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Abstract

Doctor of Philosophy

Mathematical and Algorithmic Analysis of Network and Biological Data

by Charalampos E.Tsourakakis

This dissertation contributes to mathematical and algorithmic problems that arise in the

analysis of network and biological data. The driving force behind this dissertation is the

importance of studying network and biological data. Studies of such data can provide

us with insights to important emerging and long-standing problems, such as why do

some mutations cause cancer whereas others do not? What is the structure of the Web

graph? How do networks form and how does their structure affect the the spread of ideas

and diseases? This thesis consists of two parts. The first part is devoted to graphs and

networks and the second part to computational cancer biology. Our contributions to

graphs and networks revolve around the following two axes.

• Empirical studies: In order to develop a good model, one has to study structural

properties of real-world networks. Given the size of today’s networks, such empirical

studies and graph-structured computations become challenging tasks. Therefore, in the

course of empirically studying real-world networks, both novel and existing well-studied

problems but in new computational models need to be solved. We provide both efficient

algorithms with strong theoretical guarantees for various graph-structured computations

and graph processing systems that allow us to handle big graph data.

• Models: The quality of a given model is judged by how well it matches reality. We an-

alyze fundamental graph theoretic properties of random Apollonian networks, a random

graph model which mimicks real-world networks. Furthermore, we use random graphs

to perform an average case analysis for rainbow connectivity, an intriguing connectivity

concept. We provide simple randomized procedures which succeed to solve the problem

of interest with high probability on random binomial and regular graphs.

Our contributions to computational cancer biology include new models, theoretical in-

sights into existing models, novel algorithmic techniques and detailed experimental anal-

ysis of various datasets. Specifically, we contribute the following.

University Web Site URL Here (include http://)
http://www.math.cmu.edu/index.php


• Novel algorithmic techniques for denoising array comparative genomic hybridization

data. Our algorithmic results are of independent interest and provide approximation

techniques for speeding up dynamic programming.

• Based on empirical findings which strongly indicate an inherent geometric structure

in cancer genomic data, we introduce a geometric model for finding subtypes of cancer

which overcomes difficulties of existing methods such as principal/independent com-

ponent analysis and separation methods for Gaussians. We provide a computational

method which solves the optimization problem efficiently and is robust to outliers.

•We find the necessary and sufficient conditions to reconstruct uniquely an oncogenetic

tree, a popular tumor phylogenetic method.
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Chapter 1

Introduction

The motivating force behind this dissertation is the importance of studying network and

biological data. Such studies can provide us with insights or even answers to various

significant questions: How do people establish connections among each other and how

does the underlying social graph affect the spread of ideas and diseases? What will the

structure of the Web be in some years from now? How can we design better marketing

strategies? Why do some mutations cause cancer whereas others do not? Can we use

cancer data to improve diagnostics and therapeutics?

This dissertation contributes to mathematical and algorithmic problems which arise in

the course of studying network and cancer data. This Chapter is organized as follows: in

Sections 1.1 and 1.2 we introduce the reader to some basic network and biology concepts

respectively. In Section 1.3 we motivate our work and present the contributions of this

dissertation.

1.1 Graphs and Networks

Networks appear throughout in nature and society [21]. Furthermore, many applications

which use other types of data, such as text or image data, create graphs by data-

processing. Network Science has emerged over the last years as an interdisciplinary

area spanning traditional domains including mathematics, computer science, sociology,

biology and economics. Since complexity in social, biological and economical systems,

and more generally in complex systems, arises through pairwise interactions there exists

a surging interest in understanding networks [144]. Graph theory [76] plays a key role

in modeling and studying networks. Given the increasing importance of networks in our

lives, Professor Daniel Spielman believes that Graph Theory is the new Calculus [369].

Some important networks and the corresponding graph models follow.

2
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• Human brain. Our brain consists of neurons which form a network. The number

of neurons in the region of human cortex is estimated to be roughly 1010. Neurons

are connected through synapses. The strength of synapses in general varies. The

average number of synapses of each neuron is in the range of 24 000-80 000 for

humans [401]. The brain can be modeled as a graph, whose vertex set corresponds

to neurons and edge set to synapses.

• World Wide Web (WWW). The World Wide Web is a particularly important net-

work. Turing Award winner Jim Gray in his 1998 Turing award address speech

mentioned “The emergence of ’cyberspace’ and the World Wide Web is like the

discovery of a new continent”. The vertices of the WWW are Web pages and the

edges are hyperlinks (URLs) that point from one page to another. In 2011, Google

reported that WWW has more than a trillion of edges.

• Internet. There exist two different types of Internet graphs. In the first type,

vertices are routers and edges correspond to physical connections. The second level

is the autonomous systems level, where a single vertex represents a domain, namely

multiple routers and computers. An edge is drawn if there is at least one route

that connects them. It is worth mentioning that the first type of topology can be

studied with the traceroute tool, whereas the second with BGP tables.

• Social and online social networks. According to Aristotle man is by nature a social

animal. Social networks precede the individual. These networks are modeled by

using one vertex per human. Each edge corresponds to some sort of interaction, for

instance friendship.

Since the emergence of the World Wide Web, we live in the information age. Nowa-

days, online social networks and social media are a part of our daily lives which can

affect society immensely. Again, such networks are modeled as graphs where each

vertex corresponds to an account. Each edge corresponds to a connection.

• Collaboration networks. There exist many types of collaboration networks. Vertices

can represent for instance mathematicians or actors. An edge between two vertices

is drawn when the corresponding mathematicians have co-authored a paper or when

the corresponding actors have played in the same movie respectively. Two famous

collaboration networks are the Erdös and the Kevin Bacon collaboration networks.

• Protein interaction networks. Protein - protein interactions occur when two or

more proteins bind together, often to carry out their biological function. These

interactions define protein interaction networks. The corresponding graph has a

vertex for each protein. Proteins i and j are connected if they interact.

• Wireless sensor networks. Vertices are autonomous sensors. These sensors monitor

physical or environmental conditions, such as temperature, brightness and humidity
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A directed edge (i, j) suggests that information can be passed from sensor i to sensor

j.

• Power grid. An electrical grid is a network which delivers electricity from suppli-

ers to consumers. The vertices of the power grid graph correspond to generators,

transformers and substations. Edges correspond to high-voltage transmission lines.

• Financial networks. One of the globalization effects is the interdependence between

financial instutitions and markets. Financial network models are represented by

graphs whose vertex set corresponds to financial institutions such as banks and

countries. Edges correspond to different types of interactions, for instance borrower-

lender relations.

• Blog networks. A blog is a web log. A blog may contain a blogroll, namely a list

of blogs that interest the blogger, or may reference other blogs through posts. This

network is represented by a graph whose vertex set corresponds to blogs. An edge

(i, j) exists if the i-th blog has blog j in its blogroll or a URL pointing to j.

A remarkable fact which underpins network science is that many real-world networks, de-

spite their different origins, share several common structural characteristics. In the next

Section we present some established patterns, shared by numerous real-world networks

[144, 180].

1.1.1 Structural properties of real-world networks

Real-world networks possess a variety of remarkable properties. For instance, it is known

that they are robust to random but vulnerable to malicious attacks [21, 78]. Here, we

review some important empirical properties of real-world networks which are related to

our work.

1.1.1.1 Power laws

Real-world networks typically have skewed degree distributions. These heavy tailed

empirical distributions are frequently modeled as power laws.

Definition 1.1. The degree sequence of a graph follows a power law distribution if the

number of vertices Nd with degree d is given by Nd ∝ d−α where α > 1 is the power law

degree exponent or slope.

One of the early papers that popularized power laws as the modeling choice for empir-

ical degree distributions was the Faloutsos, Faloutsos and Faloutsos paper [158]. The



Introduction 5

Faloutsos brothers found that the Internet at the autonomous systems level follows a

power law degree distribution with α ≈ 2.4. In general, there exist three main problems

with the initial studies of power laws in networks. First, Internet graphs generated with

traceroute sampling [158] may produce power-law distributions due to the bias of the

process, even if the true underlying graph is regular [264]. Secondly, there exist method-

ological flaws in determining the exponent/slope of the power law distribution. Clauset

et al. provide a proper methodology for finding the slope of the distribution [118]. Fi-

nally, other distributions could potentially fit the data better but were not considered

as candidates. Such distribution is the lognormal [369]. A nice review of power law and

lognormal distributions appears in [305].

1.1.1.2 Small-world

Six degrees of separation is the theory that anyone in the world is no more than six

relationships away from any other person. In the early 20th century Nobel Peace Prize

winner Guglielmo Marconi, the father of modern radio, suggested that it would take

only six relay stations to cover and connect the earth by radio [298]. It is likely that this

idea was the seed for the six degrees of separation theory, which was further supported

by Frigyes Karinthy in a short story called Chains. Since then many scientists, including

Michael Gurevich, Ithiel De Sola Pool have worked on this theory. In a famous experi-

ment, Stanley Milgram asked people to route a postcard to a fixed recipient by passing

them to direct acquintances [303]. Milgram observed that depending on the sample of

people chosen the average number of intermediaries was between 4.4 and 5.7. Milgram’s

experiment besides its existential aspect has a strong algorithmic aspect as well, which

was first studied by Kleinberg [252].

Nowadays, World Wide Web and online social networks provide us with data that reach

the planetary scale. Recently, Backstrom, Boldi, Rosa, Ugander and Vigna showed that

the world is even smaller than what the six degrees of separation theory predicts [45].

Specifically, they perform the first world-scale social-network graph-distance computa-

tion, using the entire Facebook network of active users (at that time 721 million users,

69 billion friendship links) and observe an average distance of 4.74. In Chapter 7 we

shall see formal graph theoretical concepts which quantify the small world phenomenon.

1.1.1.3 Clustering coefficients

Watts and Strogatz in their influential paper [412] proposed a simple graph model which

reproduces two features of social networks: abundance of triangles and the existence of

short paths among any pair of nodes. Their model combines the idea of homophily which
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leads to the wealth of triangles in the network and the idea of weak ties which create

short paths. In order to quantify the homophily, they introduce the definitions of the

clustering coefficient. The definition of the transitivity T (G) of a graph G, introduced

by Newman et al. [317], is closely related to the clustering coefficient and measures the

probability that two neighbors of a vertex are connected.

Definition 1.2 (Clustering Coefficient). A vertex v ∈ V (G) with degree d(v) which

participates into t(v) triangles has clustering coefficient C(v) equal to the fraction of

edges among its neighbors to the maximum number of triangles it could participate:

C(v) =
t(v)(
d(v)
2

) (1.1)

The clustering coefficient C(G) of graph G is the average of C(v) over all v ∈ V (G).

Definition 1.3 (Transitivity). The transitivity of a graph measures the probability that

two neighbors of a vertex are connected:

T (G) =
3× t

number of connected triples
(1.2)

1.1.1.4 Communities

Intuitively, communities are sets of vertices which are densely intra-connected and

sparsely inter-connected [196, 314]. A large amount of research in network science has fo-

cused on finding communities. The goal of community detection methods is to partition

the graph vertices into communities so that there are many edges among vertices in the

same community and few edges among vertices in different communities. A landmark

study of communities by Leskovec et al. [277] placed various folklores revolving around

community existence in question. Specifically, Leskovec et al. observed in the majority

of the networks they studied that communities exist at small size scales. Specifically,

as the size increases up to a value which empirically is close to 100 the quality of the

community tends to increase. However, after the critical value of 100, the quality tends

to decrease. This indicates that communities blend in with the rest of the network and

lose their community-like profile.

There exist various formalizations of the community notion [277]. However, what un-

derpins all these formalizations is the attempt to understand the cut structure of the

graph. A popular measure for the quality of a community is the conductance.

Definition 1.4. Given a graph G(V,E, w) and a set S ⊆ V of vertices, the conductance

of S is defined as
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φ(S) =

∑
(i,j)∈E,i∈S,j∈S̄

wij

min(vol(S), vol(S̄))
,

where S̄ = V \S and the volume of a given set A ⊆ V of vertices is defined as vol(A) =∑
i∈A d(i). The conductance of the graph G is defined as

φ = min
S⊂V

φ(S).

It is not a coincidence that random walks are frequently used to find communities [343]

as their use is common in the general setting of graph partitioning [322]. A lot of in-

terest exists into finding dense sets of vertices around a given seed. A popular method

for finding such sets was first introduced by Lovász and Simonovits [290] who show that

random walks of length O( 1
φ) can be used to compute a cut with sparsity at most Õ(

√
φ)

if the sparsest cut has conductance φ. Later, Spielman and Teng [371, 372] provided a

local graph partitioning algorithm which implements efficiently the Lovász-Simonovits

idea. Furthermore, their algorithm has a bounded work/volume ratio. Another closely

related approach which does not explicitly compute sequences of random walk distribu-

tions but computes a personalized Pagerank vector was introduced by Andersen, Chung,

and Lang [33]. A few other representative approaches for the problem of community

detection include methods on minimum cut [170], modularity maximization [196], and

spectral methods [245, 318]. In fact the literature on the topic is so extensive that we do

not attempt to make a proper review here; a comprehensive survey has been conducted

by Fortunato [174].

In the typical setting of finding communities, the vertex set of the graph is partitioned.

A relaxation of the latter requirement, allowing overlaps between sets of vertices, yields

the notion of overlapping communities [39, 383, 428].

1.1.1.5 Densification and Shrinking Diameters

Leskovec, Kleinberg and Faloutsos [280] studied how numerous real-world networks from

a variety of domains evolve over time. In their work two important observations were

made. First, networks become denser over time and the densification follows a power

law pattern. Secondly, effective diameters shrink over time. The second pattern is

particularly surpising and creates a modeling challenge as well, since the vast majority

of real-world networks have a diameter that grows as the network grows.
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Figure 1.1: Bow-tie structure of the Web graph (Image source: [90])

1.1.1.6 Web graph

We focus on the bow bow-tie structure of the Web graph. Other important properties of

the Web graph include the abundance of bipartite cliques [253, 262] and compressibility

[73, 109, 110]. In 1999 Andrei Broder et al. [90] performed an influential study of

the Web graph using strongly connected components (SCCs) as their building blocks.

Specifically, they proposed the bow-tie model for the structure of the Web graph based on

their findings on the index of pages and links of the AltaVista search engine. According

to the bow-tie structure of the Web, there exists a single giant SCC. Broder et al. [90]

positioned the remaining SCCs with respect to the giant SCC as follows:

• IN: vertices that can reach the giant SCC but cannot be reached from it.

• OUT: vertices that can be reached from the giant SCC but cannot be reach it.

• Tendrils: These are vertices that either are reachable from IN but cannot reach the

giant SCC or the vertices that can reach OUT but cannot be reached from the giant

SCC.

• Disconnected: vertices that belong to none of the above categories. These are the

vertices that even if we ignore the direction of the edges, have no path connecting them

to the giant SCC.
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A schematic picture of the bow-tie structure of the Web is shown in Figure 1.1. This

structure has been verified in other studies as well [69, 137].

1.1.2 Network Models

There exist two main research lines which model network formation. Random graph and

strategic models. We focus on random graph models and specifically the models used

in this dissertation. The interested reader may consult the cited papers and references

therein for more random graph models and [221] for a rich account of results on strategic

models.

1.1.2.1 Erdös-Rényi random graphs

Let G be the family of all labeled graphs with vertex set V = [n] = {1, . . . , n}. Notice

|G| = 2(n
2). Random graph models assign to each graph G ∈ G a probability. The

random binomial graph model G(n, p) has two parameters, n the number of vertices and

a probability parameter 0 ≤ p ≤ 1. The G(n, p) model assigns to a graph G ∈ G the

following probability

Pr [G] = p|E(G)|(1− p)(
n
2)−|E(G)|.

We will refer to random binomial graphs as Erdös-Rényi graphs interchangeably. His-

torically, Gilbert [194] introduced originally the G(n, p) model but Erdös and Rényi

founded the field of random graphs [152, 153]. They introduced a closely related model

known as G(n, m). This model has two parameters, the number of vertices n and the

number of edges m, where 0 ≤ m ≤
(
n
2

)
. This model assigns equal probability to all

labelled graphs on the vertex set [n] with exactly m edges. In other words,

Pr [G] =


1

((
n
2)
m )

if |E(G)| = m

0 if |E(G)| 6= m

We shall be interested in understanding various graph theoretic properties.

Definition 1.5. Define a graph property P as a subset of all possible labelled graphs.

Namely P ⊆ 2([n]
2 ).

For instance P can be the set of planar graphs or the set of graphs that contain a

Hamiltonian cycle. We will call a property P as monotone increasing if G ∈ P implies
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G+e ∈ P. For instance the Hamiltonian property is monotone increasing. Similarly, we

will call a property P as monotone decreasing if G ∈ P implies G− e ∈ P. For instance

the planarity property is monotone decreasing. Since there is an underlying probability

distribution, we shall be interested in how likely a property is. Our claims relating to

random graphs will be probabilistic. We will say that an event An holds with high

probability (whp) if limn→+∞Pr [An] = 1. The following are background definitions

which can be found in any random graph theory textbook [77, 223].

Notice that in the G(n, p) model we toss a coin independently for each possible edge

and with probability p we add it to the graph. In expectation there will be p
(
n
2

)
edges.

When p = m

(n
2)

, then a random binomial graph has in expectation m edges and intuitively

G(n, p) and G(n, m) should behave similarly. The following theorem quantifies this

intuition.

Theorem 1.6. Let 0 ≤ p0 ≤ 1, s(n) = n
√

p(1− p) → +∞, and ω(n) → +∞ as

n→ +∞. Then,

(a) if P is any graph property and for all m ∈ N such that |m −
(
n
2

)
p| < ω(n)s(n), the

probability Pr [G(n, m) ∈ P]→ p0, then Pr [G(n, p) ∈ P]→ p0 as n→ +∞.

(b) if P is a monotone graph property and p− = p0 − ωns(n)
n3 , p+ = p0 + ωns(n)

n3 then

from the facts that Pr [G(n, p−) ∈ P] → p0,Pr [G(n, p+) ∈ P] → p0, it follows that

Pr
[
G(n, p

(
n
2

)
) ∈ P

]
→ p0 as n→ +∞.

1.1.2.2 Configuration model and Random Regular Graphs

The configuration model can construct a multigraph in general with a given degree

sequence d = (d1, . . . , dn). We describe the configuration for random regular graphs

[419], as we use it in Chapter 3. We follow the configuration model of Bollobás [77] in

our proofs, see [223] for further details. Let W = [2m = rn] be our set of configuration

points and let Wi = [(i− 1)r + 1, ir], i ∈ [n], partition W . The function φ : W → [n] is

defined by w ∈Wφ(w). Given a pairing F (i.e. a partition of W into m pairs) we obtain

a (multi-)graph GF with vertex set [n] and an edge (φ(u), φ(v)) for each {u, v} ∈ F .

Choosing a pairing F uniformly at random from among all possible pairings ΩW of

the points of W produces a random (multi-)graph GF . Each r-regular simple graph G

on vertex set [n] is equally likely to be generated as GF . Here, simple means without

loops of multiple edges. Furthermore, if r = O(1) then GF is simple with a probability

bounded below by a positive value independent of n. Therefore, any event that occurs

whp in GF will also occur whp in G(n, r).
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1.1.2.3 Preferential attachment

The configuration model can be used to generate graphs with power law degree distri-

butions. Assuming that d = (d1, . . . , dn) is a graphical sequence following a power law

distribution, each vertex i obtains di configuration points. Then a pairing F results in

a multigraph with degree sequence d. However, this mechanism does not provide any

insights on how a dynamic network that evolves over time exhibits a power law degree

distribution.

