Charalampos (Babis) E. Tsourakakis charalampos.tsourakakis@aalto.fi

Denser than the Densest Subgraph: Extracting Optimal Quasi-Cliques with Quality Guarantees

KDD 2013

Francesco Bonchi Yahoo! Research

Aristides Gionis Aalto University

Francesco Gullo Yahoo! Research

Maria Tsiarli University of Pittsburgh

Denser than the densest

- Densest subgraph problem is very popular in practice. However, not what we want for many applications.
- δ =edge density,D=diameter, τ =triangle density

densest subgraph

optimal quasi-clique

Dolph	ins
Footb	pall
J	azz
Celeg.	N.

$\frac{ S }{ V }$	δ	D	au	$\frac{ S }{ V }$	δ	D	au
0.32	0.33	3	0.04	0.12	0.68	2	0.32
1	0.09	4	0.03	0.10	0.73	2	0.34
0.50	0.34	3	0.08	0.15	1	1	1
0.46	0.13	3	0.05	0.07	0.61	2	0.26

Graph mining applications

- Thematic communities and spam link farms [Gibson, Kumar, Tomkins '05]
- Graph visualization[Alvarez-Hamelin etal.'05]
- Real time story identification [Angel et al. '12]
- Motif detection [Batzoglou Lab 'o6]
- Epilepsy prediction [lasemidis et al. '01]
- Finding correlated genes [Horvath et al.]
- Many more ..

Measures

 Clique: each vertex in S connects to every other vertex in S.

- α-Quasi-clique:
 the set S has at least α|S|(|S|-1)/2 edges.
- k-core: every vertex connects to at least k other vertices in S.

Measures

$$\delta(S) = \frac{e[S]}{\binom{|S|}{2}}$$

Density

- d (S)=
$$\frac{2e[S]}{|S|}$$

Average degree

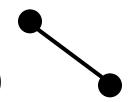
•
$$t(S) = \frac{t[S]}{\binom{|S|}{3}}$$

Triangle Density

Contributions

- General framework which subsumes popular density functions.
- Optimal quasi-cliques.
- An algorithm with additive error guarantees and a local-search heuristic.
- Variants
 - Top-k optimal quasi-cliques
 - Successful team formation

Contributions


- Experimental evaluation
 - Synthetic graphs
 - Real graphs
- Applications
 - Successful team formation of computer scientists
 - Highly-correlated genes from microarray datasets

First, some related work.

- Maximum clique problem: find clique of maximum possible size. NP-complete problem
- Unless P=NP, there cannot be a polynomial time algorithm that approximates the maximum clique problem within a factor better than $O(n^{1-\varepsilon})$ for any $\varepsilon>0$ [Håstad '99].

(Some) Density Functions

•
$$\delta$$
 (S)= $\frac{e[S]}{\binom{|S|}{2}}$ A single edge achieves always maximum possible δ(S)

-
$$d(S) = \frac{e[S]}{|S|}$$
 Densest subgraph problem

- d (S)=
$$\frac{e[S]}{|S|}$$
, $|S|=k$ k-Densest subgraph problem

-
$$d(S) = \frac{e[S]}{|S|}$$
, $|S| \ge k(|S| \le k)$ DalkS (Damks)

Densest Subgraph Problem

- Maximize average degree
- Solvable in polynomial time
 - Max flows (Goldberg)
 - LP relaxation (Charikar)
- Fast ½-approximation algorithm (Charikar)

k-Densest subgraph

- k-densest subgraph problem is NP-hard
- Feige, Kortsatz, Peleg
 Bhaskara, Charikar, Chlamtac, Vijayraghavan
 Asahiro et al.

Andersen

Khuller, Saha [approximation algorithms], Khot [no PTAS].

Quasicliques

- A set S of vertices is α -quasiclique if

$$e[S] \ge \alpha(\frac{|S|}{2})$$

 [Uno '10] introduces an algorithm to enumerate all α-quasicliques.

13

Edge-Surplus Framework

For a set of vertices S define

$$f_{\alpha}(S) = g(e[S]) - ah(|S|)$$

where g,h are both strictly increasing, $\alpha>0$.

• Optimal (α, g, h) -edge-surplus problem Find S* such that $f_{\alpha}(S^*) \ge f_{\alpha}(S)$.

