radius 5 (marked ‘C’) is google.com.
(c) Running time of HADI with/without optimizations for Kronecker and Erdős-
Rényi graphs with billions edges. Run on the M45 Hadoop cluster, using 90
machines for 3 iterations. HADI-OPT is up to 7.6× faster than HADI-plain.

share the same spirit and can both be used as a measure of the ‘centrality’, or the
time to spread information from a node to all other nodes.

We will use the following three Radius-based Plots:

(1) Static Radius Plot (or just “Radius plot”) of graph G shows the distribution
(count) of the effective radius of nodes at a specific time. See Figure 1 and 2
for the example of real-world and synthetic graphs.

(2) Temporal Radius Plot shows the distributions of effective radius of nodes
at several times(see Figure 14 for an example).

(3) Radius-Degree Plot shows the scatter-plot of the effective radius reff (v)
versus the degree dv for each node v, as shown in Figure 12.

Table I lists the symbols used in this paper.
ACM Journal Name, Vol. V, No. N, Month 20YY.



4 · U Kang et al.

100
101
102
103
104
105

 1  2  3

Co
un

t

Radius

(a) Near-Bipartite-Core (b) Radius plot of the Near-Bipartite-Core graph
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(c) Star (d) Radius plot of the Star graph
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(g) Chain (h) Radius plot of the Chain graph

Fig. 2. Radius plots of real-world and synthetic graphs. (a) and (c) are from the
anomalous disconnected components of YahooWeb graph. (e) and (g) are synthetic
examples to show the radius plots. ER means the Effective Radius of nodes. A
node inside a rounded box represents N nodes specified in the top area of the box.
For example, (c) is a compact representation of a star graph where the core node
at the bottom is connected to 20,871 neighbors. Notice that Radius plots provide
concise summary of the structure of graphs.
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Symbol Definition

G a graph
n number of nodes in a graph
m number of edges in a graph
d diameter of a graph
h number of hops

N(h) number of node-pairs reachable in ≤ h hops (neighborhood function)
N(h, i) number of neighbors of node i reachable in ≤ h hops
b(h, i) Flajolet-Martin bitstring for node i at h hops.

b̂(h, i) Partial Flajolet-Martin bitstring for node i at h hops

Table I. Table of symbols

2.2 Computing Radius and Diameter

To generate the Radius plot, we need to calculate the effective radius of every node.
In addition, the effective diameter is useful for tracking the evolution of networks.
Therefore, we describe our algorithm for computing the effective radius and the
effective diameter of a graph. As described in Section 7, existing algorithms do not
scale well. To handle graphs with billions of nodes and edges, we use the following
two main ideas:

(1) We use an approximation rather than an exact algorithm.
(2) We design a parallel algorithm for Hadoop/MapReduce (the algorithm can

also run in a parallel RDBMS).

We first describe why exact computation is infeasible. Assume we have a ‘set’
data structure that supports two functions: add() for adding an item, and size() for
returning the count of distinct items. With the set, radii of nodes can be computed
as follows:

(1) For each node i, make a set Si and initialize by adding i to it.
(2) For each node i, update Si by adding one-step neighbors of i to Si.
(3) For each node i, continue updating Si by adding 2,3,...-step neighbors of i to

Si. If the size of Si before and after the addition does not change, then the
node i reached its radius. Iterate until all nodes reach their radii.

Although simple and clear, the above algorithm requires too much space, O(n2),
since there are n nodes and each node requires n space in the end. Since exact
implementation is hopeless, we turn to an approximation algorithm for the effective
radius and the diameter computation. For the purpose, we use the Flajolet-Martin
algorithm [Flajolet and Martin 1985; Palmer et al. 2002] for counting the number
of distinct elements in a multiset. While many other applicable algorithms exist
(e.g., [Beyer et al. 2007; Charikar et al. 2000; Garofalakis and Gibbon 2001]), we
choose the Flajolet-Martin algorithm because it gives an unbiased estimate, as well
as a tight O(log n) bound for the space complexity [Alon et al. 1996].

The main idea of Flajolet-Martin algorithm is as follows. We maintain a bitstring
BITMAP[0 . . . L− 1] of length L which encodes the set. For each item to add, we
do the following:

(1) Pick an index ∈ [0 . . . L− 1] with probability 1/2index+1.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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(2) Set BITMAP[index] to 1.