Albert-László Barabási and Réka Albert in a highly influential paper [50] provide a

dynamic mechanism that explains how power law degree sequences emerge in real-world

networks. We present a generalized version of their model with two parameters m

and δ ≥ −1 as presented in §8.1 in [403]. The original version [50] is a subcase of

this general model for δ = 0. The model generates a sequence of graphs which we

denote by {PAt(m, δ)}+∞t=1 which for every t yields a graph with t vertices and mt

edges. We define the model for m = 1. The model PAt(m, δ) where m ≥ 2 is reduced

to the case m = 1 by running the model PAmt(1, δ) and collapsing sequences of m

consecutive vertices. Let {v1, . . . , vt} be the set of vertices of PAt(m, δ) and let di(t) be

the degree of vertex vi at time t. Initially at time 1 the graph PA1(1, δ) consists of a

single vertex with a loop. The growth follows the following preferential rule. To obtain

PAt+1(1, δ) from PAt(1, δ) a new vertex with a single edge is added to the graph. This

edge chooses its second endpoint according to the following probability distribution.

With probability di(t)+δ
t(2+δ)+(1+δ) vertex vi is chosen, where i ∈ [t], and with the remaining

probability 1+δ
t(2+δ)+(1+δ) a self loop is created.

Define pk =
(

2 + δ
m

)
Γ(k+δ)Γ(m+2+δ+

δ
m )

Γ(m+δ)Γ(k+3+δ+
δ
m )

for k ≥ m where Γ(t) =
∫ +∞
0 xt−1e−xdx is the

Γ function and Pk(t) = 1
t

∑t
i=1 1(di(t) = k). Also, let Nk(t) = tPk(t). It turns out

that E [Nk(t)] ≈ pkt and that the degree sequence is strongly concentrated around its

expectation. Specifically, for any C > m
√

8 as t → +∞ the following concentration

inequality holds.

Pr
[
max

k
|Nk(t)− E [Nk(t)] | ≥ C

√
t log t

]
= o(1).

For the special case δ = 0,

pk =
2m(m + 1)

k(k + 1)(k + 2)
,
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namely the probability distribution follows a power law with slope 3, as pk ∼ k−3. It is

worth mentioning that the model of preferential attachment was introduced conceptually

by Barabási and Albert but it was Bollobás and Riordan with their collaborators who

formally defined and studied the model [79, 80]. Power law degree sequences can also

emerge with growth models based on optimization [157].

1.1.2.4 Kronecker graphs

Kronecker graphs [278, 279] are inspired by fractal theory [296]. There exist two versions

of Kronecker graphs, a deterministic and a randomized one. To define each one, we

remind the definition of the Kronecker product.

Definition 1.7. Given two matrices Am×n = (aij), Bm′×n′ = (bij), the Kronecker prod-

uct matrix Cmm′×nn′ is given by

C = A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 .

Deterministic Kronecker graphs are defined by a small initiator adjacency matrix K1

and the order k. A deterministic Kronecker graph of order k is defined by

K
(k)
1 = K1 ⊗ . . .⊗K1︸ ︷︷ ︸

k times

.

The stochastic Kronecker graphs use an initiator matrix with probabilities. The final

adjacency matrix is the outcome of a randomized rounding of the k-th order Kronecker

product of the initiator matrix. Kronecker graphs match several empirical properties

such as heavy-tailed degree distributions and triangles, low diameters, and also obeys

the densification power law. Most properties are analyzed in the deterministic case [282,

387]. Mahdian and Xu in an elegant paper studied stochastic Kronecker graphs. They

show a phase transition for the emergence of the giant component and for connectivity,

and prove that such graphs have constant diameters beyond the connectivity threshold

[294]. Two additional appealing features of Kronecker graphs is the existence of methods

to fit the parameters of the 2× 2 initiator matrix to a given graph and their generation

is embarassingly parallel.

Other popular models are the copying model [253, 262], the Cooper-Frieze model [123],

the Aiello-Chung-Lu model [19, 20], protean graphs [345] the Fabrikant-Koutsoupias-

Papadimitriou model [157], and the forest fire model [280].
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1.1.3 Triangles

Subgraphs play a central role in graph theory. It is not an exaggeration to claim that

studying subgraphs has been an active thread of research since the early days of graph

theory: Euler paths and cycles, Hamilton paths and cycles, matchings, cliques, neigh-

borhoods of vertices typically sketched via the degree sequence are special types of

subgraphs.

Among various subgraphs, triangles play a major role in network analysis. A triangle is

a clique of order 3. The number of triangles in a graph is a computationally expensive,

crucial graph statistic in complex network analysis, in random graph models and in

various important applications. Despite the fact that real-world networks tend to be

sparse in edges, they are dense in triangles. This observation implies that when two

vertices share a common neighbor, then it is more likely that they are/become connected.

For instance, it has been observed in the MSN Messenger social network that if two

people have a common contact it is 18 000 times more likely that they are connected

[10]. The transitivity of adjacency is striking in social networks and in other types of

networks too. There exist two processes that generate triangles in a social network:

homophily and transitivity. According to the former, people tend to choose friends with

similar characteristics to themselves (e.g., race, education) [409, 417] and according to

the latter friends of friends tend to become friends themselves [409]. We survey a wide

range of applications which rely on the number of triangles in a given graph.

Clustering Coefficients and Transitivity of a Graph: Despite the fact that Erdös-

Rényi graphs have a short diameter they do not model social networks well. Social

networks have many triangles. This was the main motivation of Watts and Strogatz

[412] in their influential paper to introduce clustering coefficients and the notion of

transitivity which we defined in a previous section.

Uncovering Hidden Thematic Structures: Eckmann and Moses [145] propose the

use of the clustering coefficient for detecting subsets of web pages with a common topic.

The key idea is that reciprocal links between pages indicate a mutual recognition/respect

and then triangles due to their transitivity properties can be used to extend “seeds” to

larger subsets of vertices with similar thematic structure in the Web graph. In other

words, regions of the World Wide Web with high curvature indicate a common topic,

allowing the authors to extract useful meta-information. This idea has found more

applications, in natural language processing [138] and in bioinformatics [232, 348].

Exponential Random Graph Model: Frank and Strauss [176] proved under the

assumption that two edges are dependent only if they share a common vertex that the
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sufficient statistics for Markov graphs are the counts of triangles and stars. Wasserman

and Pattison [410] proposed the exponential random graph (ERG) model which gener-

alized the Markov graphs [347]. Triangles are frequently used as one of the sufficient

statistics of the ERG model and counting them is necessary for parameter estimation,

e.g., using Markov chain Monte Carlo (MCMC) procedures [68].

Spam Detection: Becchetti et al. [55] show that the distribution of triangles among

spam hosts and non-spam hosts can be used as a feature for classifying a given host as

spam or non-spam. The same result holds also for web pages, i.e., the spam and non-

spam triangle distributions differ at a detectable level using standard statistical tests

from each other.

Content Quality and Role Behavior Identification: Nowadays, there exist many

online forums where acknowledged scientists participate, e.g., MathOverflow, CStheory

Stackexchange and discuss problems of their fields. This yields significant information

for researchers. Several interesting questions arise such as which participants comment

on each other. This question including several others were studied in [414]. The number

of triangles that a user participates was shown to play a critical role in answering these

questions. For further applications in assesing the role behavior of users see [55].

Structural Balance and Status Theory: Balance theory appeared first in Heider’s

seminal work [210] and is based on the concept “the friend of my friend is my friend”,

“the enemy of my friend is my enemy” etc. [409]. To quantify this concept edges become

signed, i.e., there is a function c : E(G)→ {+,−}. If all triangles are positive, i.e., the

product of the signs of the edges is +, then the graph is balanced. Status theory is

based on interpreting a positive edge (u, v) as u having lower status than v, while the

negative edge (u, v) means that u regards v as having a lower status than himself/herself.

Recently, Leskovec et al.[283] have performed experiments to quantify which of the two

theories better apply to online social networks and predict signs of incoming links. Their

algorithms require counts of signed triangles in the graph.

Microscopic Evolution of networks: Leskovec et al. [281] present an extensive

experimental study of network evolution using detailed temportal information. One of

their findings is that as edges arrive in the network, they tend to close triangles, i.e.,

connect people with common friends.

Community Detection: Counting triangles is important as subroutine in community

detection algorithms. Berry et al. use triangle counting to deduce the edge support

measure in their community detection algorithm [65]. Gleich and Seshadhri [197] show

that heavy-tailed degree distributions and abundance in triangles imply that there exist

vertices which together with their neighbors form a low-conductance set, i.e., community.
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Motif Detection: Triangles are abudant not only in social networks but in biological

networks [2, 217]. This fact can be used e.g., to correlate the topological and functional

properties of protein interaction networks [217].

Triangular Connectivity [54]: Two vertices u, v are triangularly connected if there

is a sequence of triangles (∆1, . . . , ∆s) such that u is a vertex in the ∆1, v in ∆s and ∆i

shares at least one vertex with ∆i−1.

k-truss: The k-truss of a graph G [120] is the maximum subgraph of G where every

edge appears in at least k − 2 triangles.

Link recommendation: Triangle listing is used in link recommendation [393, 395].

CAD applications: Fudos and Hoffman [185] introduced a graph-constructive ap-

proach to solving systems of geometric constraints, a problem which arises frequently

in Computer-Aided design (CAD) applications. One of the steps of their algorithm

computes the number of triangles in an appropriately defined graph.

Given the large number of applications, there exists a lot of interest in developing efficient

triangle listing and counting algorithms.

1.1.3.1 Triangle counting methods

There exist exact and approximate triangle counting algorithms. It is worth noting that

for most of the applications described in Section 5.1 the exact number of triangles is

not crucial. Hence, approximate counting algorithms which are fast and output a high

quality estimate are desirable for the applications in which we are interested.

Exact Counting: Naive triangle counting by checking all triples of vertices takes O(n3)

units of time. The state of the art algorithm is due to Alon, Yuster and Zwick [25] and

runs in O(m
2ω

ω+1 ), where currently the fast matrix multiplication exponent ω is 2.3727

[416]. Thus, the Alon, Yuster, Zwick (AYZ) algorithm currently runs in O(m1.407)

time. It is worth mentioning that from a practical point of view algorithms based on

matrix multiplication are not used due to the prohibitive memory requirements. Even

for medium sized networks, i.e., networks with hundreds of thousands of edges, matrix-

multiplication based algorithms are not applicable. Itai and Rodeh in 1978 showed an

algorithm which finds a triangle in any graph in O(m
3
2 ) [220]. This algorithm can be

extended to list the set of triangles in the graph with the same time complexity. Chiba

and Nishizeki showed that triangles can be found in time O(mα(G)) where α(G) is the

arboricity of the graph. Since α(G) is at most O(
√

m) their algorithm runs in O(m3/2)

in the worst case [108]. For special types of graphs more efficient triangle counting
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algorithms exist. For instance in planar graphs, triangles can be found in O(n) time

[108, 220, 331].

Even if listing algorithms solve a more general problem than the counting one, they are

preferred in practice for large graphs, due to the smaller memory requirements compared

to the matrix multiplication based algorithms. Simple representative algorithms are the

node- and the edge-iterator algorithms. The former counts for each vertex v the number

of triangles tv it is involved in, i.e., the number of edges among its neighbors, whereas

the latter algorithm counts for each edge (i, j) the common neighbors of vertices i, j.

Both of these algorithms have the same asymptotic complexity O(mn), which in dense

graphs results in O(n3) time, the complexity of the naive counting algorithm. Practical

improvements over this family of algorithms have been achieved using various techniques,

such as hashing and sorting by the degree [269, 352].

Approximate Counting: On the approximate counting side, most of the triangle

counting algorithms have been developed in the streaming setting. In this scenario, the

graph is represented as a stream. Two main representations of a graph as a stream are

the edge stream and the incidence stream. In the former, edges arrive one at a time.

In the latter scenario all edges incident to the same vertex appear successively in the

stream. The ordering of the vertices is assumed to be arbitrary. A streaming algorithm

produces a (1 + ε) approximation of the number of triangles whp by making only a

constant number of passes over the stream. However, sampling algorithms developed in

the streaming literature can be applied in the setting where the graph fits in the memory

as well. Monte Carlo sampling techniques have been proposed to give a fast estimate

of the number of triangles. According to such an approach, a.k.a. naive sampling [351],

we choose three nodes at random repetitively and check if they form a triangle or not.

If one makes

r = log(
1
δ

)
1
ε2

(1 +
T0 + T1 + T2

T3
)

independent trials where Ti is the number of triples with i edges and outputs as the

estimate of triangles the random variable T ′
3 equaling to the fractions of triples picked

that form triangles times the total number of triples
(
n
3

)
, then

(1− ε)T3 < T ′
3 < (1 + ε)T3

with probability at least 1− δ. This is suitable only when T3 = o(n2).

In [47] the authors reduce the problem of triangle counting efficiently to estimating mo-

ments for a stream of node triples. Then, they use the Alon-Matias-Szegedy (AMS)

algorithms [28] to proceed. The key is that the triangle computation reduces to esti-

mating the zero-th, first and second frequency moments, which can be done efficiently.
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Furthermore, as the authors suggest their algorithm is efficient only on graphs with

Ω(n2/ log log n) triangles, i.e., triangle dense graphs as in the naive sampling. The AMS

algorithms are also used by [230], where simple sampling techniques are used, such as

choosing an edge from the stream at random and checking how many common neighbors

its two endpoints share considering the subsequent edges in the stream. Along the same

lines, Buriol et al. [96] proposed two space-bounded sampling algorithms to estimate

the number of triangles. Again, the underlying sampling procedures are simple. For

instance, in the case of the edge stream representation, they sample randomly an edge

and a node in the stream and check if they form a triangle. The three-pass algorithm

presented therein, counts in the first pass the number of edges, in the second pass it

samples uniformly at random an edge (i, j) and a node k ∈ V − {i, j} and in the third

pass it tests whether the edges (i, k), (k, j) are present in the stream. The number of

samples r needed to obtain an (1± ε)-approximation with probability 1− δ is

r = O

(
log
(1
δ

)T1 + 2T2 + 3T3

T3ε2

)
= O

(
log
(1
δ

)mn

tε2

)
.

Even if the term T0 in the nominator is missing1 compared to the naive sampling, the

graph has still to be fairly dense with respect to the number of triangles in order to

get a (1 + ±ε)-approximation whp. Buriol et al. [96] show how to turn the three-pass

algorithm into a single pass algorithm for the edge stream representation and similarly

they provide a three- and one-pass algorithm for the incidence stream representation.

Kane et al. show how to count other subgraphs in the streaming model [235]. In [55] the

semi-streaming model for counting triangles is introduced, which allows log n passes over

the edges. The key observation is that since counting triangles reduces to computing

the intersection of two sets, namely the induced neighborhoods of two adjacent nodes,

ideas from locality sensitivity hashing [91] are applicable to the problem.

Another line of work is based on linear algebraic arguments. Specifically, in the case of

“power-law” networks it was shown in [390] that the spectral counting of triangles can

be efficient due to their special spectral properties [113]. This idea was further extended

in [388] using the randomized Singular Value Decomposition (SVD) approximation al-

gorithm by [140]. More recently, Avron proposed a new approximate triangle counting

method based on a randomized algorithm for trace estimation [44].

Graph Sparsifiers: A sparsifier of a graph G(V,E, w) is a sparse graph H that is

similar to G in some useful notion. We discuss in the following the Benczúr-Karger cut

sparsifier [63, 64] and the Spielman-Srivastava spectral sparsifier [370].
1Notice that m(n− 2) = T1 + 2T2 + 3T3 and t = T3.
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Benczúr-Karger Sparsifier: Benczúr and Karger introduced in [64] the notion of cut

sparsification to accelerate cut algorithms whose running time depends on the num-

ber of edges. Using a non-uniform sampling scheme they show that given a graph

G(V,E, w) with |V | = n, |E| = m and a parameter ε there exists a graph H(V,E′, w′)

with O(n log (n)/ε2) edges such that the weight of every cut in H is within a factor of

(1 ± ε) of its weight in G. Furthermore, they provide a nearly-linear time algorithm

which constructs such a sparsifier. The key quantity used in the sampling scheme of

Benczúr and Karger is the strong connectivity c(u,v) of an edge (u, v) ∈ E [63, 64]. The

latter quantity is defined to be the maximum value k such that there is an induced

subgraph G0 of G containing both u and v, and every cut in G0 has weight at least k.

Spielman-Srivastava Sparsifier: In [370] Spielman and Teng introduced the notion of

a spectral sparsifier in order to strengthen the notion of a cut sparsifier. A quantity

that plays a key role in spectral sparsifiers is the effective resistance. The term effective

resistance comes from electrical network analysis, see Chapter IX in [76]. In a nutshell,

let G(V,E, w) be a weighted graph with vertex set V , edge set E and weight function

w. We call the weight w(e) resistance of the edge e. We define the conductance r(e) of e

to be the inverse of the resistance w(e). Let G be the resistor network constructed from

G(V,E, w) by replacing each edge e with an electrical resistor whose electrical resistance

is w(e). Typically, in G vertices are called terminals, a convention that emphasizes the

electrical network perspective of a graph G. The effective resistance R(i, j) between two

vertices i, j is the electrical resistance measured across vertices i and j in G. Equivalently,

the effective resistance is the potential difference that appears across terminals i and j

when we apply a unit current source between them. Finally, the effective conductance

C(i, j) between two vertices i, j is defined as C(i, j) = R−1(i, j).

Spielman and Srivastava in their seminal work [370] proposed to include each edge of G

in the sparsifier H with probability proportional to its effective resistance. They provide

a nearly-linear time algorithm that produces spectral sparsifiers with O(n log n) edges.

1.1.4 Dense Subgraphs

Finding dense subgraphs is a key problem for many applications and the key primitive

for community detection. Here we review some important concepts of dense subgraphs.

Cliques: A clique is a subset of vertices all connected to each other. The problem

of finding whether there exists a clique of a given size in a graph is NP-complete. A

maximum clique of a graph is a clique of maximum possible size and its size is called

the graph’s clique number. Håstad [212] shows that, unless P = NP, there cannot be

any polynomial time algorithm that approximates the maximum clique within a factor
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better than O(n1−ε), for any ε > 0. Feige [161] proposes a polynomial-time algorithm

that finds a clique of size O(( log n
log log n)2

)
whenever the graph has a clique of size O( n

logb n
)

for any constant b. Based on this, an algorithm that approximates the maximum clique

problem within a factor of O(n (log log n)2

log n3

)
is also defined. A maximal clique is a clique

that is not a subset of any other clique. The Bron-Kerbosch algorithm [92] finds all

maximal cliques in a graph in exponential time. A near optimal time algorithm for

sparse graphs was introduced in [151].

Densest Subgraph: Let G(V,E) be a graph, |V | = n, |E| = m. The average degree

of a vertex set S ⊆ V is defined as 2e[S]
|S| , where e[S] is the number of edges in the

induced graph G[S]. The densest subgraph problem is to find a set S that maximizes

the average degree. The densest subgraph can be identified in polynomial time by solving

a maximum-flow problem [186, 199]. Charikar [104] shows that the greedy algorithm

proposed by Asashiro et al. [40] produces a 1
2 -approximation of the densest subgraph in

linear time. Both algorithms are efficient in terms of running times and scale to large

networks. In the case of directed graphs, the densest subgraph problem is solved in

polynomial time as well. Charikar [104] provided a linear programming approach which

requires the computation of n2 linear programs and a 1
2 -approximation algorithm which

runs in O(n3 + n2m) time. Khuller and Saha [248] improved significantly the state-

of-the art by providing an exact combinatorial algorithm and a fast 1
2 -approximation

algorithm which runs in O(n + m) time. Kannan and Vinay [241] gave a spectral

O(log n) approximation algorithm for a related notion of density.