Edge-Surplus Framework

- When g(x)=h(x)=log(x), $\alpha=1$, then Optimal (α,g,h) -edge-surplus problem becomes $\max log \frac{e[S]}{|S|}$, which is the densest subgraph problem.
- g(x)=x, h(x)=o if x=k, $o/w +\infty$ we get the k-densest subgraph problem.

Edge-Surplus Framework

- When g(x)=x, h(x)=x(x-1)/2 then we obtain $\max_{S\subseteq V, |S|\geq 2} e[S] \alpha\binom{|S|}{2}$, which we define as the optimal quasiclique (OQC) problem.
- Theorem 1: Let g(x)=x, h(x) concave. Then the optimal (α,g,h)-edge-surplus problem is polytime solvable.
 - However, this family is not well suited for applications as it returns most of the graph.

Hardness of OQC

- Conjecture: finding a planted clique C of size $n^{\frac{1}{2}-\delta}$, $\delta>0$ in a random binomial graph $G\left(n,\frac{1}{2}\right)$ is hard.
- Let $f(S) = e[S] \frac{2}{3} {|S| \choose 2}$. Then, $f(C) = \frac{1}{3} {n^{\frac{1}{2} - \delta} \choose 2} > 0$, $E[f(S)] = -\frac{1}{6} {|S| \choose 2} < 0$.

Multiplicative approximation algorithms

- Notice that in general the optimal value can be negative.
- We can obtain guarantees for a shifted objective but introduces large additive error making the algorithm almost useless, i.e., except for very special graphs.
- Other type of guarantees more suitable.

Optimal Quasicliques

- Additive error approximation algorithm
 - $G_n \leftarrow G$
 - For $k \leftarrow n$ downto 1
 - Let v be the smallest degree vertex in G_k .
 - $G_{k-1} \leftarrow G_k \{v\}$
 - Output $\bar{S} \leftarrow argmax_{1 \leq k \leq n} f_a(G_k)$

Theorem: $f_{\alpha}(\bar{S}) \ge f_{\alpha}(S^*) - \frac{\alpha}{2}$ "small" $\times |\bar{S}|$

Running time: O(n+m). However it would be nice to have running time O(|output|).

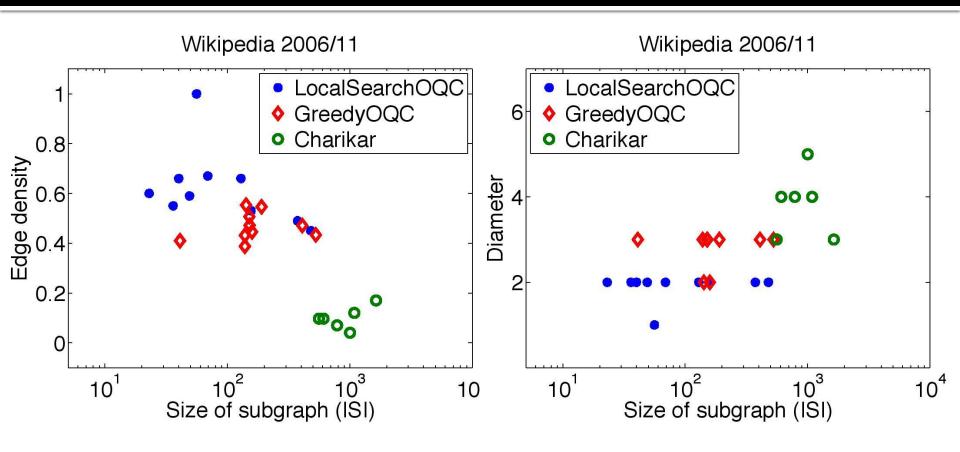
Optimal Quasicliques Local Search Heuristic

- Initialize S with a random vertex.
- 2. For t=1 to T_{max}
 - 1. Keep expanding S by adding at each time a vertex $v \notin S$ such that $f_{\alpha}(S \cup v) \geq f_{\alpha}(S)$.
 - 2. If not possible see whether there exist $v \in S$ such that $f_{\alpha}(S \{v\}) \ge f_{\alpha}(S)$.
 - 1. If yes, remove it. Go back to previous step.
 - 2. If not, stop and output S.