Let R denote the index of the leftmost ‘0’ bit in BITMAP. The main result of
Flajolet-Martin is that the unbiased estimate of the size of the set is given by

1
ϕ

2R (1)

where ϕ = 0.77351 · · · . The more concentrated estimate can be get by using
multiple bitstrings and averaging the R. If we use K bitstrings R1 to RK , the size
of the set can be estimated by

1
ϕ

2
1
K

∑ K
l=1 Rl (2)

Picking an index from an item depend on a value computed from a hash function
with the item as an input. Thus, merging the two set A and B is simply bitwise-
OR’ing the bitstrings of A and B without worrying about the redundant elements.
The application of Flajolet-Martin algorithm to radius and diameter estimation is
straightforward. We maintain K Flajolet-Martin (FM) bitstrings b(h, i) for each
node i and current hop number h. b(h, i) encodes the number of nodes reachable
from node i within h hops, and can be used to estimate radii and diameter as shown
below. The bitstrings b(h, i) are iteratively updated until the bitstrings of all nodes
stabilize. At the h-th iteration, each node receives the bitstrings of its neighboring
nodes, and updates its own bitstrings b(h − 1, i) handed over from the previous
iteration:

b(h, i) = b(h− 1, i) BIT-OR {b(h− 1, j)|(i, j) ∈ E} (3)

where “BIT-OR” denotes bitwise-OR function. After h iterations, a node i has
K bitstrings that encode the neighborhood function N(h, i), that is, the number of
nodes within h hops from the node i. N(h, i) is estimated from the K bitstrings by

N(h, i) =
1

0.77351
2

1
K

∑ K
l=1 bl(i) (4)

where bl(i) is the position of leftmost ‘0’ bit of the lth bitstring of node i. The
iterations continue until the bitstrings of all nodes stabilize, which is a necessary
condition that the current iteration number h exceeds the diameter d(G). After
the iterations finish at hmax, we calculate the effective radius for every node and
the diameter of the graph, as follows:

—reff (i) is the smallest h such that N(h, i) ≥ 0.9 · N(hmax, i).
—deff (G) is the smallest h such that N(h) =

∑
i N(h, i) = 0.9 · N(hmax). If

N(h) > 0.9 · N(hmax) > N(h − 1), then deff (G) is linearly interpolated from
N(h) and N(h− 1). That is, deff (G) = (h− 1) + 0.9·N(hmax)−N(h−1)

N(h)−N(h−1) .

Algorithm 1 shows the summary of the algorithm described above.
The parameter K is typically set to 32[Flajolet and Martin 1985], and MaxIter

is set to 256 since real graphs have relatively small effective diameter. The NewFM-
Bitstring() function in line 2 generates K FM bitstrings [Flajolet and Martin 1985].
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Algorithm 1: Computing Radii and Diameter
Input: Input graph G and integers MaxIter and K
Output: reff (i) of every node i, and deff (G)
for i = 1 to n do1

b(0, i) ← NewFMBitstring(n);2

end3

for h = 1 to MaxIter do4

Changed ← 0;5

for i = 1 to n do6

for l = 1 to K do7

bl(h, i) ← bl(h− 1, i)BIT-OR{bl(h− 1, j)|∀j adjacent from i};8

end9

if ∃l s.t. bl(h, i) )= bl(h− 1, i) then10

increase Changed by 1;11

end12

end13

N(h) ←
∑

i N(h, i);14

if Changed equals to 0 then15

hmax ← h, and break for loop;16

end17

end18

for i = 1 to n do19

// estimate eff. radii20

reff (i) ← smallest h′ where N(h′, i) ≥ 0.9 · N(hmax, i);21

end22

deff (G) ← smallest h′ where N(h′) = 0.9 · N(hmax);23

The effective radius reff (i) is determined at line 21, and the effective diameter
deff (G) is determined at line 23.

Algorithm 1 runs in O(dm) time, since the algorithm iterates at most d times
with each iteration running in O(m) time. By using approximation, Algorithm 1
runs faster than previous approaches (see Section 7 for discussion). However, Al-
gorithm 1 is a sequential algorithm and requires O(n log n) space and thus can not
handle extremely large graphs (more than billions of nodes and edges) which can
not be fit into a single machine. In the next sections we present efficient parallel
algorithms.

3. PROPOSED METHOD

In the next two sections we describe HADI, a parallel radius and diameter esti-
mation algorithm. As mentioned in Section 2, HADI can run on the top of both
a MapReduce system and a parallel SQL DBMS. In the following, we first de-
scribe the general idea behind HADI and show the algorithm for MapReduce.
The algorithm for parallel SQL DBMS is sketched in Section 4.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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3.1 HADI Overview

HADI follows the flow of Algorithm 1; that is, it uses the FM bitstrings and itera-
tively updates them using the bitstrings of its neighbors. The most expensive oper-
ation in Algorithm 1 is line 8 where bitstrings of each node are updated. Therefore,
HADI focuses on the efficient implementation of the operation using MapReduce
framework.

It is important to notice that HADI is a disk-based algorithm; indeed, memory-
based algorithm is not possible for Tera- and Peta-byte scale data. HADI saves
two kinds of information to a distributed file system (such as HDFS (Hadoop Dis-
tributed File System) in the case of Hadoop):

—Edge has a format of (srcid, dstid).
—Bitstrings has a format of (nodeid, bitstring1, ..., bitstringK).

Combining the bitstrings of each node with those of its neighbors is very expensive
operation which needs several optimizations to scale up near-linearly. In the fol-
lowing sections we will describe three HADI algorithms in a progressive way. That
is we first describe HADI-naive, to give the big picture and explain why it such
a naive implementation should not be used in practice, then the HADI-plain, and
finally HADI-optimized, the proposed method that should be used in practice. We
use Hadoop to describe the MapReduce version of HADI.