In the classic definition of densest subgraph there is no size restriction of the output.

When restrictions on the size |S| are imposed, the problem becomes NP-hard. Specif-

ically, the DkS problem of finding the densest subgraph of k vertices is known to be

NP-hard [41]. For general k, Feige et al. [163] provide an approximation guarantee

of O(nα), where α < 1
3 . The greedy algorithm by Asahiro et al. [40] gives instead an

approximation factor of O(n
k ). Better approximation factors for specific values of k are

provided by algorithms based on semidefinite programming [162]. From the perspective

of (in)approximability, Khot [247] shows that there cannot exist any PTAS for the DkS

problem under a reasonable complexity assumption. Arora et al. [38] propose a PTAS

for the special case k = Ω(n) and m = Ω(n2). Finally, two variants of the DkS problem

are introduced by Andersen and Chellapilla [31]. The two problems ask for the set S

that maximizes the average degree subject to |S| ≤ k (DamkS) and |S| ≥ k (DalkS),

respectively. The authors provide constant factor approximation algorithms for both

DamkS and DalkS.

Quasi-cliques: A set of vertices S is an α-quasi-clique (or pseudo-clique) if e[S] ≥
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α
(|S|

2

)
, i.e., if the edge density of the induced subgraph G[S] exceeds a threshold pa-

rameter α ∈ (0, 1). Similarly to cliques, maximum quasi-cliques [333] and maximal

quasi-cliques [94] are quasi-cliques of maximum size and quasi-cliques not contained into

any other quasi-clique, respectively. Abello et al. [8] propose an algorithm for finding

a single maximal α-quasi-clique, while Uno [399] introduces an algorithm to enumerate

all α-quasi-cliques.

k-core, k-clubs, kd-cliques: A k-core is a maximal connected subgraph in which all

vertices have degree at least k. There exists a linear time algorithm for finding k-cores by

repeatedly removing the vertex having the smallest degree [53]. A k-club is a subgraph

whose diameter is at most k [306]. kd-cliques differ from k-clubs as the shortest paths

used to compute the diameter of a kd-clique are allowed to use vertices not belonging

to that kd-clique. All these clique variants are clearly conceptually different from the

optimal quasi-cliques we study in this paper.

1.1.5 Graph Partitioning

Graph partitioning is a fundamental computer science problem. As we discussed above,

the problem of finding communities is reduced to understanding the cut structure of

the graph. In distributed computing applications, the following version of the graph

partitioning problem plays a key role. The interested reader may consult the cited work

and the references therein for more information on the balanced graph partitioning

problem.

Balanced graph partitioning: The balanced graph partitioning problem is a classic

NP-hard problem of fundamental importance to parallel and distributed computing

[189]. The input of this problem is an undirected graph G(V,E) and an integer k ∈ Z+,

the output is a partition of the vertex set in k balanced parts such that the number

of edges across the clusters is minimized. Formally, the balance constraint is defined

by the imbalance parameter ν. Specifically, the (k, ν)-balanced graph partitioning asks

to divide the vertices of a graph in k clusters each of size at most ν n
k , where n is the

number of vertices in G. The case k = 2, ν = 1 is equivalent to the NP-hard mini-

mum bisection problem. Several approximation algorithms, e.g., [160], and heuristics,

e.g., [167, 246] exist for this problem. When ν = 1 + ε for any desired but fixed ε

there exists a O(ε−2 log1.5 n) approximation algorithm [258]. When ν = 2 there exists

an O(
√

log k log n) approximation algorithm based on semidefinite programming (SDP)

[260]. Due to the practical importance of k-partitioning there exist several heuristics,
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among which Metis [353] and its parallel version [354] stand out for their good perfor-

mance. Metis is widely used in many existing systems [242]. There are also heuristics

that improve efficiency and partition quality of Metis in a distributed system [349].

Streaming balanced graph partitioning:

Despite the large amount of work on the balanced graph partitioning problem, neither

state-of-the-art approximation algorithms nor heuristics such as Metis are well tailored

to the computational restrictions that the size of today’s graphs impose. Motivated

by this fact, Stanton and Kliot introduced the streaming balanced graph partitioning

problem, where the graph arrives in the stream and decisions about the partition need

to be taken with on the fly quickly [373]. Specifically, the vertices of the graph arrive

in a stream with the set of edges incident to them. When a vertex arrives, a partitioner

decides where to place the vertex. A vertex is never moved after it has been assigned to

one of the k machines. A realistic assumption that can be used in real-world streaming

graph partitioners is the existence of a small-sized buffer. Stanton and Kliot evaluate

partitioners with or without buffers. The work of [373] can be adapted to edge streams.

Stanton showed that streaming graph partitioning algorithms with a single pass under

an adversarial stream order cannot approximate the optimal cut size within o(n). The

same bound holds also for random stream orders [374]. Finally, Stanton [374] analyzes

two variants of well performing algorithms from [373] on random graphs. Specifically,

she proves that if the graph G is sampled according to the planted partition model,

then the two algorithms despite their similarity can perform differently and that one

of the two can recover the true partition whp, assuming that inter-, intra-cluster edge

probabilities are constant, and their gap is a large constant.

We conclude our brief exposition by outlining the differences between community detec-

tion methods and the balanced partitioning problem. One main difference is the lack of

restriction on the number of vertices per subset in the community detection problem. A

second difference is that in realistic applications the number of clusters in the balanced

partitioning problem is part of the input, as it represents the number of machines/clus-

ters available to distribute the graph. In community detection the number of clusters is

not known a priori, or even worse, their existence is not clear. It is worth mentioning

at this point that in Chapters 6 and 8 we introduce measures conceptually close to the

modularity measure [196, 314, 316]. Despite the popularity of modularity, few rigorous

results exist. Specifically, Brandes et al. proved that maximizing modularity is NP-

hard [88]. Approximation algorithms without theoretical guarantees whose performance

is evaluated in practice also exist [13].



Introduction 22

1.1.6 Big Graph Data Analytics

Except for the algorithmic ‘dasein’ of computer science, there is an engineering one too.

An important engineering law is Moore’s law. Gordon Moore based on observations

from 1958 until 1965 extrapolated that the number of components in integrated circuits

would keep doubling for at least until 1975 [308]. It is remarkable that Moore’s prediction

remains (more or less) valid since then. However, as we are approaching the end of its

validity, it is becoming clear that in order to perform demanding computational tasks,

we need more than one machine. At the same time, input size increases. Currently, the

growth rate is unprecedented. Eron Kelly, the general manager of product marketing

for Microsoft SQL Server, predicts that as humankind we will generate more data as

humankind than we generated in the previous 5,000 years [7]. The term big data describes

collections of large and complex datasets which are difficult to manipulate and process

using traditional tools. Mainly, for these two reasons, i.e., hardware reaching its limits

and big data, parallel and distributed computing are the de facto solutions for processing

large scale data. For this reason, there exists a lot of interest in developing efficient graph

processing systems. Popular graph processing platforms are Pregel [295] and its open-

source version Apache Giraph that build on MapReduce , and GraphLab [291]. It is

worth mentioning that for dynamic graphs there exist other platforms which are suitable

for stream/micro-batch processing, such as Twitter’s Storm [6].

In the following we discuss the details of MapReduce [130], which we use in this

dissertation as the underlying distributed system to develop efficient large-scale graph

processing algorithms and systems.

1.1.6.1 MapReduce Basics

While the PRAM model [229] and the bulk-synchronous parallel model (BSP) [400] are

powerful models, MapReduce has largely “taken over” both industry and academia

[4]. In few words, this success is due to two reasons: first, MapReduce is a simple

and powerful programming model which makes the programmer’s life easy. Secondly,

MapReduce is publicly available via its open source version Hadoop. MapReduce

was introduced in [130] by Google, one of the largest users of multiple processor com-

puting in the world, for facilitating the development of scalable and fault tolerant ap-

plications. In the MapReduce paradigm, a parallel computation is defined on a set of

values and consists of a series of map, shuffle and reduce steps. Let (x1, . . . , xn) be the

set of values, m denote the mapping function which takes a value x and returns a pair

of a key k and a value u and r the reduce function.
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1. In the map step a mapping function m is applied to a value xi and a pair (ki, ui)

of a key ki and a value ui is generated.

2. The shuffle step starts upon having mapped all values xi for i = 1 to n to pairs.

In this step, a set of lists is produced using the key-value pairs generated from the

map step with an important feature. Each list is characterized by the key k and

has the form Lk = {k : u1, .., uj(k)} if and only if there exists a pair (k, ui) for i = 1

to j.

3. Finally in the reduce step, the reduce function r is applied to the lists generated

from the shuffle step to produce the set of values (w1, w2, . . .).

To illustrate the aforementioned abstract concepts consider the problem of counting how

many times each word in a given document appears. The set of values is the “bag-of-

words” appearing in the document. For example, if the document is the sentence “The

dog runs in the forest”, then {x1, x2, x3, x4, x5, x6} = { the, dog, runs, in, the, forest}.
One convenient choice for the MapReduce functions is the following and results in the

following steps: The map function m will map a value x to a pair of a key and a value.

A convenient choice for m is something close to the identity map. Specifically, we choose

m(x) = (x, $), where we assume that the dollar sign $ an especially reserved symbol.

The shuffle step for our small example will produce the following set of lists: (the:,),

(dog:$), (runs:$), (in:$), (runs:$), (forest:$) The reduce function r will process each list

defined by each different word appearing in the document by counting the number of

dollar signs $. This number will also be the count of times that specific word appears

in the text.

Hadoop implements MapReduce and was originally created by Doug Cutting. Even

if Hadoop is well known for MapReduce it is actually a collection of subprojects that

are closely related to distributed computing. For example HDFS (Hadoop filesystem)

is a distributed filesystem that provides high throughput access to application data and

HBase is a scalable, distributed database that supports structured data storage for large

tables (column-oriented database). Another subproject is Pig, which is a high-level

data-flow language and execution framework for parallel computation [190]. Pig runs on

HDFS and MapReduce. For more details and other subprojects, the interested reader

can visit the website that hosts the Hadoop project [4].

1.2 Computational Cancer Biology

Human cancer is caused by the accumulation of genetic alternations in cells [43, 413]. It is

a complex phenomenon often characterized by the successive acquisition of combinations
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of genetic aberrations that result in malfunction or disregulation of genes. Finding driver

genetic mutations, i.e., mutations which confer growth advantage on the cells carrying

them and have been positively selected during the evolution of the cancer and uncovering

their temporal sequence have been central goals of cancer research the last decades [376].

In this Section we review three problems arising in computational cancer biology. In

Section 1.2.1 we present background on a data denoising problem. In Section 1.2.3 we

review oncogenetic trees, a popular model for oncogenesis. Finally, in Section 1.2.2 we

discuss the problem of discovering cancer subtypes.

1.2.1 Denoising array-based Comparative Genomic Hybridization (aCGH)

data

There are many forms of chromosome aberration that can contribute to cancer devel-

opment, including polyploidy, aneuploidy, interstitial deletion, reciprocal translocation,

non-reciprocal translocation, as well as amplification, again with several different types

of the latter (e.g., double minutes, HSR and distributed insertions [23]). Identifying

the specific recurring aberrations, or sequences of aberrations, that characterize par-

ticular cancers provides important clues about the genetic basis of tumor development

and possible targets for diagnostics or therapeutics. Many other genetic diseases are

also characterized by gain or loss of genetic regions, such as Down Syndrome (trisomy

21) [275], Cri du Chat (5p deletion) [276], and Prader-Willi syndrome (deletion of 15q11-

13) [98] and recent evidence has begun to suggest that inherited copy number variations

are far more common and more important to human health than had been suspected

just a few years ago [424]. These facts have created a need for methods for assessing

DNA copy number variations in individual organisms or tissues.

In Chapter 10, we focus specifically on array-based comparative genomic hybridization

(aCGH) [70, 231, 341, 342], a method for copy number assessment using DNA microar-

rays that remains, for the moment, the leading approach for high-throughput typing

of copy number abnormalities. The technique of aCGH is schematically represented in

Figure 1.2. A test and a reference DNA sample are differentially labeled and hybridized

to a microarray and the ratios of their fluorescence intensities is measured for each spot.

A typical output of this process is shown in Figure 1.2 (3), where the genomic profile

of the cell line GM05296 [365] is shown for each chromosome. The x-axis corresponds

to the genomic position and the y-axis corresponds to a noisy measurement of the ratio

log2
T
R for each genomic position, typically referred to as “probe” by biologists. For

healthy diploid organisms, R=2 and T is the DNA copy number we want to infer from

the noisy measurements. For more details on the use of aCGH to detect different types

of chromosomal aberrations, see [23].
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Figure 1.2: Schematic representation of array CGH. Genomic DNA from two cell
populations (1) is differentially labeled and hybridized in a microarray (2). Typically
the reference DNA comes from a normal subject. For humans this means that the
reference DNA comes from a normal diploid genome. The ratios on each spot are
measured and normalised so that the median log2 ratio is zero. The final result is an
ordered tuple containing values of the fluorescent ratios in each genomic position per
each chromosome. This is shown in (3) where we see the genomic profile of the cell line
GM05296 [365]. The problem of denoising array CGH data is to infer the true DNA
copy number T per genomic position from a set of noisy measurements of the quantity

log2
T
R , where R=2 for normal diploid humans.

Converting raw aCGH log fluorescence ratios into discrete DNA copy numbers is an

important but non-trivial problem. Finding DNA regions that consistently exhibit chro-

mosomal losses or gains in cancers provides a crucial means for locating the specific

genes involved in development of different cancer types. It is therefore important to dis-

tinguish, when a probe shows unusually high or low fluorescence, whether that aberrant

signal reflects experimental noise or a probe that is truly found in a segment of DNA

that is gained or lost. Furthermore, successful discretization of array CGH data is cru-

cial for understanding the process of cancer evolution, since discrete inputs are required

for a large family of successful evolution algorithms, e.g., [132, 134]. It is worth noting

that manual annotation of such regions, even if possible [365], is tedious and prone to

mistakes due to several sources of noise (impurity of test sample, noise from array CGH

method, etc.). A well-established observation that we use in Chapter 10 is that near-by

probes tend to have the similar DNA copy number.

Many algorithms and objective functions have been proposed for the problem of dis-

cretizing and segmenting aCGH data. Many methods, starting with [178], treat aCGH

segmentation as a hidden Markov model (HMM) inference problem. The HMM ap-

proach has since been extended in various ways, e.g., through the use of Bayesian HMMs



Introduction 26

[206], incorporation of prior knowledge of locations of DNA copy number polymor-

phisms [362], and the use of Kalman filters [363]. Other approaches include wavelet de-

compositions [214], quantile regression [147], expectation-maximization in combination

with edge-filtering [310], genetic algorithms [228], clustering-based methods [408, 421],

variants on Lasso regression [215, 379], and various problem-specific Bayesian [51], like-

lihood [216], and other statisical models [286]. A dynamic programming approach, in

combination with expectation maximimization, has been previously used by Picard et

al. [340]. In [263] and [415] an extensive experimental analysis of available methods has

been conducted. Two methods stand out as the leading approaches in practice. One of

these top methods is CGHseg [339], which assumes that a given CGH profile is a Gaus-

sian process whose distribution parameters are affected by abrupt changes at unknown

coordinates/breakpoints. The other method which stands out for its performance is Cir-

cular Binary Segmentation [321] (CBS), a modification of binary segmentation, originally

proposed by Sen and Srivastava [360], which uses a statistical comparison of mean ex-

pressions of adjacent windows of nearby probes to identify possible breakpoints between

segments combined with a greedy algorithm to locally optimize breakpoint positions.

1.2.2 Cancer subtypes

Genomic studies have dramatically improved our understanding of the biology of tumor

formation and treatment. In part this has been accomplished by harnessing tools that

profile the genes and proteins in tumor cells, revealing previously indistinguishable tumor

subtypes that are likely to exhibit distinct sensitivities to treatment methods [200, 338].

As these tumor subtypes are uncovered, it becomes possible to develop novel therapeutics

more specifically targeted to the particular genetic defects that cause each cancer [42,

71, 336]. While recent advances have had a profound impact on our understanding of

tumor biology, the limits of our understanding of the molecular nature of cancer obstruct

the burgeoning efforts in “targeted therapeutics” development. These limitations are

apparent in the high failure rate of the discovery pipeline for novel cancer therapeutics

[233] as well as in the continuing difficulty of predicting which patients will respond

to a given therapeutic. A striking example is the fact that trastuzumab, the targeted

therapeutic developed to treat HER2-amplified breast cancers, is ineffective in many

patients who have HER2-overexpressing tumors and yet effective in some who do not

[326]. Furthermore, subtypes typically remain poorly defined — e.g., the “basal-like”

breast cancer subtype, for which different studies have inferred very distinct genetic

signatures [338, 367] — and yet many patients do not fall into any known subtype. Our

belief, then, is that clinical treatment of cancer will reap considerable benefit from the

identification of new cancer subtypes and genetic signatures.
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One promising approach for better elucidating the common mutational patterns by which

tumors develop is to recognize that tumor development is an evolutionary process and

apply phylogenetic methods to tumor data to reveal these evolutionary relationships.

Much of the work on tumor evolution models flows from the seminal efforts of [131] on

inferring oncogenetic trees from comparative genomic hybridization (aCGH) profiles of

tumor cells. A strength in this model stems from the extraction of ancestral structure

from many probe sites per tumor, potentially utilizing measurements of the expression

or copy number changes across the entire genome. However, this comes at the cost of

overlooking the diversity of cell populations within tumors, which can provide important

clues to tumor progression but are conflated with one another in tissue-wide assays like

aCGH. The cell-by-cell approaches, such as [337, 361], use this heterogeneity informa-

tion but at the cost of allowing only a small number of probes per cell. Schwartz and

Shackney [358] proposed bridging the gap between these two methodologies by com-

putationally inferring cell populations from tissue-wide gene expression samples. This

inference was accomplished through “geometric unmixing,” a mathematical formalism

of the problem of separating components of mixed samples in which each observation is

presumed to be an unknown convex combination2 of several hidden fundamental com-

ponents. Other approaches to inferring common pathways include mixture models of

oncogenetic trees [58], PCA-based methods [218], conjunctive Bayesian networks [191]

and clustering [288].

Unmixing falls into the class of methods that seek to recover a set of pure sources

from a set of mixed observations. Analogous problems have been coined “the cocktail

problem,” “blind source separation,” and “component analysis” and various communi-

ties have formalized a collection of models with distinct statistical assumptions. In a

broad sense, the classical approach of principal component analysis (PCA) [335] seeks

to factor the data under the constraint that, collectively, the fundamental components

form an orthonormal system. Independent component analysis (ICA) [121] seeks a set

of statistically independent fundamental components. These methods, and their ilk,

have been extended to represent non-linear data distributions through the use of kernel

methods (see [355, 356] for details), which often confound modeling with black-box data

transformations. Both PCA and ICA break down as pure source separators when the

sources exhibit a modest degree of correlation. Collectively, these methods place strong

independence constraints on the fundamental components that are unlikely to hold for

tumor samples, where we expect components to correspond to closely related cell states.
2A point p is a convex combination combination of basis points v0, ..., vk if and only if the constraints

p =
Pk

i=0 αivi,
P

i αi = 1 and ∀i : αi ≥ 0 obtain. The fractions αi determine a mixture over the basis
points {vi} that produce the location p.
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Extracting multiple correlated fundamental components, has motivated the develop-

ment of new methods for unmixing genetic data. Similar unmixing methods were first

developed for tumor samples by Billheimer and colleagues [155] to improve the power

of statistical tests on tumor samples in the presence of contaminating stromal cells.

