Fennel: Streaming Graph Partitioning for Massive Scale Graphs

Charalampos E. Tsourakakis ${ }^{1}$ Christos Gkantsidis ${ }^{2}$ Bozidar Radunovic ${ }^{2}$ Milan Vojnovic ${ }^{2}$

${ }^{1}$ Aalto University, Finland
${ }^{2}$ Microsoft Research, Cambridge UK

MASSIVE 2013, France Slides available
http://www.math.cmu.edu/~ctsourak/

Motivation

- Big data is data that is too large, complex and dynamic for any conventional data tools to capture, store, manage and analyze.
- The right use of big data allows analysis to spot trends and gives niche insights that help create value and innovation much faster than conventional methods.

Source visual.ly

Motivation

- We need to handle datasets with billions of vertices and edges
- Facebook: ~ 1 billion users with avg degree 130
- Twitter: ≥ 1.5 billion social relations
- Google: web graph more than a trillion edges (2011)
- We need algorithms for dynamic graph datasets
- real-time story identification using twitter posts
- election trends, twitter as election barometer

Motivation

\& Newer \& Oider \rightarrow

Rosenborg, Copenhagen

19.365

Rosentorg Castle - where we keep the Kingdoms crown jewels.
This beautiful spot is in the heart of Copenhagen, at the Kings Garden.
The photograph was shot on a nice spring day, with wonderful flicke friends on a Copenhagen walk.

\square
2. By michael.dreves

Mchael Dreves Beier + Add Contact
This photo was taken on April 7, 2010 in Tornebuskegade, Copenhagen, Hovedstaden, DK, using a Canon EOS 5D Mark II.

This photo belongs to michael.dreves' photostream (454)

This photo also appears in

- filickr - Most interesting (set)
- Project 365 (set)
, HOR compilations (set)
- Copenhagen (set)
, ...Flickr Global (group)
* At of images...(P1/A3)/ Not... (group)

Danmark (group)

- FickrCentral (group)
- FickrToday (only 1 pic per day) (group)
.and 63 more groups

People in this photo (add a person)
Adding peoplo will thare who is in this photo

Motivation

- Big graph datasets created from social media data.
- vertices: photos, tags, users, groups, albums, sets, collections, geo, query, ...
- edges: upload, belong, tag, create, join, contact, friend, family, comment, fave, search, click, ...
- also many interesting induced graphs
- What is the underlying graph?
- tag graph: based on photos
- tag graph: based on users
- user graph: based on favorites
- user graph: based on groups

Balanced graph partitioning

- Graph has to be distributed across a cluster of machines

$$
G=(V, E)
$$

- graph partitioning is a way to split the graph vertices in multiple machines
- graph partitioning objectives guarantee low communication overhead among different machines
- additionally balanced partitioning is desirable
- each partition contains $\approx n / k$ vertices, where n, k are the total number of vertices and machines respectively

Off-line k-way graph partitioning

METIS algorithm [Karypis and Kumar, 1998]

- popular family of algorithms and software
- multilevel algorithm
- coarsening phase in which the size of the graph is successively decreased
- followed by bisection (based on spectral or KL method)
- followed by uncoarsening phase in which the bisection is successively refined and projected to larger graphs
METIS is not well understood, i.e., from a theoretical perspective.

Off-line k-way graph partitioning

problem: minimize number of edges cut, subject to cluster sizes being at most $\nu n / k$ (bi-criteria approximations)

- $\nu=$ 2: Krauthgamer, Naor and Schwartz [Krauthgamer et al., 2009] provide $O(\sqrt{\log k \log n})$ approximation ratio based on the work of Arora-Rao-Vazirani for the sparsest-cut problem $(k=2)$ [Arora et al., 2009]
- $\nu=1+\epsilon$: Andreev and Räcke [Andreev and Räcke, 2006] combine recursive partitioning and dynamic programming to obtain $O\left(\epsilon^{-2} \log ^{1.5} n\right)$ approximation ratio.
There exists a lot of related work, e.g.,
[Feldmann et al., 2012], [Feige and Krauthgamer, 2002], [Feige et al., 2000] etc.

streaming k-way graph partitioning

- input is a data stream
- graph is ordered
- arbitrarily
- breadth-first search
- depth-first search
- generate an approximately balanced graph partitioning

Graph representations

- incidence stream
- at time t, a vertex arrives with its neighbors
- adjacency stream
- at time t, an edge arrives