3.2 HADI-naive in MapReduce

HADI-naive is inefficient, but we present it for ease of explanation.
Data The edge file is saved as a sparse adjacency matrix in HDFS. Each line

of the file contains a nonzero element of the adjacency matrix of the graph, in the
format of (srcid, dstid). Also, the bitstrings of each node are saved in a file in the
format of (nodeid, flag, bitstring1, ..., bitstringK). The flag records information
about the status of the nodes(e.g., ‘Changed’ flag to check whether one of the
bitstrings changed or not). Notice that we don’t know the physical distribution of
the data in HDFS.

Main Program Flow The main idea of HADI-naive is to use the bitstrings file
as a logical “cache” to machines which contain edge files. The bitstring update
operation in Equation (3) of Section 2 requires that the machine which updates
the bitstrings of node i should have access to (a) all edges adjacent from i, and (b)
all bitstrings of the adjacent nodes. To meet the requirement (a), it is needed to
reorganize the edge file so that edges with a same source id are grouped together.
That can be done by using an Identity mapper which outputs the given input edges
in (srcid, dstid) format. The most simple yet naive way to meet the requirement
(b) is sending the bitstrings to every reducer which receives the reorganized edge
file.

Thus, HADI-naive iterates over two-stages of MapReduce. The first stage
updates the bitstrings of each node and sets the ‘Changed’ flag if at least one
of the bitstrings of the node is different from the previous bitstring. The second
stage counts the number of changed nodes and stops iterations when the bitstrings
stabilized, as illustrated in the swim-lane diagram of Figure 3.

Although conceptually simple and clear, HADI-naive is unnecessarily expensive,
because it ships all the bitstrings to all reducers. Thus, we propose HADI-plain
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 3. One iteration of HADI-naive. Stage 1. Bitstrings of all nodes are sent to every reducer.
Stage 2. Sums up the count of changed nodes.

and additional optimizations, which we explain next.

3.3 HADI-plain in MapReduce

HADI-plain improves HADI-naive by copying only the necessary bitstrings to each
reducer. The details are next:

Data As in HADI-naive, the edges are saved in the format of (srcid, dstid), and
bitstrings are saved in the format of (nodeid, flag, bitstring1, ..., bitstringK) in
files over HDFS. The initial bitstrings generation, which corresponds to line 1-3 of
Algorithm 1, can be performed in completely parallel way. The flag of each node
records the following information:

—Effective Radii and Hop Numbers to calculate the effective radius.
—Changed flag to indicate whether at least a bitstring has been changed or not.

Main Program Flow As mentioned in the beginning, HADI-plain copies only
the necessary bitstrings to each reducer. The main idea is to replicate bitstrings of
node j exactly x times where x is the in-degree of node j. The replicated bitstrings
of node j is called the partial bitstring and represented by b̂(h, j). The replicated
b̂(h, j)’s are used to update b(h, i), the bitstring of node i where (i, j) is an edge
in the graph. HADI-plain iteratively runs three-stage MapReduce jobs until all
bitstrings of all nodes stop changing. Algorithm 2, 3, and 4 shows HADI-plain, and
Figure 4 shows the swim-lane. We use h for denoting the current iteration number
which starts from h=1. Output(a,b) means to output a pair of data with the key a
and the value b.

Stage 1 We generate (key, value) pairs, where the key is the node id i and the
value is the partial bitstrings b̂(h, j)’s where j ranges over all the neighbors adjacent

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 4. One iteration of HADI-plain. Stage 1. Edges and bitstrings are matched to create partial
bitstrings. Stage 2. Partial bitstrings are merged to create full bitstrings. Stage 3. Sums up the
count of changed nodes, and compute N(h), the neighborhood function. Computing N(h) is not
drawn in the figure for clarity.

from node i. To generate such pairs, the bitstrings of node j are grouped together
with edges whose dstid is j. Notice that at the very first iteration, bitstrings of
nodes do not exist; they have to be generated on the fly, and we use the Bitstring
Creation Command for that. Notice also that line 22 of Algorithm 2 is used to
propagate the bitstrings of one’s own node. These bitstrings are compared to the
newly updated bitstrings at Stage 2 to check convergence.

Stage 2 Bitstrings of node i are updated by combining partial bitstrings of
itself and nodes adjacent from i. For the purpose, the mapper is the Identity
mapper (output the input without any modification). The reducer combines them,
generates new bitstrings, and sets flag by recording (a) whether at least a bitstring
changed or not, and (b) the current iteration number h and the neighborhood value
N(h, i) (line 11). This h and N(h, i) are used to calculate the effective radius of
nodes after all bitstrings converge, i.e., don’t change. Notice that only the last
neighborhood N(hlast, i) and other neighborhoods N(h′, i) that satisfy N(h′, i) ≥
0.9 · N(hlast, i) need to be saved to calculate the effective radius. The output of
Stage 2 is fed into the input of Stage 1 at the next iteration.