Similarly, a hidden Markov model approach to unmixing was developed by Lamy et

al. [266] to correct for stromal contamination in DNA copy number data. These re-

cent advances demonstrate the feasibility of unmixing-based approaches for separating

cell sub-populations in tumor data. Outside the bioinformatics community, geometric

unmixing has been successfully applied in the geo-sciences [146] and in hyper-spectral

image analysis [102].

The recent work by [358] applied the hard geometric unmixing model to gene expression

data with the goal of recovering expression signatures of tumor cell subtypes, with the

specific goal of facilitating phylogenetic analysis of tumors. The results showed promise

in identifying meaningful sub-populations and improving phylogenetic inferences.

1.2.3 Oncogenetic trees

Among the triumphs of cancer research stands the breakthrough work of Vogelstein

and his collaborators [159, 405] which provides significant insight into the evolution of

colorectal cancer. Specifically, the so-called “Vogelgram” models colorectal tumorige-

nesis as a linear accumulation of certain genetic events. Few years later, Desper et

al. [133] considered more general evolutionary models compared to the “Vogelgram”

and presented one of the first theoretical approaches to the problem [43], the so-called

oncogenetic trees. Before we provide a description of oncogenetic trees which are the

focus of our work, we would like to emphasize that since then a lot of research work has

followed from several groups of researchers, influenced by the seminal work of Desper

et al. [133]. Currently there exists a wealth of methods that infer evolutionary models

from microarray-based data such as gene expression and array Comparative Genome Hy-

bridization (aCGH) data: distance based oncogenetic trees [135], maximum likelihood

oncogenetic trees [406], hidden variable oncogenetic trees [380], conjunctive Bayesian

networks [59] and their extensions [56, 192], mixture of trees [57]. The interested reader

is urged to read the surveys of Attolini et al. [43] and Hainke et al. [207] and the refer-

ences therein on established progression modeling methods. Furthermore, oncogenetic

trees have successfully shed light into many types of cancer such as renal cancer [133],

hepatic cancer [289] and head and neck squamous cell carcinomas [215].
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An oncogenetic tree is a rooted directed tree3. The root represents the healthy state of

tissue with no mutations. Any other vertex v ∈ V represents a mutation. Each edge

represents a “cause-and-effect” relationships. Specifically, for a mutation represented by

vertex v to occur, all the mutations corresponding to vertices that lie on the directed

path from the root to v must be present in the tumor. In other words, if two mutations

u, v are connected by an edge (u, v) then v cannot occur if u has not occured. The

edges are labeled with probabilities. Each tumor corresponds to a rooted subtree of the

oncogenetic tree and the probability of occurence is determined as described by [133].

Desper et al. provide an algorithm that finds a likely oncogenetic tree that fits the

observed data.

1.3 Thesis Overview

In this Section we motivate our work and provide an overview of this dissertation.

Rainbow Connectivity (Chapter 3)

Connectivity is a fundamental graph theoretic property [83]. The most well-studied

connectivity concept asks for the minimum number of vertices or edges which need to

be removed in order to disconnect the graph. However, there exist other graph theoretic

concepts that strengthen the connectivity concept: imposing bounds on the diameter,

existence of edge disjoint spanning trees etc. In 2006 Chartrand et al. [105] defined

the concept of rainbow connectivity, also referred as rainbow connection. We prefer to

provide two motivating examples rather than the exact definition which is found in

Chapter Rainbow Connectivity of Sparse Random Graphs.

Suppose we wish to route messages in a cellular network G, between any two vertices

in a pipeline, and require that each link on the route between the vertices (namely,

each edge on the path) is assigned a distinct channel (e.g., a distinct frequency). The

minimum number of distinct channels we need to use is the rainbow connectivity of G.

Another motivating example is related to securing communication between government

agencies [285]. The Department of Homeland Security of USA was created in 2003 in

response to the weaknesses discovered in the secure transfer of classified information after

the September 11, 2001 terrorist attacks. Ericksen [154] observed that because of the

unexpected aftermath law enforcement and intelligence agencies could not communicate.

Given that this situation could not have been easily predicted, the technologies utilized

were separate entities and prohibited shared access, meaning that there was no way for
3Typically, the term tree is reserved for the undirected case and the term branching for the directed

case. In the context of oncogenetic trees, we consistently use the term tree for a directed tree as in [133].
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officers and agents to cross check information between various organizations. While the

information needs to be protected since it relates to national security, there must also

be procedures that permit access between appropriate parties. This twofold issue can

be addressed by assigning information transfer paths between agencies which may have

other agencies as intermediaries while requiring a large enough number of passwords and

firewalls that is prohibitive to intruders, yet small enough to manage. Equivalently, this

number has to be large enough so that one or more paths between every pair of agencies

have no password repeated. Rainbow connectivity arises as the natural answer to the

following question: what is the minimum number of passwords or firewalls needed that

allows at least one path between every two agencies so that the passwords along each

path are distinct?

Contributions:

In [182, 184] we prove the following results on the rainbow connectivity of sparse random

graphs.

• For an Erdös-Rényi random graph G = G(n, p) at the connectivity threshold, i.e.,

p = log n+ω
n , ω → ∞, ω = o(log n), we prove Theorem 3.1 which characterizes

optimally the rainbow connectivity whp. Our proof is constructive in the following

sense: a random coloring is whp a valid rainbow coloring.

• For random regular graphs [419] we prove Theorem 3.2. The proof of Theorem 3.2

is still constructive, but requires an unexpected use of a Markov Chain Monte Carlo

algorithm.

Random Apollonian Graphs (Chapter 4)

In Chapter 4 we analyze Random Apollonian Networks (RANs) [426], a popular random

graph model for real-world networks. Compared to other models, RANs generate planar

graphs. This makes RANs special for at least two reasons. Firstly, planar graphs form

an important family of graphs for various reasons. They model several significant types

of spatial real-world networks such as power grids, water distribution networks and road

networks. For instance, a street network has edges corresponding to roads and vertices

represent roads’ intersections and endpoints. Since edges intersect only at vertices,

street networks are planar. It is worth mentioning that planarity of street networks

is almost always violated in practice because of bridges. However planarity is a good

approximation [265]. It has been observed through various experimental studies that

real-world planar graphs have distinct features [99, 111, 116, 225, 265] from random

planar graphs [300]. One such feature is that the degrees are skewed, obeying a power

law degree distribution [265]. A recent paper which surveys properties and models of

real-world planar graphs is [52]. Despite the outstanding amount of work on modeling
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real-world networks with random graph models, e.g., [19, 50, 84, 85, 143, 157, 172, 173,

270, 284, 294], real-world planar graphs have been overlooked. Secondly, real-world

networks tend to have small vertex separators. By the planar separator theorem [287]

and the planarity of RANs, this property is satisfied. This should be seen in constrast

to the popular preferential attachment model [50] where the generated graph is an

expander.

Contributions:

In [179, 183] we perform the first rigorous analysis of RANs.

• We prove in Theorem 4.1 tight results on the degree sequence of RANs. Previous

results were weaker or even erroneous, see [420, 425].

• We prove in Theorem 4.3 tight asymptotic expressions for the top-k largest degrees,

where k is constant.

• We provide in Theorem 4.4 tight asymptotic expressions for the top-k largest eigen-

values, where k is constant.

• We provide a simple first moment argument that upper-bounds the asymptotic

diameter growth. By observing a bijection between RANs and random ternary

trees, we are able to prove Theorem 4.5, a refined upper bound on the diameter.

Triangle Counting (Chapter 5)

We motivated the importance of triangles in real-world networks in Section 1.1.3.

Contributions

In Chapter 5 we present results from our work [257, 311, 325, 396].

• In Section 5.2 we present a randomized algorithm for approximately counting the

number of triangles in a graph G. The algorithm proceeds as follows: keep each edge

independently with probability p, enumerate the triangles in the sparsified graph G′

and return the number of triangles found in G′ multiplied by p−3. We prove that

under mild assumptions on G and p our algorithm returns a good approximation

for the number of triangles with high probability. We illustrate the efficiency of our

algorithm on various large real-world datasets where we achieve significant speedups.

Furthermore, we investigate the performance of existing sparsification procedures

namely the Spielman-Srivastava spectral sparsifier [370] and the the Benczúr-Karger

cut sparsifier [63, 64] and show that they are not optimal/suitable with respect to

triangle counting.
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• In Section 5.3 we extend the results from Section 5.2 by introducing a powerful

idea of Alon, Yuster and Zwick [25]. As a result, we propose a Monte Carlo al-

gorithm which approximates the true number of triangles within accuracy (1+ε)

and runs in O
(
m + m3/2 log n

tε2

)
time, where n, m, t, ε > 0 are the number of ver-

tices, edges, triangles and a small constant respectively. We extend our method

to the semi-streaming model [164] using three passes and a memory overhead of

O
(
m1/2 log n + m3/2 log n

tε2

)
. We propose a random projection based method for tri-

angle counting and provide a sufficient condition to obtain an estimate with low

variance.

• In Section 5.4 we present a new sampling approach to approximating the number

of triangles in a graph G(V,E), that significantly improves existing sampling ap-

proaches. Furthermore, it is easily implemented in parallel. The key idea of our

algorithm is to correlate the sampling of edges such that if two edges of a triangle

are sampled, the third edge is always sampled. Compared to Section 5.2, this sam-

pling decreases the degree of the multivariate polynomial that expresses the number

of sampled triangles. As a result, we are able to obtain more “aggressive” sampling

techniques compared to Section 5.2, while strong concentration results remain valid.

Densest Subgraphs (Chapter 6)

Extracting dense subgraphs from large graphs is a key primitive in a variety of appli-

cation domains [274]. In the Web graph, dense subgraphs may correspond to thematic

groups or even spam link farms, as observed by Gibson et al. [193]. In biology, finding

dense subgraphs can be used for discovering regulatory motifs in genomic DNA [177],

and finding correlated genes [267], and detecting transcriptional modules [156]. In the

financial domain, extracting dense subgraphs has been applied to finding price value mo-

tifs [141]. Other applications include graph compression [95], graph visualization [30],

reachability and distance query indexing [226], and finding stories and events in micro-

blogging streams [36].

Contributions In Chapter 6 we present results most of which are included in [385].

Our contributions are summarized as follows.

• We introduce a general framework for finding dense subgraphs, which subsumes

popular density functions. We provide theoretical insights into our framework by

showing that a large family of objectives are efficiently solvable but there also exist

subcases which are NP-hard.
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• Our framework provides a principled way to derive novel algorithms/heuristics

geared towards the requirements of the application of interest. As a special in-

stance of our general framework we introduce the problem of extracting optimal

quasi-clique, which in general is NP-hard.

• We design two efficient algorithms for extracting optimal quasi-cliques. The first one

is a greedy algorithm where the smallest-degree vertex is repeatedly removed from

the graph, and achieves an additive approximation error. The second algorithm is

a heuristic based on the local-search paradigm.

• For a shifted-version of our objective, we show that the problem can be approx-

imated within a constant factor of 0.796 using a semidefinite-programming algo-

rithm.

• We evaluate our efficient algorithms on numerous datasets, both synthetic and

real, showing that it produces high quality dense subgraphs. In particular, in the

synthetic data experiments, we plant a clique in Erdös-Rényi and in random power-

law graphs, and measure precision and recall of the methods in “recovering” the

planted clique: our method clearly outperforms the densest subgraph in this task.

We also develop applications of our method in data mining and bioinformatic tasks,

such as forming a successful team of domain experts and finding highly correlated

genes from a microarray dataset.

• Finally, motivated by real-world scenarios, we define and evaluate interesting vari-

ants of our original problem definition, such as (i) finding the top-k optimal quasi-

cliques, and (ii) finding optimal quasi-cliques that contain a given set of vertices.

Structure of the Web Graph (Chapter 7)

The Web graph describes the directed links between pages of the World Wide Web

(WWW) [82, 90]. It is a graph which occupies a special position among real-world

networks. The World Wide Web grew in a decentralized way, under the influence and

decision of multiple participants. Understanding the structure of WWW and developing

realistic models of evolution are two major research problems that have attracted a lot

of interest [81].

Contributions

In Chapter 7 we present results from our work [237, 239]. Our contributions can be

summarized as follows:

The key contributions of this Chapter are the following:

• We propose Hadi, a scalable algorithm to compute the radii and diameter of net-

work.
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• We analyze one of the largest public Web graphs, with several billions of nodes and

edges. We validate the small-world phenomenon and find several new structural

patterns.

FENNEL: Streaming Graph Partitioning for Massive Scale Graphs (Chap-

ter 8)

A key computational problem underlying all existing large-scale graph-processing plat-

forms is balanced graph partitioning. When the graph is partitioned, the sizes of the

partitions have to be balanced to exploit the speedup of parallel computing over dif-

ferent partitions. Furthermore, it is critical that the number of edges between distinct

partitions is small in order to minimize the communication cost incurred due to messages

exchanged between different partitions. Pregel [295], Apache Giraph [3], PEGASUS [236]

and GraphLab [291] use as a default partitioner hash partitioning on vertices, which es-

sentially corresponds to assigning each vertex to one of the k partitions uniformly at

random. This heuristic would balance the number of vertices per partition, but as it is

entirely oblivious to the graph structure, may well result in grossly suboptimal fraction

of edges cut. Balanced graph partitioning becomes even harder in the case of dynamic

graphs: whenever a new edge or a new vertex with its neighbors arrives, it has to be

assigned to one of partition parts.

Summary of our Contributions

In Chapter 8 we present results from our work [384]. Our contributions can be summa-

rized in the following points:

• We introduce a general framework for graph partitioning that relaxes the hard car-

dinality constraints on the number of vertices in a cluster [37, 260]. Our formulation

provides a unifying framework that subsumes two of the most popular heuristics

used for streaming balanced graph partitioning: the folklore heuristic of [344] which

places a vertex to the cluster with the fewest non-neighbors, and the degree-based

heuristic of [373], which serves as the current state-of-the-art method with respect

to performance.

• Our framework allows us to define formally the notion of interpolation between

between the non-neighbors heuristic [344] and the neighbors heuristic [373]. This

provides improved performance for the balanced partitioning problem in the stream-

ing setting.

• We evaluate our proposed streaming graph partitioning method, Fennel, on a wide

range of graph datasets, both real-world and synthetic graphs, showing that it

produces high quality graph partitions. Table 8.1 shows the performance of Fennel
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versus the best previously-known heuristic, which is the linear weighted degrees

[373], and the baseline Hash Partition of vertices. We observe that Fennel achieves

simultaneously significantly smaller fraction of edges cut and balanced cluster sizes.

• We also demonstrate the performance gains with respect to communication cost and

run time while running iterative computations over partitioned input graph data

in a distributed cluster of machines. Specifically, we evaluated Fennel and other

partitioning methods by computing PageRank in the graph processing platform

Apache Giraph. We observe significant gains with respect to the byte count among

different clusters and run time in comparison with the baseline Hash Partition of

vertices.

• Furthermore, modularity–a popular measure for community detection [196, 314,

316]– is also a special instance of our framework. We establish an approximation

algorithm for a shifted objective, achieving a guarantee of O(log(k)/k) for parti-

tioning into k clusters.

PEGASUS: A System for Large-Scale Graph Processing (Chapter 9)

As we discussed previously, an appealing solution to improve upon scalability is to

partition massive graphs into smaller partitions and then use a large distributed system

to process them. Designing and implementing efficient graph processing platforms is a

major problem.

Contributions

In Chapter 9 we present results from our work [236, 240]. Our main contributions are

the following:

• We introduce a generic framework which allows us to perform various important

graph mining tasks efficiently by generalizing the standard matrix-vector multipli-

cation (GIM-V).

• We implement PeGaSus, an optimized graph mining library. The source code is

available online at http://www.cs.cmu.edu/∼pegasus/.

• We analyze the performance of our system showing that it scales well to large-scale

graphs.

• We apply PeGaSus on several large, real-world networks and we obtain insights

into their structure.

Approximation Algorithms for Speeding up Dynamic Programming and De-

noising aCGH data (Chapter 10)

http://www.cs.cmu.edu/~pegasus/
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As we previously discussed in Section 1.2.1, a major computational problem in cancer

biology is assessing DNA copy number variations in individual organisms or tissues.

Contributions

In Chapter 10 we present results from our work [304, 397]. Our contributions can be

summarized as follows:

• We propose a new formulation of the array Comparative Genomic Hybridization

(aCGH) denoising problem. Specifically, based on the well-established observation

that near-by probes tend to have the same DNA copy number, we formulate the

problem of denoising aCGH data as the problem of approximating a signal P with

another signal F consisting of a few piecewise constant segments. Specifically, let

P = (P1, P2, . . . , Pn) ∈ Rn be the input signal -in our setting the sequence of the

noisy aCGH measurements- and let C be a constant. Our goal is to find a function

F : [n]→ R which optimizes the following objective function:

min
F

n∑
i=1

(Pi − Fi)2 + C × (|{i : Fi 6= Fi+1}|+ 1). (1.3)

• We solve the problem using a dynamic programming algorithm in O(n2) time.

• We provide a technique which approximates the optimal value of our objective

function within additive ε error and runs in Õ(n
4
3+δ log (U

ε )) time, where δ is an

arbitrarily small positive constant and U = max{
√

C, (|Pi|)i=1,...,n}.

• We provide a technique for approximate dynamic programming which solves the cor-

responding recurrence within a multiplicative factor of (1+ε) and runs in O(n log n/ε).

• We validate our proposed model on both synthetic and real data. Specifically, our

segmentations result in superior precision and recall compared to leading competi-

tors on benchmarks of synthetic data and real data from the Coriell cell lines. In

addition, we are able to find several novel markers not recorded in the benchmarks

but supported in the oncology literature.

Robust Unmixing of Tumor States in Array Comparative Genomic Hy-

bridization Data (Chapter 11)

We discussed in Section 1.2 the phenomenon of inter-tumor heterogeneity. We propose

a geometric approach robust to noise to the problem of detecting cancer subtypes.

Contributions

In Chapter 11 we present results from our work [382]. Our contributions can be sum-

marized as follows:
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• We introduce a novel method for finding cancer subtypes using tissue-wide DNA

copy number data as assessed by array comparative genomic hybridization (aCGH)

data.

• We develop efficient computational tools to solve our optimization problem which

is robust to noise.

• We apply our method to an aCGH data set taken from [312] and show that the

method identifies state sets corresponding to known subtypes consistent with much

of the analysis performed by the authors.

Perfect Reconstruction of Oncogenetic Trees (Chapter 12)

Human cancer is caused by the accumulation of genetic alternations in cells [43, 413].

