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Motivation

• Big data is data that is too large, complex and dynamic
for any conventional data tools to capture, store, manage
and analyze.

• The right use of big data allows analysis to spot trends
and gives niche insights that help create value and
innovation much faster than conventional methods.

Source visual.ly
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Motivation

• We need to handle datasets with billions of vertices and
edges

• Facebook: ∼ 1 billion users with avg degree 130

• Twitter: ≥ 1.5 billion social relations

• Google: web graph more than a trillion edges (2011)

• We need algorithms for dynamic graph datasets

• real-time story identification using twitter posts

• election trends, twitter as election barometer
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Motivation

• Big graph datasets created from social media data.
• vertices: photos, tags, users, groups, albums, sets,

collections, geo, query, . . .
• edges: upload, belong, tag, create, join, contact, friend,

family, comment, fave, search, click, . . .
• also many interesting induced graphs

• What is the underlying graph?
• tag graph: based on photos
• tag graph: based on users
• user graph: based on favorites
• user graph: based on groups
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Balanced graph partitioning

• Graph has to be distributed across a cluster of machines

G = (V, E)

Sunday, August 4, 13

• graph partitioning is a way to split the graph vertices in
multiple machines

• graph partitioning objectives guarantee low
communication overhead among different machines

• additionally balanced partitioning is desirable

• each partition contains ≈ n/k vertices, where n, k are the
total number of vertices and machines respectively

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 6 / 30



Off-line k-way graph partitioning

METIS algorithm [Karypis and Kumar, 1998]

• popular family of algorithms and software

• multilevel algorithm

• coarsening phase in which the size of the graph is
successively decreased

• followed by bisection (based on spectral or KL method)

• followed by uncoarsening phase in which the bisection is
successively refined and projected to larger graphs

METIS is not well understood, i.e., from a theoretical
perspective.
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Off-line k-way graph partitioning

problem: minimize number of edges cut, subject to cluster
sizes being at most νn/k (bi-criteria approximations)

• ν = 2: Krauthgamer, Naor and Schwartz
[Krauthgamer et al., 2009] provide O(

√
log k log n)

approximation ratio based on the work of
Arora-Rao-Vazirani for the sparsest-cut problem (k = 2)
[Arora et al., 2009]

• ν = 1 + ε: Andreev and Räcke [Andreev and Räcke, 2006]
combine recursive partitioning and dynamic programming
to obtain O(ε−2 log1.5 n) approximation ratio.

There exists a lot of related work, e.g.,
[Feldmann et al., 2012], [Feige and Krauthgamer, 2002],
[Feige et al., 2000] etc.

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 8 / 30



streaming k-way graph partitioning

• input is a data stream

• graph is ordered
• arbitrarily
• breadth-first search
• depth-first search

• generate an approximately balanced graph partitioning

graph stream
partitioner

⇥(n/k)
each partition
holds     
vertices

Monday, August 5, 13
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Graph representations

• incidence stream

• at time t, a vertex arrives with its neighbors

• adjacency stream

• at time t, an edge arrives
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Partitioning strategies

• hashing: place a new vertex to a cluster/machine chosen
uniformly at random

• neighbors heuristic: place a new vertex to the
cluster/machine with the maximum number of neighbors

• non-neighbors heuristic: place a new vertex to the
cluster/machine with the minimum number of
non-neighbors
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Partitioning strategies

[Stanton and Kliot, 2012]

• dc(v): neighbors of v in cluster c

• tc(v): number of triangles that v participates in cluster c

• balanced: vertex v goes to cluster with least number of
vertices

• hashing: random assignment

• weighted degree: v goes to cluster c that maximizes
dc(v) · w(c)

• weighted triangles: v goes to cluster j that maximizes
tc(v)/

(
dc (v)

2

)
· w(c)
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Weight functions

• sc : number of vertices in cluster c

• unweighted: w(c) = 1

• linearly weighted: w(c) = 1− sc(k/n)

• exponentially weighted: w(c) = 1− e(sc−n/k)
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fennel algorithm

The standard formulation hits the ARV barrier

minimize P=(S1,...,Sk ) |∂ e(P)|

subject to |Si | ≤ ν
n

k
, for all 1 ≤ i ≤ k

• We relax the hard cardinality constraints

minimize P=(S1,...,Sk ) |∂ E (P)|+ cIN(P)

where cIN(P) =
∑

i s(|Si |), so that objective self-balances
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fennel algorithm

• for S ⊆ V , f (S) = e[S ]− α|S |γ, with γ ≥ 1

• given partition P = (S1, . . . , Sk) of V in k parts define

g(P) = f (S1) + . . . + f (Sk)