Stage 3 We calculate the number of changed nodes and sum up the neighborhood
value of all nodes to calculate N(h). We use only two unique keys(key for changed
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Algorithm 2: HADI Stage 1
Input: Edge data E = {(i, j)},
Current bitstring B = {(i, b(h− 1, i))} or
Bitstring Creation Command BC = {(i, cmd)}
Output: Partial bitstring B′ = {(i, b(h− 1, j))}
Stage1-Map(key k, value v)1

begin2

if (k, v) is of type B or BC then3

Output(k, v);4

else if (k, v) is of type E then5

Output(v, k);6

end7

Stage1-Reduce(key k, values V [])8

begin9

SRC ← [];10

for v ∈ V do11

if (k, v) is of type BC then12

b̂(h− 1, k) ←NewFMBitstring();13

else if (k, v) is of type B then14

b̂(h− 1, k) ← v;15

else if (k, v) is of type E then16

Add v to SRC;17

end18

for src ∈ SRC do19

Output(src, b̂(h− 1, k));20

end21

Output(k, b̂(h− 1, k));22

end23

and key for neighborhood), which correspond to the two calculated values. The
analysis of line 3 can be done by checking the flag field and using Equation (4) in
Section 2. The variable changed is set to 1 or 0, based on whether the bitmask of
node k changed or not.

When all bitstrings of all nodes converged, a MapReduce job to finalize the
effective radius and diameter is performed and the program finishes. Compared
to HADI-naive, the advantage of HADI-plain is clear: bitstrings and edges are
evenly distributed over machines so that the algorithm can handle as much data as
possible, given sufficiently many machines.

3.4 HADI-optimized in MapReduce

HADI-optimized further improves HADI-plain. It uses two orthogonal ideas: “block
operation” and “bit shuffle encoding”. Both try to address some subtle performance
issues. Specifically, Hadoop has the following two major bottlenecks:

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Algorithm 3: HADI Stage 2

Input: Partial bitstring B = {(i, b̂(h− 1, j)}
Output: Full bitstring B = {(i, b(h, i)}
Stage2-Map(key k, value v) // Identity Mapper1

begin2

Output(k, v);3

end4

Stage2-Reduce(key k, values V [])5

begin6

b(h, k) ← 0;7

for v ∈ V do8

b(h, k) ← b(h, k) BIT-OR v;9

end10

Update flag of b(h, k);11

Output(k, b(h, k));12

end13

Algorithm 4: HADI Stage 3
Input: Full bitstring B = {(i, b(h, i))}
Output: Number of changed nodes, Neighborhood N(h)
Stage3-Map(key k, value v)1

begin2

Analyze v to get (changed, N(h, i));3

Output(key for changed,changed);4

Output(key for neighborhood, N(h, i));5

end6

Stage3-Reduce(key k, values V [])7

begin8

Changed ← 0;9

N(h) ← 0;10

for v ∈ V do11

if k is key for changed then12

Changed ← Changed + v;13

else if k is key for neighborhood then14

N(h) ← N(h) + v;15

end16

Output(key for changed,Changed);17

Output(key for neighborhood, N(h));18

end19

—Materialization: at the end of each map/reduce stage, the output is written to
the disk, and it is also read at the beginning of next reduce/map stage.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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—Sorting: at the Shuffle stage, data is sent to each reducer and sorted before they
are handed over to the Reduce stage.

HADI-optimized addresses these two issues.
Block Operation Our first optimization is the block encoding of the edges and

the bitstrings. The main idea is to group w by w sub-matrix into a super-element
in the adjacency matrix E, and group w bitstrings into a super-bitstring. Now,
HADI-plain is performed on these super-elements and super-bitstrings, instead of
the original edges and bitstrings. Of course, appropriate decoding and encoding
is necessary at each stage. Figure 5 shows an example of converting data into
block-format.

Fig. 5. Converting the original edge and bitstring to blocks. The 4-by-4 edge and length-4 bitstring
are converted to 2-by-2 super-elements and length-2 super-bitstrings. Notice the lower-left super-
element of the edge is not produced since there is no nonzero element inside it.

By this block operation, the performance of HADI-plain changes as follows:

—Input size decreases in general, since we can use fewer bits to index elements
inside a block.

—Sorting time decreases, since the number of elements to sort decreases.
—Network traffic decreases since the result of matching a super-element and a

super-bitstring is a bitstring which can be at maximum block width times smaller
than that of HADI-plain.

—Map and Reduce functions takes more time, since the block must be decoded to
be processed, and be encoded back to block format.

For reasonable-size blocks, the performance gains (smaller input size, faster sorting
time, less network traffic) outweigh the delays (more time to perform the map
and reduce function). Also notice that the number of edge blocks depends on the
community structure of the graph: if the adjacency matrix is nicely clustered, we
will have fewer blocks. See Section 5, where we show results from block-structured
graphs (‘Kronecker graphs’ [Leskovec et al. 2005]) and from random graphs (‘Erdős-
Rényi graphs’ [Erdős and Rényi 1959]).