Finding driver genetic mutations, i.e., mutations which confer growth advantage on the

cells carrying them and have been positively selected during the evolution of the cancer

and uncovering their temporal sequence have been central goals of cancer research the

last decades [376]. Among the triumphs of cancer research stands the breakthrough

work of Vogelstein and his collaborators [159, 405] which provides significant insight

into the evolution of colorectal cancer. Specifically, the so-called “Vogelgram” models

colorectal tumorigenesis as a linear accumulation of certain genetic events. Few years

later, Desper et al. [133] considered more general evolutionary models compared to the

“Vogelgram” and presented one of the first theoretical approaches to the problem [43],

the so-called oncogenetic trees.

Oncogenetic trees have been a successful tumorigenesis model for various cancer types.

For this reason understanding its properties is an important problem.

Contributions

In Chapter 12 we present results from our work [386]. Our main contribution is the

following:

• We provide necessary and sufficient conditions for the unique reconstruction of an

oncogenetic tree [133].

It is worth outlining that these conditions may be used to understand better the phe-

nomenon of intra-tumor heterogeneity [392].

Conclusion and Future Directions (Chapter 13)

Our work leaves numerous interesting problems open. In Chapter 13 we conclude and

provide several new research directions.



Chapter 2

Theoretical Preliminaries

In this Chapter we review theoretical preliminaries that are used in later Chapters.

2.1 Concentration of Measure Inequalities

The use of Chebyshev’s inequality is known as the second moment method.

Lemma 2.1 (Chebyshev’s Inequality [26]). Let X be a random variable, µ = E [X] , σ =√
Var [X]. For any positive λ > 0

Pr [|X − µ| ≥ λσ] ≤ 1
λ2

.

Chernoff bounds allow us to obtain strong concentration results, when applicable. We

use the following version in later Chapters.

Lemma 2.2 (Chernoff Inequality [26]). Let X1, X2, . . . , Xk be independently distributed

{0, 1} variables with E[Xi] = p. Then for any ε > 0, we have

Pr

[
|1
k

k∑
i=1

Xi − p| > εp

]
≤ 2e−ε2pk/2

The theory of discrete time martingales [26] will be the key to establish concentration

inequalities in our proofs for degree sequences.

38
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Lemma 2.3 (Azuma-Hoeffding inequality). Let λ > 0. Also, let (Xt)n
t=0 be a martingale

sequence with |Xt+1 −Xt| ≤ c for t = 0, . . . , n− 1.Then:

Pr [|Xn −X0| ≥ λ] ≤ exp
(
− λ2

2c2n

)
.

The Kim-Vu theorem is an important concentration result since it allows us to obtain

strong concentration when the polynomial of interest is not smooth. Specifically, for

the purposes of our work, let Y = Y (t1, . . . , tm) be a positive polynomial of m Boolean

variables [ti]i=1..m which are independent. A common task in combinatorics is to show

that Y is concentrated around its expected value. In the following we state the necessary

definitions and the main concentration result which we will use in our method. Y is

totally positive if all of its coefficients are non-negative variables. Y is homogeneous

if all of its monomials have the same degree and we call this value the degree of the

polynomial. Given any multi-index α = (α1, . . . , αm) ∈ Zm
+ , define the partial derivative

∂αY = ( ∂
∂t1

)α1 . . . ( ∂
∂tm

)αmY (t1, . . . , tm) and denote by |α| = α1 + · · ·αm the order of α.

For any order d ≥ 0, define Ed(Y ) = maxα:|α|=d E(∂αY ) and E≥d(Y ) = maxd′≥d Ed′(Y ).

Now, we refer to the main theorem of Kim and Vu of [249, §1.2] as phrased in Theorem

1.1 of [407] or as Theorem 1.36 of [378].

Theorem 2.4. There is a constant ck depending on k such that the following holds. Let

Y (t1, . . . , tm) be a totally positive polynomial of degree k, where ti can have arbitrary

distribution on the interval [0, 1]. Assume that:

E [Y ] ≥ E≥1(Y ) (2.1)

Then for any λ ≥ 1:

Pr
[
|Y − E [Y ]| ≥ ckλ

k(E [Y ] E≥1(Y ))1/2
]
≤ e−λ+(k−1) log m. (2.2)

Typically, when a polynomial Y is smooth, it is strongly concentrated. By smoothness

one usually means a small Lipschitz coefficient or in other words, when one changes the

value of one variable tj , the value Y changes no more than a constant. However, as stated

in [407] this is restrictive in many cases. Thus one can demand “average smoothness”

as defined in [407] which is quantified via the expectation of partial derivatives of any

order.
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2.2 Random Projections

A random projection x → Rx from Rd → Rk approximately preserves all Euclidean

distances. One version of the Johnson-Lindenstrauss lemma [227] is the following:

Lemma 2.5 (Johnson Lindenstrauss). Suppose x1, . . . , xn ∈ Rd and ε > 0 and take

k = Cε−2 log n. Define the random matrix R ∈ Rk×d by taking all Ri,j ∼ N(0, 1)

(standard gaussian) and independent. Then, with probability bounded below by a constant

the points yj = Rxj ∈ Rk satisfy

(1− ε)|xi − xj | ≤ |yi − yj | ≤ (1 + ε)|xi − xj |

for i, j = 1, 2, . . . , n where | · | represents the Euclidean norm.

2.3 Extremal Graph Theory

Hajnal and Szemerédi [208] proved in 1970 the following conjecture of Paul Erdös:

Theorem 2.6 (Hajnal-Szemerédi Theorem). Every graph with n vertices and maximum

vertex degree at most k is k + 1 colorable with all color classes of size b n
k+1c or d n

k+1e.

Ahlswede and Katona consider the following problem: which graph with a given number

of vertices n and a given number of edges m maximizes the number of edges in its line

graph L(G)? The problem is equivalent to maximizing the sum of squares of the degrees

of the vertices under the constraint that their sum equals twice the number of the edges.

The following theorem was given in [18] and answers this question.

Lemma 2.7 (Ahlswede-Katona theorem). The maximum value of the sum of the squares

of all vertex degrees
∑

v∈V (G) d(v)2 over the set of all graphs with n vertices and m edges

occurs at one or both of two special types of graphs, the quasi-star graph or the quasi-

complete graph.

For further progress on other questions related to the above optimization problem such

as when does the optimum occur at both graphs, see the work of Abrego, Fernández-

Merchant, Neubauer and Watkins [9].

2.4 Two useful lemmas

Two more useful lemmas we will use in later chapters follow.
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Lemma 2.8 (Lemma 3.1, [114]). Suppose that a sequence {at} satisfies the recurrence

at+1 = (1− bt

t + t1
)at + ct

for t ≥ t0. Furthermore suppose lim
t→+∞

bt = b > 0 and lim
t→+∞

ct = c. Then lim
t→+∞

at

t
exists

and

lim
t→+∞

at

t
=

c

1 + b
.

Graphs can be viewed as electrical networks. Given two vertices s, t ∈ V (G), we can

ensure an electrical current from s to t of value 1. The potential/voltage difference

between s and t is defined to be the effective resistance R(s, t). For further details the

interested reader should read [76]. The following theorem is due to Foster [175].

Theorem 2.9 (Foster’s theorem [175]). Let G be a connected graph of order n. Then

∑
(u,v)∈E(G)

R(u, v) = n− 1.

2.5 Semidefinite Bounds

Semidefinite programs are generalizations of linear programs which can be solved in poly-

nomial time using interior point methods. Semidefinite programming uses symmetric,

positive semidefinite matrices.

Definition 2.10. A matrix A ∈ Rn×n is positive semidefinite if and only if for all

x ∈ Rn, xT Ax ≥ 0.

We define the scalar product 〈A,B〉 of matrices A,BRn×n as 〈A,B〉 = Trace(BT A)

which is an inner product on the vector space of n×n matrices. A semidefinite program

is defined by the symmetric n× n matrices C,A1, . . . , Am and vector b ∈ Rm as follows:

max 〈C,X〉

subject to 〈Ai, X〉, for all i ∈ {1, ..,m}

and X � 0, X symmetric.

(2.3)
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Goemans and Williamson significantly advanced the field of approximation algorithms

by introducing a randomized rounding for the MAX-CUT problem[198]. The MAX-CUT

problem takes as input a graph G(V,E, w), w : E → R+ and asks for a non-empty set S

such that weight
∑

(i,j)∈E(G) wij of the cut (S, V \S) is maximized. This problem is NP-

hard. The first step of the Goemans-Williamson algorithm is a semidefinite relaxation

of the following quadratic integer program which is equivalent to MAX-CUT.

p∗ = max
1
2

∑
(i,j)∈E

wij(1− xixj) subject to x ∈ {−1, +1}n.

Notice that X = xxT is a symmetric, positive semidefinite matrix with rank 1 and

Xii = 1 for i ∈ [n]. The semidefinite relaxation relaxes the rank 1 condition as follows

s∗ = max
1
2

∑
(i,j)∈E

wij(1−Xij) subject to X � 0, X symmetric., Xii = 1 for all i.

The second step of the Goemans-Williamson algorithm consists of a randomized round-

ing procedure. Specifically, let X be the optimal solution of the semidefinite relaxation.

As X is positive semidefinite X = UT U where U ∈ Rd×n, d ≤ n. Let uj be the j-th

column of U . As Xii = 1 for all i, ||ui||2 = 1. Goemans and Williamson proposed

generating a random unit vector r ∈ Rd and letting S be the set of vertices which

correspond to columns of U such that uT
j r > 0. They proved that this algorithm pro-

vides a β-approximation where β > 0.87856. Their technique has been extended to the

MAX-k-CUT problem [181].

2.6 Speeding up Dynamic Programming

Dynamic programming is a powerful problem solving technique introduced by Bellman

[62] with numerous applications in biology, e.g., [211, 339, 411], in control theory, e.g.,

[66], in operations research and many other fields. Due to its importance, a lot of

research has focused on speeding up basic dynamic programming implementations. A

successful example of speeding up a naive dynamic programming implementation is

the computation of optimal binary search trees. Gilbert and Moore solved the problem

efficiently using dynamic programming [195]. Their algorithm runs in O(n3) time and for

several years this running time was considered to be tight. In 1971 Knuth [255] showed

that the same computation can be carried out in O(n2) time. This remarkable result
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was generalized by Frances Yao in [422, 423]. Specifically, Yao showed that this dynamic

programming speedup technique works for a large class of recurrences. She considered

the recurrence c(i, i) = 0, c(i, j) = mini<k≤j (c(i, k − 1) + c(k, j)) + w(i, j) for i < j

where the weight function w satisfies the quadrangle inequality (see Section 2.8) and

proved that the solution of this recurrence can be found in O(n2) time. Eppstein, Galil

and Giancarlo have considered similar recurrences where they showed that naive O(n2)

implementations of dynamic programming can run in O(n log n) time [148]. Larmore and

Schieber [268] further improved the running time, giving a linear time algorithm when

the weight function is concave. Klawe and Kleitman give in [251] an algorithm which

runs in O(nα(n)) time when the weight function is convex, where α(·) is the inverse

Ackermann function. Furthermore, Eppstein, Galil, Giancarlo and Italiano have also

explored the effect of sparsity [149, 150], another key concept in speeding up dynamic

programming. Aggarwal, Klawe, Moran, Shor, Wilber developed an algorithm, widely

known as the SMAWK algorithm, [16] which can compute in O(n) time the row maxima

of a totally monotone n× n matrix. The connection between the Knuth-Yao technique

and the SMAWK algorithm was made clear in [60], by showing that the Knuth-Yao

technique is a special case of the use of totally monotone matrices. The basic properties

which allow these speedups are the convexity or concavity of the weight function. Such

properties date back to Monge [307] and are well studied in the literature, see for example

[97].

Close to our work lies the work on histogram construction, an important problem for

database applications. Jagadish et al. [222] originally provided a simple dynamic pro-

gramming algorithm which runs in O(kn2) time, where k is the number of buckets and n

the input size and outputs the best V-optimal histogram. Guha, Koudas and Shim [204]

propose a (1 + ε) approximation algorithm which runs in linear time. Their algorithms

exploits monotonicity properties of the key quantities involved in the problem. Our

(1 + ε) approximation algorithm in Section 2.8 uses a decomposition technique similar

to theirs.

2.7 Reporting Points in a Halfspace

Let S be a set of points in Rd and let k denote the size of the output, i.e., the number

of points to be reported. Consider the problem of preprocessing S such that for any

halfspace query γ we can report efficiently whether the set S ∩ γ is empty or not. This

problem is a well studied special case of the more general range searching problem. For

an extensive survey see the work by Agarwal and Erickson [14]. For d = 2, the problem

has been solved optimally by Chazelle, Guibas and Lee [107]. For d = 3, Chazelle
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and Preparata in [106] gave a solution with nearly linear space and O(log n + k) query

time, while Aggarwal, Hansen and Leighton [17] gave a solution with a more expensive

preprocessing but O(n log n) space. When the number of dimensions is greater than

4, i.e., d ≥ 4, Clarkson and Shor [117] gave an algorithm that requires O(nbd/2c+ε)

preprocessing time and space, where ε is an arbitrarily small positive constant, but can

subsequently answer queries in O(log n + k) time. Matoušek in [299] provides improved

results on the problem, which are used by Agarwal, Eppstein, Matoušek [15] in order

to create dynamic data structures that trade off insertion and query times. We refer to

Theorem 2.1(iii) of their paper [15]:

Theorem 2.11 (Agarwal, Eppstein, Matoušek [15]). Given a set S of n points in Rd

where d ≥ 3 and a parameter m between n and nb
d
2c the halfspace range reporting problem

can be solved with the following performance: O( n
m1/bd/2c log n) query time, O(m1+ε)

space and preprocessing time, O(m1+ε/n) amortized update time.

Substituting for d = 4, m = n
4
3 we obtain the following corollary, which will be used as

a subroutine in our proposed method:

Corollary 2.12. Given a set S of n points in R4 the halfspace range reporting problem

can be solved with O(n
1
3 log n) query time, O(n

4
3+δ) space and preprocessing time, and

O(n
1
3+δ) update time, where δ is an arbitrarily small positive constant.

2.8 Monge Functions and Dynamic Programming

Here, we refer to one of the results in [268] which we use in Section 2.8 as a subroutine for

our proposed method. A function w defined on pairs of integer indices is Monge (concave)

if for any 4-tuple of indices i1 < i2 < i3 < i4, w(i1, i4) + w(i2, i3) ≥ w(i1, i3) + w(i2, i4).

Furthermore, we assume that f is a function such that the values f(aj) for all j are

easily evaluated. The following results holds:

Theorem 2.13 ([268]). Consider the one dimensional recurrence ai = minj<i{f(aj) +

w(j, i)} for i = 1, . . . , n, where the basis a0 is given. There exists an algorithm which

solves the recurrence online in O(n) time1.

1Thus, obtaining O(n) speedup compared to the straight-forward dynamic programming algorithm
which runs in O(n2) units of time.
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I Graphs and Networks



Chapter 3

Rainbow Connectivity of Sparse

Random Graphs

3.1 Introduction

Connectivity is a fundamental graph theoretic property. Recently, the concept of rainbow

connectivity was introduced by Chartrand et al. in [105]. An edge colored graph G is

rainbow edge connected if any two vertices are connected by a path whose edges have

distinct colors. The rainbow connectivity rc(G) of a connected graph G is the smallest

number of colors that are needed in order to make G rainbow edge connected. Notice,

that by definition a rainbow edge connected graph is also connected and furthermore any

connected graph has a trivial edge coloring that makes it rainbow edge connected, since

one may color the edges of a given spanning tree with distinct colors. Other basic facts

established in [105] are that rc(G) = 1 if and only if G is a clique and rc(G) = |V (G)|−1

if and only if G is a tree. Besides its theoretical interest, rainbow connectivity is also

of interest in applied settings, such as securing sensitive information [285], transfer and

networking [101].

The concept of rainbow connectivity has attracted the interest of various researchers.

Chartrand et al. [105] determine the rainbow connectivity of several special classes of

graphs, including multipartite graphs. Caro et al. [100] prove that for a connected graph

G with n vertices and minimum degree δ, the rainbow connectivity satisfies rc(G) ≤
log δ

δ n(1 + f(δ)), where f(δ) tends to zero as δ increases. The following simpler bound

was also proved in [100], rc(G) ≤ n4 log n+3
δ . Krivelevich and Yuster [261] removed the

logarithmic factor from the Caro et al. [100] upper bound. Specifically they proved that

rc(G) ≤ 20n
δ . Due to a construction of a graph with minimum degree δ and diameter

3n
δ+1 −

δ+7
δ+1 by Caro et al. [100], the best upper bound one can hope for is rc(G) ≤ 3n

δ .

46
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Chandran, Das, Rajendraprasad and Varma [103] have subsequently proved an upper

bound of 3n
δ+1 + 3, which is therefore essentially optimal.

As Caro et al. point out, the random graph setting poses several intriguing questions.

Specifically, let G = G(n, p) denote the binomial random graph on n vertices with edge

probability p [153]. Caro et al. [100] proved that p =
√

log n/n is the sharp threshold

for the property rc(G(n, p)) ≤ 2. He and Liang [209] studied further the rainbow

connectivity of random graphs. Specifically, they obtain the sharp threshold for the

property rc(G) ≤ d where d is constant. For further results and references we refer the

interested reader to the recent monograph of Li and Sun [285]. In this work we look at

the rainbow connectivity of the binomial graph at the connectivity threshold p = log n+ω
n

where ω = o(log n). This range of values for p poses problems that cannot be tackled

with the techniques developed in the aforementioned work. Rainbow connectivity has

not been studied in random regular graphs to the best of our knowledge.

Let

L =
log n

log log n
(3.1)

and let A ∼ B denote A = (1 + o(1))B as n→∞.

We establish the following theorems:

Theorem 3.1. Let G = G(n, p), p = log n+ω
n , ω → ∞, ω = o(log n). Also, let Z1 be the

number of vertices of degree 1 in G. Then, with high probability(whp)

rc(G) ∼ max {Z1, L} ,

It is known that whp the diameter of G(n, p) is asymptotic to L for p as in the above

range, see for example Theorem 10.17 of Bollobás [76]. Theorem 3.1 gives asymptotically

optimal results. Our next theorem is not quite as precise.

Theorem 3.2. Let G = G(n, r) be a random r-regular graph where r ≥ 3 is a fixed

integer. Then, whp

rc(G) =

O(log4 n) r = 3

O(log2θr n) r ≥ 4.

where θr = log(r−1)
log(r−2) .

All logarithms whose base is omitted are natural. It will be clear from our proofs that

the colorings in the above two theorems can be constructed in a low order polynomial

time. The second theorem, while weaker, contains an unexpected use of a Markov Chain

Monte-Carlo (MCMC) algorithm for randomly coloring a graph.
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The Chapter is organized as follows: After giving a sketch of our approach in Section

3.2, in Sections 3.3, 3.4 we prove Theorems 3.1, 3.2 respectively.

3.2 Sketch of approach

The general idea in the proofs of both theorems is as follows:

1. Randomly color the edges of the graph in question. For Theorem 3.1 we can (in

the main) use a uniformly random coloring. The distribution for Theorem 3.2 is a

little more complicated.

2. To prove that this works, we have to find, for each pair of vertices x, y, a large

collection of edge disjoint paths joining them. It will then be easy to argue that

at least one of these paths is rainbow colored.

3. To find these paths we pick a typical vertex x. We grow a regular tree Tx with

root x. The depth is chosen carefully. We argue that for a typical pair of vertices

x, y, many of the leaves of Tx and Ty can be put into 1-1 correspondence f so that

(i) the path Px from x to leaf v of Tx is rainbow colored, (ii) the path Py from y

to the leaf f(v) of Ty is rainbow colored and (iii) Px, Py do not share color.