Partitioning strategies

- hashing: place a new vertex to a cluster/machine chosen uniformly at random
- neighbors heuristic: place a new vertex to the cluster/machine with the maximum number of neighbors
- non-neighbors heuristic: place a new vertex to the cluster/machine with the minimum number of non-neighbors

Partitioning strategies

[Stanton and Kliot, 2012]

- $d_{c}(v)$: neighbors of v in cluster c
- $t_{c}(v)$: number of triangles that v participates in cluster c
- balanced: vertex v goes to cluster with least number of vertices
- hashing: random assignment
- weighted degree: v goes to cluster c that maximizes $d_{c}(v) \cdot w(c)$
- weighted triangles: v goes to cluster j that maximizes $t_{c}(v) /\binom{d_{c}(v)}{2} \cdot w(c)$

Weight functions

- s_{c} : number of vertices in cluster c
- unweighted: $w(c)=1$
- linearly weighted: $w(c)=1-s_{c}(k / n)$
- exponentially weighted: $w(c)=1-e^{\left(s_{c}-n / k\right)}$

FENNEL algorithm

The standard formulation hits the ARV barrier

$$
\begin{aligned}
\operatorname{minimize}_{\mathcal{P}=\left(S_{1}, \ldots, S_{k}\right)} & |\partial e(\mathcal{P})| \\
\text { subject to } & \left|S_{i}\right| \leq \nu \frac{n}{k}, \text { for all } 1 \leq i \leq k
\end{aligned}
$$

- We relax the hard cardinality constraints

$$
\text { minimize } \mathcal{P}=\left(S_{1}, \ldots, S_{k}\right) \quad|\partial E(\mathcal{P})|+c_{\mathrm{IN}}(\mathcal{P})
$$

where $c_{\text {IN }}(\mathcal{P})=\sum_{i} s\left(\left|S_{i}\right|\right)$, so that objective self-balances

FENNEL algorithm

- for $S \subseteq V, f(S)=e[S]-\alpha|S|^{\gamma}$, with $\gamma \geq 1$
- given partition $\mathcal{P}=\left(S_{1}, \ldots, S_{k}\right)$ of V in k parts define

$$
g(\mathcal{P})=f\left(S_{1}\right)+\ldots+f\left(S_{k}\right)
$$

- the goal: maximize $g(\mathcal{P})$ over all possible k-partitions
- notice:

Connection

notice

$$
f(S)=e[S]-\alpha\binom{|S|}{2}
$$

- related to modularity
- related to optimal quasicliques [Tsourakakis et al., 2013]

FENNEL algorithm

Theorem

- For $\gamma=2$ there exists an algorithm that achieves an approximation factor $\log (k) / k$ for a shifted objective where k is the number of clusters
- semidefinite programming algorithm
- in the shifted objective the main term takes care of the load balancing and the second order term minimizes the number of edges cut
- Multiplicative guarantees not the most appropriate
- random partitioning gives approximation factor $1 / k$
- no dependence on n mainly because of relaxing the hard cardinality constraints

FENNEL algorithm - greedy scheme

- $\gamma=2$ gives non-neighbors heuristic
- $\gamma=1$ gives neighbors heuristic
- interpolate between the two heuristics, e.g., $\gamma=1.5$

FENNEL algorithm - greedy scheme

- send v to the partition / machine that maximizes

$$
\begin{aligned}
& f\left(S_{i} \cup\{v\}\right)-f\left(S_{i}\right) \\
&=e\left[S_{i} \cup\{v\}\right]-\alpha\left(\left|S_{i}\right|+1\right)^{\gamma}-\left(e\left[S_{i}\right]-\alpha\left|S_{i}\right|^{\gamma}\right) \\
&=d_{S_{i}}(v)-\alpha \mathcal{O}\left(\left|S_{i}\right|^{\gamma-1}\right)
\end{aligned}
$$

- fast, amenable to streaming and distributed setting

FENNEL algorithm - γ

Explore the tradeoff between the number of edges cut and load balancing.

Fraction of edges cut λ and maximum load normalized ρ as a function of γ, ranging from 1 to 4 with a step of 0.25 , over five randomly generated power law graphs with slope 2.5 . The straight lines show the performance of METIS.

- Not the end of the story ... choose γ^{*} based on some "easy-to-compute" graph characteristic.

FENNEL algorithm - γ^{*}

y-axis Average optimal value γ^{*} for each power law slope in the range [1.5, 3.2] using a step of 0.1 over twenty randomly generated power law graphs that results in the smallest possible fraction of edges cut λ conditioning on a maximum normalized load $\rho=1.2$, $k=8$. x-axis Power-law exponent of the degree sequence. Error bars indicate the variance around the average optimal value γ^{*}.