Bit Shuffle Encoding In our effort to decrease the input size, we propose an
encoding scheme that can compress the bitstrings. Recall that in HADI-plain,
we use K (e.g., 32, 64) bitstrings for each node, to increase the accuracy of our
estimator. Since HADI requires O(K(m + n) log n) space, the amount of data
increases when K is large. For example, the YahooWeb graph in Section 6 spans

ACM Journal Name, Vol. V, No. N, Month 20YY.
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120 GBytes (with 1.4 billion nodes, 6.6 billion edges). However the required disk
space for just the bitstrings is 32 · (1.4B + 6.6B) · 8 byte = 2 Tera bytes (assuming
8 byte for each bitstring), which is more than 16 times larger than the input graph.

The main idea of Bit Shuffle Encoding is to carefully reorder the bits of the
bitstrings of each node, and then use Run Length Encoding. By construction, the
leftmost part of each bitstring is almost full of one’s, and the rest is almost full of
zeros. Specifically, we make the reordered bit strings to contain long sequences of
1’s and 0’s: we get all the first bits from all K bitstrings, then get the second bits,
and so on. As a result we get a single bit-sequence of length K · |bitstring|, where
most of the first bits are ‘1’s, and most of the last bits are ‘0’s. Then we encode
only the length of each bit sequence, achieving good space savings (and, eventually,
time savings, through fewer I/Os).

4. ANALYSIS AND DISCUSSION

In this section, we analyze the time/space complexity of HADI and its possible
implementation at RDBMS.

4.1 Time and Space Analysis

We analyze the algorithm complexity of HADI with M machines for a graph G with
n nodes and m edges with diameter d. We are interested in the time complexity,
as well as the space complexity.

Lemma 1 Time Complexity of HADI. HADI takes O(d(m+n)
M log m+n

M ) time.

Proof. (Sketch) The Shuffle steps after Stage1 takes O(m+n
M log m+n

M ) time
which dominates the time complexity.

Notice that the time complexity of HADI is less than previous approaches in Sec-
tion 7(O(n2 + mn), at best). Similarly, for space we have:

Lemma 2 Space Complexity of HADI. HADI requires O((m+n) log n) space.

Proof. (Sketch) The maximum space k · ((m + n) log n) is required at the out-
put of Stage1-Reduce. Since k is a constant, the space complexity is O((m +
n) log n).

4.2 HADI in parallel DBMSs

Using relational database management systems (RDBMS) for graph mining is a
promising research direction, especially given the findings of [Pavlo et al. 2009].
We mention that HADI can be implemented on the top of an Object-Relational
DBMS (parallel or serial): it needs repeated joins of the edge table with the appro-
priate table of bit-strings, and a user-defined function for bit-OR-ing. We sketch a
potential implementation of HADI in a RDBMS.

Data In parallel RDBMS implementations, data is saved in tables. The edges
are saved in the table E with attributes src(source node id) and dst(destination
node id). Similarly, the bitstrings are saved in the table B with
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Main Program Flow The main flow comprises iterative execution of SQL state-
ments with appropriate UDF(user defined function)s. The most important and ex-
pensive operation is updating the bitstrings of nodes. Observe that the operation
can be concisely expressed as a SQL statement:

SELECT INTO B NEW E.src, BIT-OR(B.b)
FROM E, B
WHERE E.dst=B.id
GROUP BY E.src

The SQL statement requires BIT-OR(), a UDF function that implements the bit-
OR-ing of the Flajolet-Martin bitstrings. The RDBMS implementation iteratively
runs the SQL until B NEW is same as B. B NEW created at an iteration is used
as B at the next iteration.

5. SCALABILITY OF HADI

In this section, we perform experiments to answer the following questions:

—Q1: How fast is HADI?
—Q2: How does it scale up with the graph size and the number of machines?
—Q3: How do the optimizations help performance?

5.1 Experimental Setup

We use both real and synthetic graphs in Table II for our experiments and analysis
in Section 5 and 6, with the following details.

—YahooWeb: web pages and their hypertext links indexed by Yahoo! Altavista
search engine in 2002.

—Patents: U.S. patents, citing each other (from 1975 to 1999).
—LinkedIn: people connected to other people (from 2003 to 2006).
—Kronecker: Synthetic Kronecker graphs [Leskovec et al. 2005] using a chain of

length two as the seed graph.

Graph Nodes Edges File Description

YahooWeb 1.4 B 6.6 B 116G page-page
LinkedIn 7.5 M 58 M 1G person-person
Patents 6 M 16 M 264M patent-patent

Kronecker 177 K 1,977 M 25G synthetic
120 K 1,145M 13.9G
59 K 282 M 3.3G

Erdős-Rényi 177 K 1,977 M 25G random Gn,p

120 K 1,145 M 13.9G
59 K 282 M 3.3G

Table II. Datasets. B: Billion, M: Million, K: Thousand, G: Gigabytes

For the performance experiments, we use synthetic Kronecker and Erdős-Rényi
graphs. The reason of this choice is that we can generate any size of these two types
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of graphs, and Kronecker graph mirror several real-world graph characteristics,
including small and constant diameters, power-law degree distributions, etc. The
number of nodes and edges of Erdős-Rényi graphs have been set to the same as
those of the corresponding Kronecker graphs. The main difference of Kronecker
compared to Erdős-Rényi graphs is the emergence of a block-wise structure of the
adjacency matrix, from its construction [Leskovec et al. 2005]. We will see how
this characteristic affects in the running time of our block-optimization in the next
sections.