4. We argue that from most of the leaves of Tx, Ty we can grow a tree of depth

approximately equal to half the diameter. These latter trees themselves contain

a bit more than n1/2 leaves. These can be constructed so that they are vertex

disjoint. Now we argue that each pair of trees, one associated with x and one

associated with y, are joined by an edge.

5. We now have, by construction, a large set of edge disjoint paths joining leaves v

of Tx to leaves f(v) of Ty. A simple estimation shows that whp for at least one

leaf v of Tx, the path from v to f(v) is rainbow colored and does not use a color

already used in the path from x to v in Tx or the path from y to f(v) in Ty.

We now fill in the details of both cases.

3.3 Proof of Theorem 3.1

Observe first that rc(G) ≥ max {Z1, diameter(G)}. First of all, each edge incident to a

vertex of degree one must have a distinct color. Just consider a path joining two such

vertices. Secondly, if the shortest distance between two vertices is ` then we need at
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least ` colors. Next observe that whp the diameter D is asymptotically equal to L, see

for example [76]. We break the proof of Theorem 3.1 into several lemmas.

Let a vertex be large if d(x) ≥ log n/100 and small otherwise.

Lemma 3.3. Whp, there do not exist two small vertices within distance at most 3L/4.

Proof.

Pr
[
∃x, y ∈ [n] : d(x), d(y) ≤ log n/100 and dist(x, y) ≤ 3L

4

]

≤
(

n

2

) 3L/4∑
k=1

nk−1pk

log n/100∑
i=0

(
n− 1− k

i

)
pi(1− p)n−1−k

2

≤
3L/4∑
k=1

n(2 log n)k

(
2
(

n

log n/100

)
plog n/100(1− p)n−1−log n/100

)2

≤
3L/4∑
k=1

n(2 log n)k
(

2(100e1+o(1))log n/100n−1+o(1)
)2

≤
3L/4∑
k=1

n(2 log n)kn−1.9

≤ 2n(2 log n)3L/4n−1.9

≤ n−.1.

We use the notation e[S] for the number of edges induced by a given set of vertices S.

Notice that if a set S satisfies e[S] ≥ s + t where t ≥ 1, the induced subgraph G[S] has

at least t + 1 cycles.

Lemma 3.4. Fix t ∈ Z+ and 0 < α < 1. Then, whp there does not exist a subset

S ⊆ [n], such that |S| ≤ αtL and e[S] ≥ |S|+ t.
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Figure 3.1: Structure of Lemma 3.6.

Proof. For convenience, let s = |S| be the cardinality of the set S.Then,

Pr [∃S : s ≤ αtL and e[S] ≥ s + t] ≤
∑

s≤αtL

(
n

s

)( (s
2

)
s + t

)
ps+t

≤
∑

s≤αtL

(ne

s

)s
(

es2p

2(s + t)

)s+t

≤
∑

s≤αtL

(e2+o(1) log n)s

(
es log n

n

)t

≤ αtL

(
(e2+o(1) log n)αL

(
eαt log2 n

n log log n

))t

<
1

n(1−α−o(1))t
.

Remark 3.5. Let T be a rooted tree of depth at most 4L/7 and let v be a vertex not

in T , but with b neighbors in T . Let S consist of v, the neighbors of v in T plus the

ancestors of these neighbors. Then |S| ≤ 4bL/7 + 1 ≤ 3bL/5 and e[S] = |S|+ b− 2. It

follows from the proof of Lemma 3.4 with α = 3/5 and t = 8, that we must have b ≤ 10

with probability 1− o(n−3).

Our next lemma shows the existence of the subgraph G′
x,y described next and shown

in Figure 3.1 for a given pair of vertices x, y. We first deal with paths between large

vertices.

Now let

ε = ε(n) = o(1) be such that
ε log log n

log 1/ε
→∞ and let k = εL. (3.2)

Here L is defined in (3.1) and we could take ε = 1/(log log n)1/2.

Lemma 3.6. Whp, for all pairs of large vertices x, y ∈ [n] there exists a subgraph

Gx,y(Vx,y, Ex,y) of G as shown in figure 3.1. The subgraph consists of two isomorphic
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Figure 3.2: Subgraph found in the proof of Lemma 3.6.

vertex disjoint trees Tx, Ty rooted at x, y each of depth k. Tx and Ty both have a branching

factor of log n/101. I.e. each vertex of Tx, Ty has at least log n/101 neighbors, excluding

its parent in the tree. Let the leaves of Tx be x1, x2, . . . , xτ where τ ≥ n4ε/5 and those of

Ty be y1, y2, . . . , yτ . Then yi = f(xi) where f is a natural isomporphism that preserves

the parent-child relation. Between each pair of leaves (xi, yi), i = 1, 2, . . . , τ there is a

path Pi of length (1 + 2ε)L. The paths Pi, i = 1, 2, . . . , τ are edge disjoint.

Proof. Because we have to do this for all pairs x, y, we note without further comment

that likely (resp. unlikely) events will be shown to occur with probability 1 − o(n−2)

(resp. o(n−2)).

To find the subgraph shown in Figure 3.1 we grow tree structures as shown in Figure 3.2.

Specifically, we first grow a tree from x using BFS until it reaches depth k. Then, we

grow a tree starting from y again using BFS until it reaches depth k. Finally, we grow

trees from the leaves of Tx and Ty using BFS for depth γ = (1
2 + ε)L. Now we analyze

these processes. Since the argument is the same we explain it in detail for Tx and we

outline the differences for the other trees. We use the notation D
(ρ)
i for the number of

vertices at depth i of the BFS tree rooted at ρ.

First we grow Tx. As we grow the tree via BFS from a vertex v at depth i to vertices at

depth i + 1 certain bad edges from v may point to vertices already in Tx. Remark 3.5

shows with probability 1− o(n−3) there can be at most 10 bad edges emanating from v.

Furthermore, Lemma 3.3 implies that there exists at most one vertex of degree less than
log n
100 at each level whp. Hence, we obtain the recursion
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D
(x)
i+1 ≥

(
log n

100
− 10

)
(D(x)

i − 1) ≥ log n

101
D

(x)
i . (3.3)

Therefore the number of leaves satisfies

D
(x)
k ≥

(
log n

101

)εL

≥ n4ε/5. (3.4)

We can make the branching factor exactly log n
101 by pruning. We do this so that the trees

Tx are isomorphic to each other.

With a similar argument

D
(y)
k ≥ n

4
5
ε. (3.5)

The only difference is that now we also say an edge is bad if the other endpoint is in Tx.

This immediately gives

D
(y)
i+1 ≥

(
log n

100
− 20

)
(D(y)

i − 1) ≥ log n

101
D

(y)
i

and the required conclusion (3.5).

Similarly, from each leaf xi ∈ Tx and yi ∈ Ty we grow trees T̂xi , T̂yi of depth γ =
(

1
2 +ε

)
L

using the same procedure and arguments as above. Remark 3.5 implies that there are

at most 20 edges from the vertex v being explored to vertices in any of the trees already

constructed. At most 10 to Tx plus any trees rooted at an xi and another 10 for y. The

numbers of leaves of each T̂xi now satisfies

D̂(xi)
γ ≥ log n

100

(
log n

101

)γ

≥ n
1
2
+ 4

5
ε.

Similarly for D̂
(yi)
γ .

Observe next that BFS does not condition the edges between the leaves Xi, Yi of the

trees T̂xi and T̂yi . I.e., we do not need to look at these edges in order to carry out

our construction. On the other hand we have conditioned on the occurence of certain

events to imply a certain growth rate. We handle this technicality as follows. We go

through the above construction and halt if ever we find that we cannot expand by the

required amount. Let A be the event that we do not halt the construction i.e. we fail

the conditions of Lemmas 3.3 or 3.4. We have Pr [A] = 1− o(1) and so,

Pr [∃i : e(Xi, Yi) = 0 | A] ≤ Pr [∃i : e(Xi, Yi) = 0]
Pr(A)

≤ 2n
4ε
5 (1− p)n1+8ε

5 ≤ n−nε
.
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Figure 3.3: Figure shows log n
101 -ary trees Tx, Ty. The two roots are shown respectively

at the center of the trees. In our thinking of the random coloring as an evolutionary
process, the green edges incident to x survive with probability 1, the red edges incident

to y with probability 1 − 1
q and all the other edges with probability p0 =

(
1 − 2k

q

)2

where k is the depth of both trees and q the number of available colors. Our analysis in
Lemma 3.6 using these probabilities gives a lower bound on the number of alive pairs

of leaves after coloring Tx, Ty from the root to the leaves respectively.

We conclude that whp there is always an edge between each Xi, Yi and thus a path of

length at most (1 + 2ε)L between each xi, yi.

Let q = (1 + 5ε)L be the number of available colors. We color the edges of G randomly.

We show that the probability of having a rainbow path between x, y in the subgraph

Gx,y of Figure 3.1 is at least 1− 1
n3 .

Lemma 3.7. Color each edge of G using one color at random from q available. Then, the

probability of having at least one rainbow path between two fixed large vertices x, y ∈ [n]

is at least 1− 1
n3 .

Proof. We show that the subgraph Gx,y contains such a path. We break our proof into

two steps:

Before we proceed, we provide certain necessary definitions. Think of the process of

coloring Tx, Ty as an evolutionary process that colors edges by starting from the two

roots x, f(x) = y until it reaches the leaves. In the following, we call a vertex u of Tx

(Ty) alive/living if the path P (x, u) (P (y, u)) from x (y) to u is rainbow, i.e., the edges

have received distinct colors. We call a pair of vertices {u, f(u)} alive, u ∈ Tx, f(u) ∈ Ty

if u, f(u) are both alive and the paths P (x, u), P (y, f(u)) share no color. Define Aj =

|{(u, f(u)) : (u, f(u)) is alive and depth(u) = j}| for j = 1, .., k.

• Step 1: Existence of at least n
4
5 ε living pairs of leaves
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Assume the pair of vertices {u, f(u)} is alive where u ∈ Tx, f(u) ∈ Ty. It is worth

noticing that u, f(u) have the same depth in their trees. We are interested in the number

of pairs of children {ui, f(ui)}i=1,..,log n/101 that will be alive after coloring the edges

from depth(u) to depth(u) + 1. A living pair {ui, f(ui)} by definition has the following

properties: edges (u, ui) ∈ E(Tx) and (f(u), f(ui)) ∈ E(Ty) receive two distinct colors,

which are different from the set of colors used in paths P (x, u) and P (y, f(u)). Notice

the latter set of colors has cardinality 2× depth(u) ≤ 2k.

Let Aj be the number of living pairs at depth j. We first bound the size of A1.

Pr
[
A1 ≤

log n

200

]
≤ 2log n/101

(
1
q

)log n/300

= O(n−Ω(log log n)). (3.6)

Here 2log n/101 bounds the number of choices for A1. For a fixed set A1 there will be at

least log n
101 −

log n
200 ≥

log n
300 edges incident with x that have the same color as their corre-

sponding edges incident with y, under f . The factor q− log n/300 bounds the probability

of this event.

For j > 1 we see that the random variable equal to the number of living pairs of

children of (u, f(u)) stochastically dominates the random variable X ∼ Bin
(

log n
101 , p0

)
,

where p0 =
(

1− 2k
q

)2
=
(

1+3ε
1+5ε

)2. The colorings of the descendants of each live pair are

independent and so we have using the Chernoff bounds for 2 ≤ j ≤ k,

Pr

[
Aj <

(
log n

200

)j

pj−1
0

∣∣∣∣Aj−1 ≥
(

log n

200

)j−1

pj−2
0

]

≤ exp

{
−1

2
·
(

99
200

)2

· log n

101
·
(

log n

200

)j−1

pj
0

}
= O(n−Ω(log log n)). (3.7)

(3.6) and (3.7) justify assuming that Ak ≥
(

log n
200

)k
pk−1
0 ≥ n

4
5
ε.

• Step 2: Existence of rainbow paths between x, y in Gx,y

Assuming that there are ≥ n4ε/5 living pairs of leaves (xi, yi) for vertices x, y,

Pr(x, y are not rainbow connected) ≤

(
1−

2γ−1∏
i=0

(
1− 2k + i

q

))n4ε/5

.

But
2γ−1∏
i=0

(
1− 2k + i

q

)
≥
(

1− 2k + 2γ

q

)2γ

=
(

ε

1 + 5ε

)2γ

.
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Figure 3.4: Taking care of small vertices.

So

Pr(x, y are not rainbow connected) ≤ exp

{
−n4ε/5

(
ε

1 + 5ε

)2γ
}

= exp
{
−n4ε/5−O(log(1/ε)/ log log n)

}
. (3.8)

Using (3.2) and the union bound taking (3.8) over all large x, y completes the proof of

Lemma 3.7. 2

We now finish the proof of Theorem 3.1 i.e. take care of small vertices.

We showed in Lemma 3.7 that whp for any two large vertices, a random coloring results

in a rainbow path joining them. We divide the small vertices into two sets: vertices

of degree 1, V1 and the vertices of degree at least 2, V2. Suppose that our colors are

1, 2, . . . , q and V1 = {v1, v2, . . . , vs}. We begin by giving the edge incident with vi the

color i. Then we slightly modify the argument in Lemma 3.7. If x is the neighbor of

vi ∈ V1 then color i cannot be used in Steps 1 and 2 of that procedure. In terms of

analysis this replaces q by (q−1) ((q−2) if y is also a neighbor of V1) and the argument

is essentially unchanged i.e. whp there will be a rainbow path between each pair of large

vertices. Furthermore, any path starting at vi can only use color i once and so there will

be rainbow paths between V1 and V1 and between V1 and the set of large vertices.

The set V2 is treated by using only two extra colors. Assume that Red and Blue have

not been used in our coloring. Then we use Red and Blue to color two of the edges

incident to a vertex u ∈ V2 (the remaining edges are colored arbitrarily). This is shown

in Figure 3.4. Suppose that V2 = {w1, w2, . . . , wt}. Then if we want a rainbow path

joining wi, wj where i < j then we use the red edge to go to its neighbor w′
i. Then we
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take the already constructed rainbow path to w′′
j , the neighbor of wj via a blue edge.

Then we can continue to wj .

3.4 Proof of Theorem 3.2

We first observe that simply randomly coloring the edges of G = G(n, r) with q = no(1)

colors will not do. This is because there will whp be Ω(nq1−r2
) = Ω(n1−o(1)) vertices v

where all edges at distance at most two from v have the same color.

We follow a similar strategy to the proof in Theorem 3.1. We grow small trees Tx from

each vertex x. Then for a pair of vertices x, y we build disjoint trees on the leaves of

Tx, Ty so that whp we can find edge disjoint paths between any set of leaves Sx of Tx

and any set of leaves of Sy of the same size. A bounded number of leaves of Tx, Ty will

be excluded from this statement. The main difference will come from our procedure

for coloring the edges. Because of the similarities, we will give a little less detail in the

common parts of our proofs. We are in effect talking about building a structure like that

shown in Figure 3.2. There is one difference, we will have to take care of which leaves

of Tx we pair with which leaves of Ty, for a pair of vertices x, y.

Having grown the trees, we have the problem of coloring the edges. Instead of inde-

pendently and randomly coloring the edges, we use a greedy algorithm that produces a

coloring that is guaranteed to color edges differently, if they are close. This will guaran-

tee that the edges of Tx are rainbow, for all vertices x. We then argue that we can find,

for each vertex pair x, y, a partial mapping g from the leaves of Tx to the leaves of Ty

such that the path from x to leaf v in Tx and the path from y to leaf g(v) in Ty do not

share a color. This assumes that v has an image under the partial mapping g. We will

have to argue that g is defined on enough vertices in Tx. Given this, we then consider

the colors on a set of edge disjoint paths that we can construct from the leaves of Tx to

their g-counterpart in the leaves of Ty.

We use the the configuration model of Bollobás [77] in our proofs, see Chapter 1.1.2

3.4.1 Tree building

We will grow a Breadth First Search tree Tx from each vertex. We will grow each tree

to depth

k = kr =


⌈
logr−2 log n

⌉
r ≥ 4.

d2 log2 log n− 2 log2 log2 log ne r = 3.
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Observe that

Tx has at most r(1 + (r− 1) + (r− 1)2 + · · ·+ (r− 1)k−1) = r
(r − 1)k − 1

r − 1
edges. (3.9)

It is useful to observe that

Lemma 3.8. Whp, no set of s ≤ `1 = 1
10 logr−1 n vertices contains more than s edges.

Proof Indeed,

Pr(∃S ⊆ [n], |S| ≤ `1, e[S] ≥ |S|+ 1) ≤
`1∑

s=3

(
n

s

)( (s
2

)
s + 1

)(
r2

rn− rs

)s+1

(3.10)

≤ r`1

n

`1∑
s=3

(
n

s

)((s
2

)
s

)(
r2

rn− rs

)s

≤ r`1

n

`1∑
s=3

(
ne

s
· se

2
· 2r

n

)s

≤ r`1

n
· `1 · (e2r)`1 = o(1). (3.11)

Explanation of (3.10): The factor
(

r2

rn−rs

)s+1
can be justified as follows. We can

estimate

Pr(e1, e2, . . . , es+1 ∈ E(GF )) =
s∏

i=0

Pr(ei+1 ∈ E(GF ) | e1, e2, . . . , ei ∈ E(GF )) ≤
(

r2

rn− rs

)s+1

if we pair up the lowest index endpoint of each ei in some arbitrary order. The fraction
r2

rn−rs is an upper bound on the probability that this endpoint is paired with the other

endpoint, regardless of previous pairings. 2

Denote the leaves of Tx by Lx.

Corollary 3.9. Whp, (r − 1)k ≤ |Lx| ≤ r(r − 1)k−1 for all x ∈ [n].

Proof This follows from the fact that whp the vertices spanned by each Tx span at

most one cycle. This in turn follows from Lemma 3.8. 2

Consider two vertices x, y ∈ V (G) where Tx ∩ Ty = ∅. We will show that whp we can

find a subgraph G′(V ′, E′), V ′ ⊆ V,E′ ⊆ E with similar structure to that shown in

Figure 3.2. Here k = kr and γ =
(

1
2 + ε

)
logr−1 n for some small positive constant ε.

Remark 3.10. In our analysis we expose the pairing F , only as necessary. For example

the construction of Tx involves exposing all pairings involving non-leaves of Tx and one
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pairing for each leaf. There can be at most one exception to this statement, for the rare

case where Tx contains a unique cycle. In particular, if we expose the point q paired

with a currently unpaired point p of a leaf of Tx then q is chosen randomly from the

remaining unpaired points.

Suppose that we have constructed i = O(log n) vertex disjoint trees of depth γ rooted at

some of the leaves of Tx. We grow the (i+1)st tree T̂z via BFS, without using edges that

go into y or previously constructed trees. Let a leaf z ∈ Lx be bad if we have to omit a

single edge as we construct the first `1/2 levels of T̂z. The previously constructed trees

plus y account for O(n1/2+ε) vertices and pairings, so the probability that z is bad, given

all the pairings we have exposed so far, is at most O((r − 1)`1/2n−1/2+ε) = O(n−1/3).

Here bad edges can only join two leaves. This probability bound holds regardless of

whichever other vertices are bad. This follows from the way we build the pairing F , see

the final statement of Remark 3.10. So whp there will be at most 3 bad leaves on any

Tx. Indeed, Pr(∃x : x has ≥ 4 bad leaves) ≤ n
(
O(log n)

4

)
n−4/3 = o(1).