Experiments

	Vertices	Edges	Description
Dolphins	62	159	Biological Network
Polbooks	105	441	Books Network
Adjnoun	112	425	Adj. and Nouns in
			'David Copperfield'
Football	115	613	Games Network
Jazz	198	2742	Musicians Network
Celegans N.	297	2148	Biological Network
Celegans M.	453	2025	Biological Network
Email	1 133	5451	Email Network
AS-22july06	22963	48436	Auton. Systems
Web-Google	875713	3852985	Web Graph
Youtube	1157822	2990442	Social Network
AS-Skitter	1696415	11095298	Auton. Systems
Wikipedia 2005	1634989	18540589	Web Graph
Wikipedia 2006/9	2983494	35048115	Web Graph
Wikipedia 2006/11	3148440	37043456	Web Graph

KDD'13 21


Experiments

		S	δ			D			au				
	densest	opt. quasi-	-clique	densest	densest opt. quasi-clique		densest	densest opt. quasi-clique			densest opt. quasi-clique		
	subgraph	GREEDY	LS	subgraph	GREEDY	LS	subgraph	GREEDY	LS	subgraph	GREEDY	LS	
Dolphins	19	13	8	0.27	0.47	0.68	3	3	2	0.05	0.12	0.32	
Polbooks	53	13	16	0.18	0.67	0.61	6	2	2	0.02	0.28	0.24	
Adjnoun	45	16	15	0.20	0.48	0.60	3	3	2	0.01	0.10	0.12	
Football	115	10	12	0.09	0.89	0.73	4	2	2	0.03	0.67	0.34	
Jazz	99	59	30	0.35	0.54	1	3	2	1	0.08	0.23	1	
Celeg. N.	126	27	21	0.14	0.55	0.61	3	2	2	0.07	0.20	0.26	
Celeg. M.	44	22	17	0.35	0.61	0.67	3	2	2	0.07	0.26	0.33	
Email	289	12	8	0.05	1	0.71	4	1	2	0.01	1	0.30	
AS-22july06	204	73	12	0.40	0.53	0.58	3	2	2	0.09	0.19	0.20	
Web-Google	230	46	20	0.22	1	0.98	3	2	2	0.03	0.99	0.95	
Youtube	1874	124	119	0.05	0.46	0.49	4	2	2	0.02	0.12	0.14	
AS-Skitter	433	319	96	0.41	0.53	0.49	2	2	2	0.10	0.19	0.13	
Wiki '05	24555	451	321	0.26	0.43	0.48	3	3	2	0.02	0.06	0.10	
Wiki '06/9	1594	526	376	0.17	0.43	0.49	3	3	2	0.10	0.06	0.11	
Wiki '06/11	1638	527	46	0.17	0.43	0.56	3	3	2	0.31	0.06	0.35	

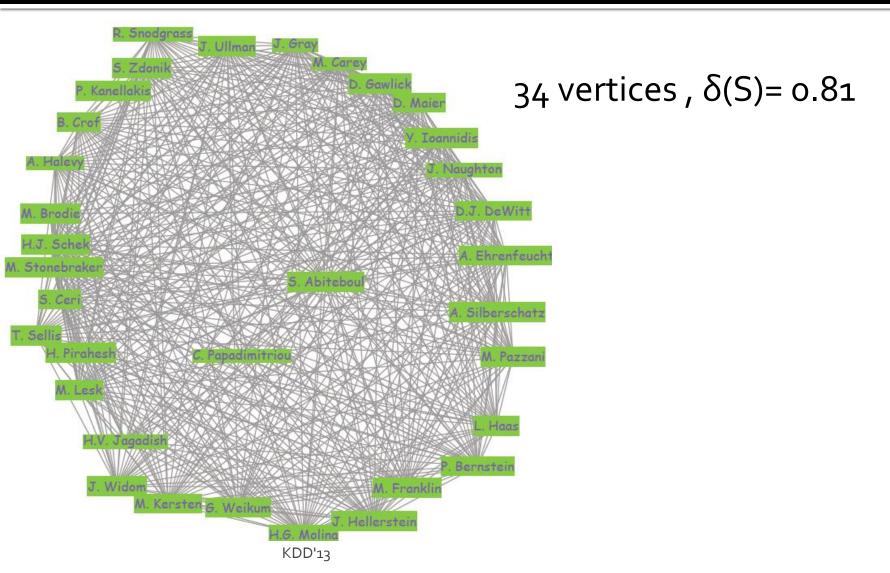
	DS	Mı	M ₂	DS	M1	M2	DS	M1	M2	DS	Mı	M ₂
Wiki '05	24.5 K	451	321	.26	.43	.48	3	3	2	.02	.06	.11
Youtube	1.9K	124	119	0.05	0.46	0.49	4	2	2	.02	.12	.14