HADI runs on M45, one of the fifty most powerful supercomputers in the world.
M45 has 480 hosts (each with 2 quad-core Intel Xeon 1.86 GHz, running RHEL5),
with 3Tb aggregate RAM, and over 1.5 Peta-byte disk size.

Finally, we use the following notations to indicate different optimizations of
HADI:

—HADI-BSE: HADI-plain with bit shuffle encoding.
—HADI-BL: HADI-plain with block operation.
—HADI-OPT: HADI-plain with both bit shuffle encoding and block operation.

5.2 Running Time and Scale-up
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Fig. 6. Running time versus number of edges with HADI-OPT on Kronecker graphs for three
iterations. Notice the excellent scalability: linear on the graph size (number of edges).

Figure 6 gives the wall-clock time of HADI-OPT versus the number of edges in
the graph. Each curve corresponds to a different number of machines used (from
10 to 90). HADI has excellent scalability, with its running time being linear on
the number of edges. The rest of the HADI versions (HADI-plain, HADI-BL, and
HADI-BSE), were slower, but had a similar, linear trend, and they are omitted to
avoid clutter.

Figure 7 gives the throughput 1/TM of HADI-OPT. We also tried HADI with
one machine; however it didn’t complete, since the machine would take so long that
it would often fail in the meanwhile. For this reason, we do not report the typical
scale-up score s = T1/TM (ratio of time with 1 machine, over time with M machine),
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and instead we report just the inverse of TM . HADI scales up near-linearly with
the number of machines M , close to the ideal scale-up.

5.3 Effect of Optimizations

Among the optimizations that we mentioned earlier, which one helps the most, and
by how much? Figure 1 (c) plots the running time of different graphs versus different
HADI optimizations. For the Kronecker graphs, we see that block operation is
more efficient than bit shuffle encoding. Here, HADI-OPT achieves 7.6× better
performance than HADI-plain. For the Erdős-Rényi graphs, however, we see that
block operations do not help more than bit shuffle encoding, because the adjacency
matrix has no block structure, while Kronecker graphs do. Also notice that HADI-
BLK and HADI-OPT run faster on Kronecker graphs than on Erdős-Rényi graphs
of the same size. Again, the reason is that Kronecker graphs have fewer nonzero
blocks (i.e., “communities”) by their construction, and the “block” operation yields
more savings.

6. HADI AT WORK

HADI reveals new patterns in massive graphs which we present in this section.

6.1 Static Patterns

6.1.1 Diameter. What is the diameter of the Web? Albert et al. [Albert et al.
1999] computed the diameter on a directed Web graph with ≈ 0.3 million nodes,
and conjectured that it is around 19 for the 1.4 billion-node Web as shown in the
upper line of Figure 8. Broder et al. [Broder et al. 2000] used sampling from ≈ 200
million-nodes Web and reported 16.15 and 6.83 as the diameter for the directed
and the undirected cases, respectively. What should be the effective diameter, for
a significantly larger crawl of the Web, with billions of nodes? Figure 1 gives the
surprising answer:
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Observation 1 Small Web. The effective diameter of the YahooWeb graph
(year: 2002) is surprisingly small (≈ 7 ∼ 8).

The previous results from Albert et al. and Broder et al. are based on the av-
erage diameter. For the reason, we also computed the average diameter and show
the comparison of diameters of different graphs in Figure 8. We first observe that
the average diameters of all graphs are relatively small (< 20) for both the directed
and the undirected cases. We also observe that the Albert et al.’s conjecture of the
diameter of the directed graph is over-pessimistic: both the sampling and HADI re-
ported smaller values for the diameter of the directed graph. For the diameter of the
undirected graph, we observe the constant or shrinking diameter pattern [Leskovec
et al. 2007].

Fig. 8. Average diameter vs. number of nodes in lin-log scale for the three different Web graphs,
where M and B represent millions and billions, respectively. (0.3M): web pages inside nd.edu at
1999, from Albert et al.’s work. (203M): web pages crawled by Altavista at 1999, from Broder
et al.’s work (1.4B): web pages crawled by Yahoo at 2002 (YahooWeb in Table II). The anno-
tations(Albert et al., Sampling, HADI) near the points represent the algorithms for computing
the diameter. The Albert et al.’s algorithm seems to be an exact breadth first search, although
not clearly specified in their paper. Notice the relatively small diameters for both the directed
and the undirected cases. Also notice that the diameters of the undirected Web graphs remain
near-constant.