If a leaf is not bad then the first `1/2 levels produce Θ(n1/20) leaves. From this, we see

that whp the next γ − `1 levels grow at a rate r − 1 − o(n−1/25). Indeed, given that a

level has L vertices where n1/20 ≤ L ≤ n3/4, the number of vertices in the next level

dominates Bin
(

(r − 1)L, 1−O
(

n3/4

n

))
, after accounting for the configuration points

used in building previous trees. Indeed, (r − 1)L configuration points associated with

good leaves will be unpaired and for each of them, the probability it is paired with a

point associated with a vertex in any of the trees constructed so far is O(n1/2+2ε/n).

This probability bound holds regardless of the pairings of the other leaf configuration

points. We can thus assert that whp we will have that all but at most three of the leaves

Lx of Tx are roots of vertex disjoint trees T̂1, T̂2, . . . , each with Θ(n1/2+ε/2) leaves. Let

L∗x denote these good leaves. The same analysis applies when we build trees T̂ ′
1, T̂

′
2, . . . ,

with roots at Ly.

Now the probability that there is no edge joining the leaves of T̂i to the leaves of T̂ ′
j is

at most (
1− (r − 1)Θ(n1/2+ε/2)

rn

)(r−1)n1/2+ε/2

≤ e−Ω(nε).

To summarise,

Remark 3.11. Whp we will succeed in finding in GF and hence in G = G(n, r), for all

x, y ∈ V (GF ), for all u ∈ L∗x, v ∈ L∗y, a path Pu,v from u to v of length O(log n) such

that if u 6= u′ and v 6= v′ then Pu,v and Pu′,v′ are edge disjoint. These paths avoid Tx, Ty

except at their start and endpoints.
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3.4.2 Coloring the edges

We now consider the problem of coloring the edges of G. Let H denote the line graph

of G and let Γ = H2k denote the graph with the same vertex set as H and an edge

between vertices e, f of Γ if there there is a path of length at most k between e and f

in H. We will construct a proper coloring of Γ using

q = 10(r − 1)2k ∼ 100 log2θr n where θr =
log(r − 1)
log(r − 2)

colors. We do this as follows: Let e1, e2, . . . , em be an arbitrary ordering of the vertices

of Γ. For i = 1, 2, . . . ,m, color ei with a random color, chosen uniformly from the set of

colors not currrently appearing on any neighbor in Γ. At this point only e1, e2, . . . , ei−1

will have been colored.

Suppose then that we color the edges of G using the above method. Fix a pair of vertices

x, y of G. We see immediately, that no color appears twice in Tx and no color appears

twice in Ty. This is because the distance between edges in Tx is at most 2k. This also

deals with the case where V (Tx)∩ V (Ty) 6= ∅, for the same reason. So assume now that

Tx, Ty are vertex disjoint. We can find lots of paths joining x and y. We know that the

first and last k edges of each path will be individually rainbow colored. We will first

show that we have many choices of path where these 2k edges are rainbow colored when

taken together.

3.4.3 Case 1: r ≥ 4:

We argue now that we can find σ0 = (r − 2)k−1 leaves u1, u2, . . . , uτ ∈ Tx and σ0 leaves

v1, v2, . . . , vτ ∈ Ty such for each i the Tx path from x to ui and the Ty path from y to vi

do not share any colors.

Lemma 3.12. Let T1, T2 be two vertex disjoint copies of an edge colored complete d-

ary tree with ` levels, where d ≥ 3. Let T1, T2 be rooted at x, y respectively. Suppose

that the colorings of T1, T2 are both rainbow. Let κ = (d − 1)`. Then there exist leaves

u1, u2, . . . , uκ of T1 and leaves v1, v2, . . . vκ of T2 such that the following is true: If Pi, P
′
i

are the paths from x to ui in T1 and from y to vi in T2 respectively, then Pi ∪ P ′
i is

rainbow colored for i = 1, 2, . . . , κ.

Proof Let A` be the minimum number of rainbow path pairs that we can find in

any such pair of edge colored trees. We prove that A` ≥ (d−1)` by induction on `. This

is true trivially for ` = 0. Suppose that x is incident with x1, x2, . . . , xd and that the

sub-tree rooted at xi is T1,i for i = 1, 2, . . . , d. Define yi and T2,i, i = 1, 2, . . . , d similarly



Rainbow Connectivity of Sparse Random Graphs 60

with respect to y. Suppose that the color of the edge (x, xi) is ci for i = 1, 2, . . . , d and

let Qx = {c1, c2, . . . , cd}. Similarly, suppose that the color of the edge (y, yi) is c′i for

i = 1, 2, . . . , d and let Qy = {c′1, c′2, . . . , c′d}. Next suppose that Qj is the set of colors in

Qx that appear on the edges E(T2,j) ∪ {(y, yj)} . The sets Q1, Q2, . . . , Qd are pair-wise

disjoint. Similarly, suppose that Q′
i is the set of colors in Qy that appear on the edges

E(T1,i) ∪ {(x, xi)}. The sets Q′
1, Q

′
2, . . . , Q

′
d are pair-wise disjoint.

Now define a bipartite graph H with vertex set A + B = [d] + [d] and an edge (i, j) iff

ci /∈ Qj and c′j /∈ Q′
i. We claim that if S ⊆ A then its neighbor set NH(S) satisfies the

inequality

d|S| − |NH(S)| − |S| ≤ |S| · |NH(S)|. (3.12)

Here the LHS of (3.12) bounds from below, the size of the set S : NH(S) of edges between

S and NH(S). This is because there are at most |S| edges missing from S : NH(S) due

to i ∈ S and j ∈ NH(S) and ci ∈ Qj . At most |NH(S)| edges are missing for similar

reasons. On the other hand, d|S| is the number there would be without these missing

edges. The RHS of (3.12) is a trivial upper bound.

Re-arranging we get that

|NH(S)| − |S| ≥
⌈

(d− 2− |S|)|S|
|S|+ 1

⌉
≥ −1.

(We get -1 when |S| = d).

Thus H contains a matching M of size d − 1. Suppose without loss of generality that

this matching is (i, i), i = 1, 2, . . . , d − 1. We know by induction that for each i we can

find paths (Pi,j , P̂i,j), j = 1, 2, . . . , (d− 1)`−1 where Pi,j is a root to leaf path in T1,i and

P̂i,j is a root to leaf path in T2,i and that Pi,j ∪ P̂i,j is rainbow for all i, j. Furthermore,

(i, i) being an edge of H, means that the edge sets {(x, xi)}∪E(Pi,j)∪E(P̂i,j)∪{(y, yi}
are all rainbow. 2

Let

V1 = {x : V (Tx) contains a cycle} .

When x, y /∈ V1 we apply this Lemma to Tx, Ty by deleting one of the r sub-trees attached

to each of x, y and applying the lemma directly to the (r − 1)-ary trees that remain.

This will yield (r− 2)k pairs of paths. If x ∈ V1, we delete r− 2 sub-trees attached to x

leaving at least two (r− 1)-ary trees of depth k− 1 with roots adjacent to x. We can do

the same at y. Let c1, c2 be the colors of the two edges from x to the roots of these two

trees T1, T2. Similarly, let c′1, c
′
2 be the colors of the two analogous edges from y to the

trees T ′
1, T

′
2. If color c1 does not appear in T ′

1 then we apply the lemma to T1 and T ′
1.
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Otherwise, we can apply the lemma to T1 and T ′
2. In both cases we obtain (r − 2)k−1

pairs of paths.

Accounting for bad vertices we put

σ = σ0 − 6 = (r − 2)k−1 − 6 ≥ log n

r − 2
− 6

and we see from Remark 3.11 that we can whp find σ paths P1, P2, . . . , Pσ of length

O(log n) from x to y. Path Pi goes from x to a leaf ui ∈ L∗x via Tx and then traverses

Qi = P (ui, vi) where vi = φ(ui) ∈ L∗y and then goes from vi to a y via Ty. Here φ is

some partial map from L∗x to L∗y. It is a random variable that depends on the coloring

C of the edges of Tx and Ty. The paths P1, P2, . . . , Pσ depend on the choice of φ and

hence C and so we should write Pi = Pi(C).

We fix the coloring C and hence P1, P2, . . . , Pσ. Let R be the event that at least one of

the paths P1, P2, . . . , Pσ is rainbow colored. We show that Pr(¬R | C) is small.

We let c(e) denote the color of edge e in a given coloring. We remark next that for a

particular coloring c1, c2, . . . , cm of the edges e1, e2, . . . , em we have

Pr(c(ei) = ci, i = 1, 2, . . . ,m) =
m∏

i=1

1
ai

where q−∆ ≤ ai ≤ q is the number of colors available for the color of the edge ei given

the coloring so far i.e. the number of colors unused by the neighbors of ei in Γ when it

is about to be colored.

Now fix an edge e = ei and the colors cj , j 6= i. Let C be the set of colors not used

by the neighbors of ei in Γ. The choice by ei of its color under this conditioning is not

quite random, but close. Indeed, we claim that for c, c′ ∈ C

Pr(c(e) = c | c(ej) = cj , j 6= i)
Pr(c(e) = c′ | c(ej) = cj , j 6= i)

≤
(

q −∆
q −∆− 1

)∆

.

This is because, changing the color of ei only affects the number of colors available to

neighbors of ei, and only by at most one.

Thus, for c ∈ C, we have

Pr(c(e) = c | c(ej) = cj , j 6= i) ≤ 1
q −∆

(
q −∆

q −∆− 1

)∆

.

Now ∆ ≤ (r − 1)2k = q/10 and we deduce that

Pr(c(e) = c | c(ej) = cj , j 6= i) ≤ 2
q
.
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It follows that for i ∈ [σ],

Pr(Pi is rainbow colored | C, coloring of
⋃
j 6=i

Qj) ≥
(

1− 4(k + γ)
q

)2γ

.

This is because when we consider the coloring of Qi there will always be at most 2k +2γ

colors forbidden by non-neighboring edges, if it is to be rainbow colored.

It then follows that

Pr(¬R | C) ≤

(
1−

(
1− 4(k + γ)

q

)2γ
)σ

≤
(

8γ(k + γ)
q

)σ

≤

(
(2 + 10ε) log2

r−1 n

10 logθr n

)σ

= o(n−2).

This completes the proof of Theorem 3.2 when r ≥ 4.

Case 2: r = 3:

When r = 3 we can’t use (r − 2)k to any effect. Also, we need to increase q to log4 n.

This necessary for a variety of reasons. One reason is that we will reduce σ to 2k/2. We

want this to be Ω(log n) and this will force k to (roughly) double what it would have

been if we had followed the recipe for r ≥ 4. This makes ∆ close to log4 n and we need

q � ∆.

And we need to modify the argument based on Lemma 3.12. Instead of inducting on

the trees at depth one from the roots x, y, we now induct on the trees at depth two.

Assume first that x, y /∈ V1. After ignoring one branch for Tx and Ty we now consider

the sub-trees Tx,i, Ty,i, i = 1, 2, 3, 4 of Tx, Ty whose roots x1, . . . , x4 and y1, . . . , y4 are at

depth two. We cannot necessarily make this construction when x ∈ V1. Let Pi be the

path from x to xi in Tx and let P̂j be the path from y to yj in Ty. Next suppose that Q̂j

is the set of colors in Q that appear on the edges E(Ty,j) ∪ E(P̂j). Similarly, suppose

that Q′
i is the set of colors in Q′ that appear on the edges {E(Tx,i) ∪ E(Pi)}.

Re-define H to be the bipartite graph with vertex set A + B = [4] + [4]. The edges of

H are as before: (i, j) exists iff ci /∈ Qj and c′j /∈ Q̂i. This time we can only say that a

color is in at most two Q̂i’s and similarly for the Q′
j ’s. The effect of this is to replace

(3.12) by

4|S| − 2(|NH(S)|+ |S|) ≤ |S| · |NH(S)|
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from which we can deduce that

|S| − |NH(S)| ≤ |S| · |NH(S)|
2

≤ 2|NH(S)|.

It follows that |NH(S)| ≥ d|S|/3e ≥ |S|−2 and so H contains a matching of size two. An

inductive argument then shows that we are able to find 2bk/2c rainbow pairs of paths.

The proof now continues as in the case r ≥ 4, arguing about the coloring of paths

P1, P2, . . . , Pσ where now σ = 2bk/2c.

We finally deal with the vertices in V1. We classify them according to the size of the

cycle Cx that is contained in V (Tx). If Tx contains a cycle Cx then necessarily |Cx| ≤ 2k

and so there are at most 2k types in our classification. It follows from Lemma 3.8 that

if x, y ∈ V1 and Tx ∩ Ty 6= ∅ then Cx = Cy whp. Note next that the distance from x to

Cx is at most k − |Cx|/2. If C is a cycle of length at most 2k, let VC = {x : C = Cx}
and let EC be the set of edges contained in VC . We have

|VC | = O(|C|2k−|C|/2) = O(2k) = O(log2 n/ log log n). (3.13)

We introduce 2k new sets Q̂i, i = 3, 4, . . . , 2k of O(log2 n/ log log n) colors, distinct from

Q. Thus we introduce O(log2 n) new colors overall. We re-color each EC with the colors

from Q̂|C|. It is important to observe that if |C| = |C ′| then the graphs induced by VC

and VC′ are isomorphic and so we can color them isomorphically. By the latter we mean

that we choose some isomorphism f from VC to VC′ and then if e is an edge of VC then

we color e and f(e) with the same color. After this re-coloring, we see that if Tx and Ty

are not vertex disjoint, then they are contained in the same VC . The edges of VC are

rainbow colored and so now we only need to concern ourselves with x, y ∈ V1 such that

Tx and Ty are vertex disjoint. Assume now that x, y ∈ V1.

Assume first that x, y are of the same type and that they are at the same distance from

Cx, Cy respectively. Our aim now is to define binary trees T ′
x, T ′

y “contained“ in Tx, Ty

that can be used as in Lemma 3.12. If we delete an edge e = (u, v) of Cx then the graph

that remains on V (Tx) is a tree with at most two vertices u, v of degree two. Now delete

one of the three sub-trees of Tx. If there are vertices of degree two, make sure one of

them is in this sub-tree. If necessary, shrink the path of length two with the remaining

vertex of degree two in the middle to an edge ex. It has leaves at depth k− 1 and leaves

at depth k−2. The resulting binary tree will be our T ′
x. The leaves at depth k−1 come

in pairs. Delete one vertex from each pair and shrink the paths of length two through

the vertex at depth k − 2 to an edge.

The edges that are obtained by shrinking paths of length two will have two colors.

Because x, y are at the same distance from their cycles, we can delete f(e) from Cy and
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do the construction so that T ′
x and T ′

y will be isomorphically colored.

It is now easy to find 2k−2 pairs of paths whose unions are rainbow colored. Each leaf of

Tx, Ty can be labelled by a {0, 1} string of length k− 2. We pair string ξ1ξ2 · · · ξk−1ξk−2

in Tx with (1− ξ1)ξ2 · · · ξk−1ξk−2 in Ty. The associated paths will have a rainbow union.

The proof now continues as in the case r ≥ 4, arguing about the coloring of paths

P1, P2, . . . , Pσ where now σ = 2k−2.

If x is further from Cx than y is from Cy then let z be the vertex on the path from x to

Cx at the same distance from Cx as y is from Cy. We have a rainbow path from z to y

and adding the Tx path from x to z gives us a rainbow path from x to y. This relies on

the fact that VCx and VCy are isomorphically colored.

If x, y are of a different type, then Tx and Ty are re-colored with distinct colors and we

can proceed as as in the case r ≥ 4, arguing about the coloring of paths P1, P2, . . . , Pσ

where now σ = 2k, using Corollary 3.9.

If x ∈ V1 and y /∈ V1 then we can proceed as if both are not in V1. This is because of the

re-coloring of the edges of Tx. We can proceed as as in the case r ≥ 4, arguing about

the coloring of paths P1, P2, . . . , Pσ where now σ = 2k, using Corollary 3.9.

This completes our proof of Theorem 3.2.

We conclude this Chapter with mentioning that if the degree r in Theorem 3.2 is allowed

to grow as fast as log n then one can prove a result closer to that of Theorem 3.1.



Chapter 4

Random Apollonian networks

4.1 Model & Main Results

As we outlined in Chapter 1 planar graphs model several significant types of spatial

real-world networks such as power grids and road networks. Despite the outstanding

amount of work on modeling real-world networks with random graph models [19, 50, 84,

85, 143, 157, 172, 173, 270, 284, 294], real-world planar graph generators have received

considerably less attention. In this Chapter we focus on Random Apollonian Networks

(RANs), a popular random graph model for generating planar graphs with power law

properties [426]. Before we state our main results we briefly describe the model.

Model: An example of a RAN is shown in Figure 4.1. At time t = 1 the RAN is shown

in Figure 4.1(a). At each step t ≥ 2 a face F is chosen uniformly at random among

the faces of Gt. Let i, j, k be the vertices of F . We add a new vertex inside F and we

connect it to i, j, k. Higher dimensional RANs also exist where instead of triangles we

have k-simplexes k ≥ 3, see [425]. It is easy to see that the number of vertices nt, edges

mt and faces Ft at time t ≥ 1 in a RAN Gt satisfy:

nt = t + 3, mt = 3t + 3, Ft = 2t + 1.

Note that a RAN is a maximal planar graph since for any planar graph mt ≤ 3nt − 6 ≤
3t + 3.

Surprisingly, despite the popularity of the model various important properties have been

analyzed experimentally and heuristically with lack of rigor. In this Chapter, we prove

the following theorems.

65
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(a) (b) (c) (d)

Figure 4.1: Snapshots of a Random Apollonian Network (RAN) at: (a) t = 1 (b)
t = 2 (c) t = 3 (d) t = 100.

Theorem 4.1 (Degree Sequence). Let Zk(t) denote the number of vertices of degree k

at time t, k ≥ 3. For any t ≥ 1 and any k ≥ 3 there exists a constant bk depending on

k such that

|E [Zk(t)]− bkt| ≤ K, where K = 3.6.

Furthermore, for t sufficiently large and any λ > 0

Pr [|Zk(t)− E [Zk(t)] | ≥ λ] ≤ e−
λ2

72t . (4.1)

For previous weaker results on the degree sequence see [420, 426]. An immediate corol-

lary which proves strong concentration of Zk(t) around its expectation is obtained from

Theorem 4.1 and a union bound by setting λ = 10
√

t log t. Specifically:

Corollary 4.2. For all possible degrees k

Pr
[
|Zk(t)− E [Zk(t)] | ≥ 10

√
t log t

]
= o(1).

The next theorem provides insight into the asymptotic growth of the highest degrees of

RANs and is crucial in proving Theorem 4.4.

Theorem 4.3 (Highest Degrees). Let ∆1 ≥ ∆2 ≥ . . . ≥ ∆k be the k highest degrees of

the RAN Gt at time t where k is a fixed positive integer. Also, let f(t) be a function

such that f(t)→ +∞ as t→ +∞. Then whp1

t1/2

f(t)
≤ ∆1 ≤ t1/2f(t)

and for i = 2, . . . , k

1An event At holds with high probability (whp) if lim
t→+∞

Pr [At] = 1.
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∆i−1 −∆i ≥
t1/2

f(t)
.