KDD'13 22

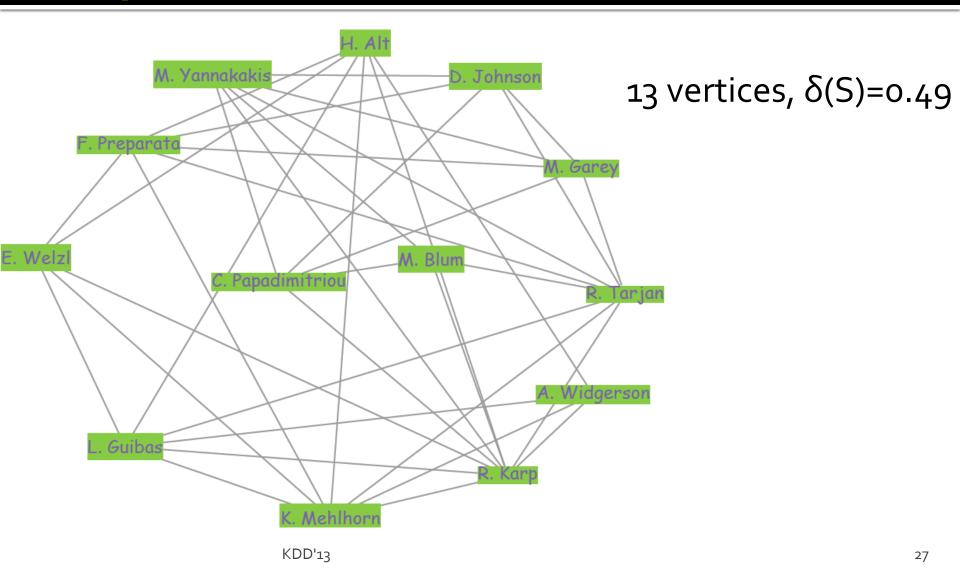
Top-k densest subgraphs

Constrained Optimal Quasicliques

Given a set of vertices Q

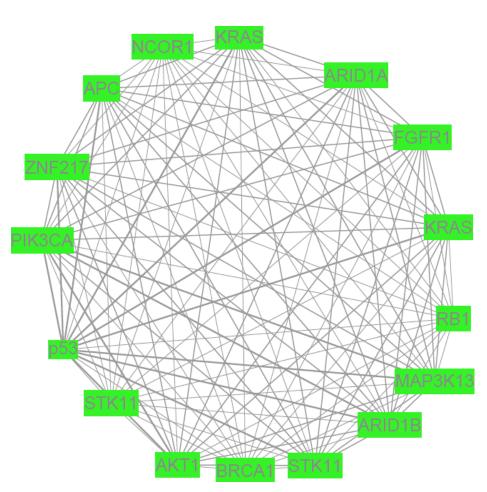

$$\max_{Q\subseteq S\subseteq V} f_{\alpha}(S) = \max_{Q\subseteq S\subseteq V} e[S] - \alpha(\frac{|S|}{2})$$

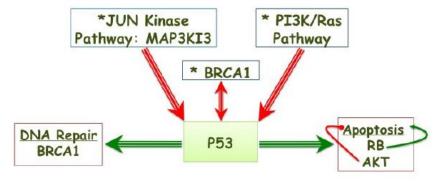
- Lemma: NP-hard problem.
- Observation: Easy to adapt our efficient algorithms to this setting.
 - Local Search: Initialize S with Q and never remove a vertex if it belongs to Q
 - Greedy: Never peel off a vertex from Q


Application 1

Suppose that a set Q of scientists wants to organize a workshop. How do they invite other scientists to participate in the workshop so that the set of all participants, including Q, have similar interests?

Query 1, Papadimitriou and Abiteboul


Query 2, Papadimitriou and Blum


Application 2

- Given a microarray dataset and a set of genes
 Q, find a set of genes S that includes Q and they are all highly correlated.
- Co-expression network
 - Measure gene expression across multiple samples
 - Create correlation matrix
 - Edges between genes if their correlation is > ρ.
- A dense subgraph in a co-expression network corresponds to a set of highly correlated genes.

Query, p53

ACTIVATION OF P53

Future Work

- Hardness
- Analysis of local search algorithm
- Other algorithms with additive approximation guarantees
- Study the natural family of objectives

$$\max_{S\subseteq V, |S|\geq 2} e[S] - \alpha |S|^{\gamma}, \gamma > 1$$

Thank you!

KDD'13 31