6.1.2 Shape of Distribution. The next question is, how are the radii distributed
in real networks? Is it Poisson? Lognormal? Figure 1 gives the surprising answer:
multimodal! In other relatively small networks, however, we observed bi-modal
structures. As shown in the Radius plot of U.S. Patent and LinkedIn network
in Figure 9, they have a peak at zero, a dip at a small radius value (9, and 4,
respectively) and another peak very close to the dip. Given the prevalence of
the bi-modal shape, our conjecture is that the multi-modal shape of YahooWeb
is possibly due to a mixture of relatively smaller sub-graphs, which got loosely
connected recently.
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(a) U.S. Patent (b) LinkedIn

Fig. 9. Static Radius Plot(Count versus Radius) of U.S. Patent and LinkedIn
graphs. Notice the bi-modal structure with ‘outsiders’(nodes in the DCs),
‘core’(central nodes in the GCC), and ‘whiskers’(nodes connected to the GCC with
long paths).

Observation 2 Multi-modal and Bi-modal. The Radius distribution of the
Web graph has a multi-modal structure. Many smaller networks have the bi-modal
structure.

About the bi-modal structure, a natural question to ask is what are the common
properties of the nodes that belong to the first peak; similarly, for the nodes in
the first dip, and the same for the nodes of the second peak. After investigation,
the former are nodes that belong to the disconnected components (DCs); nodes in
the dip are usually core nodes in the giant connected component (GCC), and the
nodes at the second peak are the vast majority of well connected nodes in the GCC.
Figure 10 exactly shows the radii distribution for the nodes of the GCC (in blue),
and the nodes of the few largest remaining components.

In Figure 10, we clearly see that the second peak of the bimodal structure came
from the giant connected component. But, where does the first peak around radius 0
come from? We can get the answer from the distribution of connected component
of the same graph in Figure 11. Since the ranges of radius are limited by the
size of connected components, we see the first peak of Radius plot came from the
disconnected components whose size follows a power law.

Now we can explain the three important areas of Figure 9: ‘outsiders’ are the
nodes in the disconnected components, and responsible for the first peak and the
negative slope to the dip. ‘Core’ are the central nodes with the smallest radii from
the giant connected component. ‘Whiskers’ [Leskovec et al. 2008] are the nodes
connected to the GCC with long paths(resembling a whisker), and are the reasons
of the second negative slope.

6.1.3 Radius plot of GCC. Figure 1(b) shows a striking pattern: all nodes of the
GCC of the YahooWeb graph have radius 6 or more, except for 1 (only!). Inspection
shows that this is google.com. We were surprised, because we would expect a few
more popular nodes to be in the same situation (eg., Yahoo, eBay, Amazon).

ACM Journal Name, Vol. V, No. N, Month 20YY.



20 · U Kang et al.

Fig. 10. Radius plot (Count versus radius) for several connected components of the U.S. Patent
data in 1985. In blue: the distribution for the GCC (Giant Connected Component); rest colors:
several DC (Disconnected Component)s.

(a) Patent (b) LinkedIn

Fig. 11. Size distribution of connected components. Notice the size of the discon-
nected components(DCs) follows a power-law which explains the first peak around
radius 0 of the radius plots in Figure 9.

6.1.4 “Core” and “Whisker” nodes. The next question is, what can we say
about the connectivity of the core nodes, and the whisker nodes? For example,
is it true that the highest degree nodes are the most central ones (i.e. minimum
radius)? The answer is given by the “Radius-Degree” plot in Figure 12: This is a
scatter-plot, with one dot for every node, plotting the degree of the node versus its
radius. We also color-coded the nodes of the GCC (in blue), while the rest are in
magenta.

Observation 3 High degree nodes. The highest degree node (a) belongs to
the core nodes inside the GCC but (b) are not necessarily the ones with the smallest
radius.
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(a) Patent (b) YahooWeb

(c) LinkedIn

Fig. 12. Radius-Degree plots of real-world graphs. HD represents the node with
the highest degree. Notice that HD belongs to core nodes inside the GCC, and
whiskers have small degree.

The next observation is that whisker nodes have small degree, that is, they belong
to chains (as opposed to more complicated shapes)

6.1.5 Radius plots of anomalous DCs. The radius plots of some of the largest
disconnected components of YahooWeb graph show anomalous radius distributions
as opposed to the bi-modal distribution. The graph in Figure 2 (a) is the largest
disconnected component which has a near-bipartite-core structure. The component
is very likely to be a link farm since almost all the nodes are connected to the three
nodes at the bottom center with the effective radius 1. Similarly, we observed many
star-shaped disconnected components as shown in Figure 2 (c). This is also a strong
candidate for a link farm, where a node with the effective radius 1 is connected to
all the other nodes with the effective radius 2.

6.2 Temporal Patterns

Here we study how the radius distribution changes over time. We know that the
diameter of a graph typically grows with time, spikes at the ‘gelling point’, and
then shrinks [Mcglohon et al. 2008; Leskovec et al. 2007]. Indeed, this holds for our
datasets as shown in Figure 13.

The question is, how does the radius distribution change over time? Does it still
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(a) Patent (b) LinkedIn

Fig. 13. Evolution of the effective diameter of real graphs. The diameter increases
until a ‘gelling’ point, and starts to decrease after the point.

have the bi-modal pattern? Do the peaks and slopes change over time? We show
the answer in Figure 14 and Observation 4.