• the goal: maximize g(P) over all possible k-partitions

• notice:
g(P) =

∑
i

e[Si ]︸ ︷︷ ︸
m−number of

edges cut

− α
∑

i

|Si |γ︸ ︷︷ ︸
minimized for

balanced partition!
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Connection

notice

f (S) = e[S ]− α

(
|S |
2

)
• related to modularity

• related to optimal quasicliques [Tsourakakis et al., 2013]
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fennel algorithm
Theorem

• For γ = 2 there exists an algorithm that achieves an
approximation factor log(k)/k
for a shifted objective where k is the number of clusters

• semidefinite programming algorithm
• in the shifted objective the main term takes care of the

load balancing and the second order term minimizes the
number of edges cut

• Multiplicative guarantees not the most appropriate

• random partitioning gives approximation factor 1/k

• no dependence on n

mainly because of relaxing the hard cardinality constraints
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fennel algorithm — greedy scheme

• γ = 2 gives non-neighbors heuristic

• γ = 1 gives neighbors heuristic

• interpolate between the two heuristics, e.g., γ = 1.5
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fennel algorithm — greedy scheme

graph stream
partitioner

⇥(n/k)
each partition
holds     
vertices

Monday, August 5, 13

• send v to the partition / machine that maximizes

f (Si ∪{v})− f (Si)

= e[Si ∪ {v}]− α(|Si |+ 1)γ − (e[Si ]− α|Si |γ)
= dSi

(v)− αO(|Si |γ−1)

• fast, amenable to streaming and distributed setting
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fennel algorithm — γ
Explore the tradeoff between the number of edges cut and
load balancing.

Fraction of edges cut λ and maximum load normalized ρ as a
function of γ, ranging from 1 to 4 with a step of 0.25, over

five randomly generated power law graphs with slope 2.5. The
straight lines show the performance of METIS.

• Not the end of the story ... choose γ∗ based on some
“easy-to-compute” graph characteristic.
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fennel algorithm — γ∗

y-axis Average optimal value γ∗ for each power law slope in the
range [1.5, 3.2] using a step of 0.1 over twenty randomly generated
power law graphs that results in the smallest possible fraction of
edges cut λ conditioning on a maximum normalized load ρ = 1.2,
k = 8. x-axis Power-law exponent of the degree sequence. Error
bars indicate the variance around the average optimal value γ∗.
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fennel algorithm — results
Twitter graph with approximately 1.5 billion edges, γ = 1.5

λ =
#{edges cut}

m
ρ = max

1≤i≤k

|Si |
n/k

Fennel Best competitor Hash Partition METIS
k λ ρ λ ρ λ ρ λ ρ
2 6.8% 1.1 34.3% 1.04 50% 1 11.98% 1.02
4 29% 1.1 55.0% 1.07 75% 1 24.39% 1.03
8 48% 1.1 66.4% 1.10 87.5% 1 35.96% 1.03

Table: Fraction of edges cut λ and the normalized maximum load
ρ for Fennel, the best competitor and hash partitioning of vertices
for the Twitter graph. Fennel and best competitor require around
40 minutes, METIS more than 81

2 hours.
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fennel algorithm — results
Extensive experimental evaluation over > 40 large real graphs
[Tsourakakis et al., 2012]
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fennel algorithm — “zooming in”
Performance of various existing methods on amazon0312 for
k = 32

BFS Random
Method λ ρ λ ρ

H 96.9% 1.01 96.9% 1.01
B [Stanton and Kliot, 2012] 97.3% 1.00 96.8% 1.00

DG [Stanton and Kliot, 2012] 0% 32 43% 1.48
LDG [Stanton and Kliot, 2012] 34% 1.01 40% 1.00
EDG [Stanton and Kliot, 2012] 39% 1.04 48% 1.01
T [Stanton and Kliot, 2012] 61% 2.11 78% 1.01
LT [Stanton and Kliot, 2012] 63% 1.23 78% 1.10
ET [Stanton and Kliot, 2012] 64% 1.05 79% 1.01

NN [Prabhakaran and et al., 2012] 69% 1.00 55% 1.03
Fennel 14% 1.10 14% 1.02
METIS 8% 1.00 8% 1.02
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Conclusions

summary and future directions

• cheap and efficient graph partitioning is highly desired

• new area [Stanton and Kliot, 2012],
[Tsourakakis et al., 2012],
[Nishimura and Ugander, 2013]

• average case analysis

• stratified graph partitioning
[Nishimura and Ugander, 2013]
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thank you!
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