FENNEL algorithm - results

Twitter graph with approximately 1.5 billion edges, $\gamma=1.5$

	Fennel		Best competitor		Hash Partition		METIS	
k	λ	λ	λ	ρ	λ	ρ	λ	ρ
2	6.8%	1.1	34.3%	1.04	50%	1	11.98%	1.02
4	29%	1.1	55.0%	1.07	75%	1	24.39%	1.03
8	48%	1.1	66.4%	1.10	87.5%	1	35.96%	1.03

Table: Fraction of edges cut λ and the normalized maximum load ρ for Fennel, the best competitor and hash partitioning of vertices for the Twitter graph. Fennel and best competitor require around 40 minutes, METIS more than $8 \frac{1}{2}$ hours.

FENNEL algorithm - results

Extensive experimental evaluation over >40 large real graphs [Tsourakakis et al., 2012]

CDF of the relative difference $\frac{\lambda_{\text {fennel }}-\lambda_{c}}{\lambda_{c}} \times 100 \%$ of percentages of edges cut of FENNEL and the best competitor (pointwise) for all graphs in our dataset.

FENNEL algorithm - "zooming in"

Performance of various existing methods on amazon0312 for $k=32$

	BFS		Random	
Method	λ	ρ	λ	p
H	96.9\%	1.01	96.9\%	1.01
B [Stanton and Kliot, 2012]	97.3\%	1.00	96.8\%	1.00
DG [Stanton and Kliot, 2012]	0\%	32	43\%	1.48
LDG [Stanton and Kliot, 2012]	34\%	1.01	40\%	1.00
EDG [Stanton and Kliot, 2012]	39\%	1.04	48\%	1.01
T [Stanton and Kliot, 2012]	61\%	2.11	78\%	1.01
LT [Stanton and Kliot, 2012]	63\%	1.23	78\%	1.10
ET [Stanton and Kliot, 2012]	64\%	1.05	79\%	1.01
NN [Prabhakaran and et al., 2012]	69\%	1.00	55\%	1.03
Fennel	14\%	1.10	14\%	1.02
METIS	8\%	1.00	8\%	1.02

Conclusions

summary and future directions

- cheap and efficient graph partitioning is highly desired
- new area [Stanton and Kliot, 2012],
[Tsourakakis et al., 2012],
[Nishimura and Ugander, 2013]
- average case analysis
- stratified graph partitioning
[Nishimura and Ugander, 2013]

thank you!

references I

R Andreev, K. and Räcke, H. (2006).
Balanced graph partitioning.
Theor. Comp. Sys., 39(6):929-939.
R Arora, S., Rao, S., and Vazirani, U. (2009).
Expander flows, geometric embeddings and graph partitioning. Journal of the ACM (JACM), 56(2).

國 Feige, U. and Krauthgamer, R. (2002).
A polylogarithmic approximation of the minimum bisection.
SIAM Journal on Computing, 31(4):1090-1118.
Reige, U., Krauthgamer, R., and Nissim, K. (2000).
Approximating the minimum bisection size.
In Proceedings of the thirty-second annual ACM symposium on Theory of computing, pages 530-536. ACM.

references II

國 Feldmann, A. E., Foschini, L., et al. (2012).
Balanced partitions of trees and applications.
In Symposium on Theoretical Aspects of Computer Science, volume 14, pages 100-111.

Karypis, G. and Kumar, V. (1998).
A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput., 20(1):359-392.
围 Krauthgamer, R., Naor, J. S., and Schwartz, R. (2009).
Partitioning graphs into balanced components.
In SODA.

references III

圊
Nishimura, J. and Ugander, J. (2013).
Restreaming graph partitioning: simple versatile algorithms for advanced balancing.
In Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1106-1114. ACM.
R Prabhakaran, V. and et al. (2012).
Managing large graphs on multi-cores with graph awareness.
In USENIX ATC'12.
Stanton, I. and Kliot, G. (2012).
Streaming graph partitioning for large distributed graphs.
In KDD.

references IV

星
Tsourakakis, C. E., Bonchi, F., Gionis, A., Gullo, F., and Tsiarli, M. A. (2013).

Denser than the densest subgraph: Extracting optimal quasi-cliques with quality guarantees.
KDD.
目 Tsourakakis, C. E., Gkantsidis, C., Radunovic, B., and Vojnovic, M. (2012).

FENNEL: Streaming graph partitioning for massive scale graphs.

Technical report.