(a) Patent-Expansion (b) Patent-Contraction

(c) LinkedIn-Expansion (d) LinkedIn-Contraction

Fig. 14. Radius distribution over time. “Expansion”: the radius distribution moves
to the right until the gelling point. “Contraction”: the radius distribution moves
to the left after the gelling point.
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Observation 4 Expansion-Contraction. The radius distribution expands to
the right until it reaches the gelling point. Then, it contracts to the left.

Another striking observation is that the decreasing segments seem to be well fit
by a line, in log-lin axis, thus indicating an exponential decay.

Observation 5 Exponential Decays. The decreasing segments of several, real
radius plots seem to decay exponentially, that is

count(r) ∝ exp (−cr) (5)

for every time tick after the gelling point. count(r) is the number of nodes with
radius r, and c is a constant.

For the Patent and LinkedIn graphs, the correlation coefficient was excellent,
(typically, -0.98 or better).

7. BACKGROUND

We briefly present related works on algorithms for radius and diameter computa-
tion, as well as on large graph mining.

Computing Radius and Diameter The typical algorithms to compute the
radius and the diameter of a graph include Breadth First Search (BFS) and Floyd’s
algorithm [Cormen et al. 1990]. Both approaches are prohibitively slow for large
graphs, requiring O(n2 + nm) and O(n3) time, where n and m are the number of
nodes and edges, respectively. For the same reason, related BFS or all-pair shortest-
path based algorithms like [Ferrez et al. 1998; Bader and Madduri 2008; Ma and
Ma 1993; Sinha et al. 1986] can not handle large graphs.

A sampling approach starts BFS from a subset of nodes, typically chosen at
random as in [Broder et al. 2000]. Despite its practicality, this approach has no
obvious solution for choosing the representative sample for BFS.

Large Graph Mining There are numerous papers on large graph mining and
indexing, mining subgraphs [Ke et al. 2009; You et al. 2009], ADI[Wang et al. 2004],
gSpan[Yan and Han 2002], graph clustering [Satuluri and Parthasarathy 2009], Gr-
aclus [Dhillon et al. 2007], METIS [Karypis and Kumar 1999], partitioning [Daruru
et al. 2009; Chakrabarti et al. 2004; Dhillon et al. 2003], tensors [Kolda and Sun
2008; Tsourakakis 2009], triangle counting [Becchetti et al. 2008; Tsourakakis 2008;
Tsourakakis et al. 2009; Tsourakakis et al. 2009] , minimum cut [Aggarwal et al.
2009], to name a few. However, none of the above computes the diameter of the
graph or radii of the nodes.

Large scale data processing using scalable and parallel algorithms has attracted
increasing attentions due to the needs to process web-scale data. Due to the volume
of the data, platforms for this type of processing often choose “shared-nothing”
architecture. Two promising platforms for such large scale data analysis are (a)
MapReduce and (b) parallel RDBMS.

The MapReduce programming framework processes huge amounts of data in
a massively parallel way, using thousands or millions commodity machines. It has
advantages of (a) fault-tolerance, (b) familiar concepts from functional program-
ming, and (c) low cost of building the cluster. Hadoop, the open source version
of MapReduce, is a very promising tool for massive parallel graph mining appli-
cations(e.g., see [Papadimitriou and Sun 2008; Kang et al. 2009; Kang et al. 2010;
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Kang et al. 2010; Kang et al. 2010]). Other advanced MapReduce-like systems
include [Grossman and Gu 2008; Chaiken et al. 2008; Pike et al. 2005].

Parallel RDBMS systems, including Vertica and Aster Data, are based on tradi-
tional database systems and provide high performance using distributed processing
and query optimization. They have strength in processing structured data. For de-
tailed comparison of these two systems, see [Pavlo et al. 2009]. Again, none of the
above articles shows how to use such platforms to efficiently compute the diameter
or radii.

8. CONCLUSIONS

Our main goal is to develop an open-source package to mine Giga-byte, Tera-byte
and eventually Peta-byte networks. We designed HADI, an algorithm for computing
radii and diameter of Tera-byte scale graphs, and analyzed large networks to observe
important patterns. The contributions of this paper are the following:

—Design: We developed HADI, a scalable MapReduce algorithm for diameter
and radius estimation, on massive graphs.

—Optimization: Careful fine-tunings on HADI, leading to up to 7.6× faster compu-
tation, linear scalability on the size of the graph (number of edges) and near-linear
speed-up on the number of machines. The experiments ran on the M45 Hadoop
cluster of Yahoo, one of the 50 largest supercomputers in the world.

—Observations: Thanks to HADI, we could study the diameter and radii distribu-
tion of one of the largest public web graphs ever analyzed (over 6 billion edges);
we also observed the “Small Web” phenomenon, multi-modal/bi-modal radius
distributions, and palindrome motions of radius distributions over time in real
networks.

Future work includes algorithms for additional graph mining tasks like computing
eigenvalues, and outlier detection, for graphs that span Tera- and Peta-bytes.
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