The growing function f(t) cannot be removed, see [171]. Using Theorem 4.3 and the

technique of Mihail and Papadimitriou [302] we show how the top eigenvalues of the

adjacency matrix representation of a RAN grow asymptotically as t→ +∞ whp.

Theorem 4.4 (Largest Eigenvalues). Let k be a fixed positive integer. Also, let λ1 ≥
λ2 ≥ . . . ≥ λk be the largest k eigenvalues of the adjacency matrix of Gt. Then whp λi =

(1± o(1))
√

∆i.

Also, we show the following refined upper bound for the asymptotic growth of the

diameter.

Theorem 4.5 (Diameter). The diameter d(Gt) of Gt satisfies in probability d(Gt) ≤
ρ log t where 1

ρ = η is the unique solution less than 1 of the equation η−1− log η = log 3.

A straight-forward calculation of η, gives us the following corollary.

Corollary 4.6 (Diameter). The diameter d(Gt) of Gt satisfies asymptotically

Pr [d(Gt) > 7.1 log t]→ 0.

The outline of this Chapter is as follows: in Section 4.2 we present briefly related work

and technical preliminaries needed for our analysis. We prove Theorems 4.1, 4.3, 4.4

and 4.5 in Sections 4.3, 4.4, 4.5 and 4.6 respectively.

4.2 Related Work

Apollonius of Perga was a Greek geometer and astronomer noted for his writings on

conic sections. He introduced the problem of space filling packing of spheres whose

classical solution, the so-called Apollonian packing [202], exhibits a power law behavior.

Specifically, the circle size distribution follows a power law with exponent around 1.3 [86].

Apollonian Networks (ANs) were introduced in [35] and independently in [139]. Zhou et

al. [426] introduced Random Apollonian Networks (RANs). Their degree sequence was

analyzed inaccurately in [426] (see comment in [420]) and subsequently using physicist’s
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methodology in [420]. Eigenvalues of RANs have been studied only experimentally [34].

Concerning the diameter of RNAs it has been shown to grow logarithmically [426] using

heuristic arguments (see for instance equation B6, Appendix B in [426]). RANs are

planar 3-trees, a special case of random k-trees [254]. Cooper and Uehara [124] and

Gao [188] analyzed the degree distribution of random k-trees, a closely related model to

RANs. In RANs –in contrast to random k-trees– the random k clique chosen at each step

has never previously been selected. For example, in the two dimensional RAN any chosen

face is being subdivided into three new faces by connecting the incoming vertex to the

vertices of the boundary. Random k-trees due to their power law properties have been

proposed as a model for complex networks, see, e.g., [124, 187] and references therein.

Recently, a variant of k-trees, namely ordered increasing k-trees has been proposed and

analyzed in [329]. Closely related to RANs but not the same are random Apollonian

network structures which have been analyzed by Darrasse, Soria et al. [72, 128, 129].

Bollobás, Riordan, Spencer and Tusnády [80] proved rigorously the power law distribu-

tion of the Barabási-Albert model [50]. Chung, Lu, Vu [113] Flaxman, Frieze, Fenner

[171] and Mihail, Papadimitriou [302] have proved rigorous results for eigenvalue related

properties of real-world graphs using various random graph models.

4.3 Proof of Theorem 4.1

We decompose our proof in a sequence of Lemmas. For brevity let Nk(t) = E [Zk(t)],

k ≥ 3. Also, let dv(t) be the degree of vertex v at time t and 1(dv(t) = k) be an indicator

variable which equals 1 if dv(t) = k, otherwise 0. Then, for any k ≥ 3 we can express

the expected number Nk(t) of vertices of degree k as a sum of expectations of indicator

variables:

Nk(t) =
∑

v

E [1(dv(t) = k)] . (4.2)

We distinguish two cases in the following.

• Case 1: k = 3:

Observe that a vertex of degree 3 is created only by an insertion of a new vertex. The

expectation N3(t) satisfies the following recurrence2

2The three initial vertices participate in one less face than their degree. However, this leaves our
results unchanged.
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N3(t + 1) = N3(t) + 1− 3N3(t)
2t + 1

. (4.3)

The basis for Recurrence (4.3) is N3(1) = 4. We prove the following lemma which shows

that lim
t→+∞

N3(t)
t

=
2
5

.

Lemma 4.7. N3(t) satisfies the following inequality:

|N3(t)− 2
5
t| ≤ K, where K = 3.6 (4.4)

Proof. We use induction. Assume that N3(t) = 2
5 t + e3(t), where e3(t) stands for the

error term. We wish to prove that for all t, |e3(t)| ≤ K. The result trivially holds for

t = 1. We also see that for t = 1 inequality (4.4) is tight. Assume the result holds for

some t. We show it holds for t + 1.

N3(t + 1) = N3(t) + 1− 3N3(t)
2t + 1

⇒

e3(t + 1) = e3(t) +
3
5
− 6t + 15e3(t)

10t + 5
= e3(t)

(
1− 3

2t + 1

)
+

3
5(2t + 1)

⇒

|e3(t + 1)| ≤ K(1− 3
2t + 1

) +
3

5(2t + 1)
≤ K

Therefore inductively Inequality (4.4) holds for all t ≥ 1.

• Case 2: k ≥ 4:

For k ≥ 4 the following holds:

E [1(dv(t + 1) = k)] = E [1(dv(t) = k)] (1− k

2t + 1
) + E [1(dv(t) = k − 1)]

k − 1
2t + 1

(4.5)

Therefore, we can rewrite Equation (4.2) for k ≥ 4 as follows:

Nk(t + 1) = Nk(t)(1− k

2t + 1
) + Nk−1(t)

k − 1
2t + 1

(4.6)



Random Apollonian networks 70

Lemma 4.8. For any k ≥ 3, the limit lim
t→+∞

Nk(t)
t

exists. Specifically, let bk =

lim
t→+∞

Nk(t)
t

. Then, b3 = 2
5 , b4 = 1

5 , b5 = 4
35 and for k ≥ 6 bk = 24

k(k+1)(k+2) . Fur-

thermore, for all k ≥ 3

|Nk(t)− bkt| ≤ K, where K = 3.6. (4.7)

Proof. For k = 3 the result holds by Lemma 4.7 and specifically b3 = 2
5 . Assume the

result holds for some k. We show that it holds for k + 1 too. Rewrite Recursion (4.6)

as: Nk(t + 1) = (1 − bt
t+t1

)Nk(t) + ct where bt = k/2, t1 = 1/2, ct = Nk−1(t) k−1
2t+1 .

Clearly lim
t→+∞

bt = k/2 > 0 and lim
t→+∞

ct = lim
t→+∞

bk−1t
k − 1
2t + 1

= bk−1(k− 1)/2. Hence by

Lemma 2.8:

lim
t→+∞

Nk(t)
t

=
(k − 1)bk−1/2

1 + k/2
= bk−1

k − 1
k + 2

.

Since b3 = 2
5 we obtain that b4 = 1

5 , b5 = 4
35 for any k ≥ 6, bk = 24

k(k+1)(k+2) . This shows

that the degree sequence of RANs follows a power law distribution with exponent 3.

Now we prove Inequality (4.7). The case k = 3 was proved in Lemma 4.7. Let ek(t) =

Nk(t) − bkt. Assume the result holds for some k ≥ 3, i.e., |ek(t)| ≤ K where K = 3.6.

We show it holds for k + 1 too. Substituting in Recurrence (4.2) and using the fact that

bk−1(k − 1) = bk(k + 2) we obtain the following:

ek(t + 1) = ek(t) +
k − 1
2t + 1

ek−1(t)− k

2t + 1
ek(t)⇒

|ek(t + 1)| ≤ |(1− k

2t + 1
)ek(t)|+ | k − 1

2t + 1
ek−1(t)| ≤ K(1− 1

2t + 1
) ≤ K

Hence by induction, Inequality (4.7) holds for all k ≥ 3.

Using integration and a first moment argument, it can be seen that Lemma 4.8 agrees

with Theorem 4.3 where it is shown that the maximum degree is ≈ t1/2. (While bk =

O(k−3) suggests a maximum degree of order t1/3, summing bk over k ≥ K suggests a

maximum degree of order t1/2).

Finally, the next Lemma proves the concentration of Zk(t) around its expected value for

k ≥ 3. This lemma applies Lemma 2.3 and completes the proof of Theorem 4.1.
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Lemma 4.9. Let λ > 0. For k ≥ 3

Pr [|Zk(t)− E [Zk(t)] | ≥ λ] ≤ e−
λ2

72t . (4.8)

Proof. Let (Ω,F , P) be the probability space induced by the construction of a RAN after

t insertions. Fix k, where k ≥ 3, and let (Xi)i∈{0,1,...,t} be the martingale sequence defined

by Xi = E [Zk(t)|Fi], where F0 = {∅, Ω} and Fi is the σ-algebra generated by the RAN

process after i steps. Notice X0 = E [Zk(t)|{∅, Ω}] = Nk(t), Xt = Zk(t). We show that

|Xi+1 −Xi| ≤ 6 for i = 0, . . . , t− 1. Let Pj = (Y1, . . . , Yj−1, Yj), P ′
j = (Y1, . . . , Yj−1, Y

′
j )

be two sequences of face choices differing only at time j. Also, let P̄ , P̄ ′ continue from

Pj , P
′
j until t. We call the faces Yj , Y

′
j special with respect to P̄ , P̄ ′. We define a measure

preserving map P̄ 7→ P̄ ′ in the following way: for every choice of a non-special face in

process P̄ at time l we make the same face choice in P̄ ′ at time l. For every choice

of a face inside the special face Yj in process P̄ we make an isomorphic (w.r.t., e.g.,

clockwise order and depth) choice of a face inside the special face Y ′
j in process P̄ ′.

Since the number of vertices of degree k can change by at most 6, i.e., the (at most) 6

vertices involved in the two faces Yj , Y
′
j the following holds:

|E [Zk(t)|P ]− E
[
Zk(t)|P ′] | ≤ 6.

Furthermore, this holds for any Pj , P
′
j . We deduce that Xi−1 is a weighted mean of

values, whose pairwise differences are all at most 6. Thus, the distance of the mean Xi−1

is at most 6 from each of these values. Hence, for any one step refinement |Xi+1−Xi| ≤ 6

∀i ∈ {0, . . . , t−1}. By applying the Azuma-Hoeffding inequality as stated in Lemma 2.3

we obtain

Pr [|Zk(t)− E [Zk(t)] | ≥ λ] ≤ 2e−
λ2

72t . (4.9)

4.4 Proof of Theorem 4.3

We decompose the proof of Theorem 4.3 into several lemmas which we prove in the

following. Specifically, the proof follows directly from Lemmas 4.11, 4.12, 4.13, 4.14, 4.15.

We partition the vertices into three sets: those added before t0, between t0 and t1 and

after t1 where t0 = log log log (f(t)) and t1 = log log (f(t)). Recall that f(t) is a function
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such that lim
t→+∞

f(t) = +∞. We define a supernode to be a collection of vertices and

the degree of the supernode the sum of the degrees of its vertices.

Lemma 4.10. Let dt(s) denote the degree of vertex s at time t. and let a(k) = a(a +

1) . . . (a + k − 1) denote the rising factorial function. Then, for any positive integer k

E
[
dt(s)(k)

]
≤ (k + 2)!

2
(2t

s

) k
2 . (4.10)

Proof. As we mentioned in the proof of Theorem 4.1 the three initial vertices 1, 2, 3

have one less face than their degree whereas all other vertices have degree equal to the

number of faces surrounding them. In this proof we treat both cases but we omit it in

all other proofs.

• Case 1: s ≥ 4

Note that ds(s) = 3. By conditioning successively we obtain

E
[
dt(s)(k)

]
= E

[
E
[
dt(s)(k)|dt−1(s)

]]
= E

[
(dt−1(s))(k)

(
1− dt−1(s)

2t− 1
)

+ (dt−1(s) + 1)(k) dt−1(s)
2t− 1

]
= E

[
(dt−1(s))(k)

(
1− dt−1(s)

2t− 1
)

+ (dt−1(s))(k) dt−1(s) + k

dt−1(s)
dt−1(s)
2t− 1

]
= E

[
(dt−1(s))(k)

] (
1 +

k

2t− 1
)

= ... = 3(k)
t∏

t′=s+1

(1 +
k

2t′ − 1
)

≤ 3(k) exp
( t∑

t′=s+1

k

2t′ − 1

)
≤ 3(k) exp

(
k

∫ t

s

dx

2x− 1

)
≤ (k + 2)!

2
exp

(
k
2 log

t− 1/2
s− 1/2

)
≤ (k + 2)!

2

(2t

s

) k
2
.

• Case 2: s ∈ {1, 2, 3}

Note that initially the degree of any such vertex is 2. For any k ≥ 0
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Figure 4.2: Coupling used in Lemma 4.11.

E
[
dt(s)(k)

]
= E

[
E
[
dt(s)(k)|dt−1(s)

]]
= E

[
(dt−1(s))(k)

(
1− dt−1(s)− 1

2t− 1
)

+ (dt−1(s) + 1)(k) dt−1(s)− 1
2t− 1

]
= E

[
(dt−1(s))(k)

(
1 +

k

2t− 1
)
− (dt−1(s))(k) k

(2t− 1)dt−1(s)

]
≤ E

[
(dt−1(s))(k)

] (
1 +

k

2t− 1
)
≤ . . . ≤ (k + 2)!

2
(2t

s

) k
2 .

Lemma 4.11. The degree Xt of the supernode Vt0 of vertices added before time t0 is at

least t
1/4
0

√
t whp.

Proof. We consider a modified process Y coupled with the RAN process, see also Fig-

ure 4.2. Specifically, let Yt be the modified degree of the supernode in the modified

process Y which is defined as follows: for any type of insertion in the original RAN

process –note there exist three types of insertions with respect to how the degree Xt of

the supernode (black circle) gets affected, see also Figure 4.2– Yt increases by 1. We also

define Xt0 = Yt0 . Note that Xt ≥ Yt for all t ≥ t0. Let d0 = Xt0 = Yt0 = 6t0 + 6 and

p∗ = Pr [Yt = d0 + r|Yt0 = d0].

Claim 1 (1).

p∗ ≤
(

d0 + r − 1
d0 − 1

)(2t0 + 3
2t + 1

)d0/2
e

3
2
+t0− d0

2
+ 2r

3
√

t

Proof. Let τ = (t0 ≡ τ0, τ1, . . . , τr︸ ︷︷ ︸
insertion times

, τr+1 ≡ t) be a vector denoting that Yt increases

by 1 at τi for i = 1, . . . , r. We upper bound the probability pτ of this event in the
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following.Note that we consider the case where the vertices have same degree as the

number of faces around them. As we mentioned earlier, the other case is analyzed in

exactly the same way, modulo a negligible error term.

pτ =

[
r∏

k=1

d0 + k − 1
2τk + 1

][
r∏

k=0

τk+1−1∏
j=τk+1

(
1− d0 + k

2j + 1

)]

= d0(d0 + 1) . . . (d0 + r − 1)

[
r∏

k=1

1
2τk + 1

]
exp

(
r∑

k=0

τk+1−1∑
j=τk+1

log
(

1− d0 + k

2j + 1

))

=
(d0 + r − 1)!

(d0 − 1)!

[
r∏

k=1

1
2τk + 1

]
exp

(
r∑

k=0

τk+1−1∑
j=τk+1

log
(

1− d0 + k

2j + 1

))

Consider now the inner sum which we upper bound using an integral:

τk+1−1∑
j=τk+1

log
(

1− d0 + k

2j + 1

)
≤
∫ τk+1

τk+1
log
(

1− d0 + k

2x + 1

)
dx

≤ −
(
τk+1 + 1

2

)
log (2τk+1 + 1)+

2τk+1 + 1− (d0 + k)
2

log (2τk+1 + 1− (d0 + k))+(
τk + 3

2

)
log (2τk + 3)− 2τk + 3− (d0 + k)

2
log (2τk + 3− (d0 + k))

since

∫
log
(

1− d0 + k

2x + 1

)
= −

(
x + 1

2

)
log (2x + 1) +

2x + 1− (d0 + k)
2

log (2x + 1− (d0 + k))

Hence we obtain
∑r

k=0

∑τk+1−1
j=τk+1 log

(
1− d0+k

2j+1

)
≤ A +

∑r
k=1 Bk where

A =
(
τ0 + 3

2

)
log (2τ0 + 3)− 2τ0 + 3− d0

2
log (2τ0 + 3− d0)

−
(
τr+1 + 1

2

)
log (2τr+1 + 1) +

2τr+1 + 1− (d0 + r)
2

log (2τr+1 + 1− (d0 + r))

and
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Bk =
(
τk + 3

2

)
log (2τk + 3)− 2τk + 3− (d0 + k)

2
log (2τk + 3− (d0 + k))

−
(
τk + 1

2

)
log (2τk + 1) +

2τk + 1− (d0 + k − 1)
2

log (2τk + 1− (d0 + k − 1)).

We first upper bound the quantities Bk for k = 1, . . . , r. By rearranging terms and using

the identity log (1 + x) ≤ x we obtain

Bk =
(
τk + 1

2

)
log
(
1 +

1
τk + 1

2

)
+ log (2τk + 3)

− 1
2

log
(
2τk + 3− (d0 + k)

)
− 2τk + 2− (d0 + k)

2
log
(

1 +
1

2τk + 2− (d0 + k)

)
.

≤ 1
2

+
1
2

log
(
2τk + 3

)
− 1

2
log
(
1− d0 + k

2τk + 3
)

First we rearrange terms and then we bound the term eA by using the inequality

e−x−x2/2 ≥ 1− x which is valid for 0 < x < 1:

A = −
(
τ0 + 3

2

)
log
(
1− d0

2τ0 + 3
)

+
(
τr+1 + 1

2

)
log
(
1− d0 + r

2τr+1 + 1
)

+
d0

2
log
(
2τ0 + 3− d0

)
− d0 + r

2
log
(

2τr+1 + 1− (d0 + r)
)
.⇒

eA =
(
1− d0

2τ0 + 3
)−(τ0+

3
2)(1− d0 + r

2τr+1 + 1
)τr+1+

1
2 (2τ0 + 3− d0)

d0
2 (2τr+1 + 1− (d0 + r))−

d0+r
2

=
(

2τ0 + 3
2τr+1 + 1

)d0/2

(2τr+1 + 1)−r/2

(
1− d0

2τ0 + 3

)−(τ0+
3
2)+

d0
2
(

1− d0 + r

2τr+1 + 1

)τr+1+
1
2−

d0+r
2

≤
(

2t0 + 3
2t + 1

)d0/2

(2t + 1)−r/2

(
1− d0

2τ0 + 3

)−(τ0+
3
2)+

d0
2

e

(
− d0+r

2t+1
−
(
− d0+r

2t+1

)2
/2

)
(t+1/2− d0+r

2
)

=
(

2t0 + 3
2t + 1

)d0/2

(2t + 1)−r/2

(
1− d0

2τ0 + 3

)−(τ0+
3
2)+

d0
2

e
− d0+r

2
+

(d0+r)2

8t+4
+

(d0+r)3

4(2t+1)2

Now we upper bound the term exp
(
A +

∑r
k=1 Bk

)
using the above upper bounds:
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eA+
Pr

k=1 Bk ≤ eAer/2
r∏

i=1

√
2τk + 3

1− d0+k
2τk+3

≤
(

1− d0

2τ0 + 3

)−(τ0+
3
2)+

d0
2

e
− d0

2
+

(d0+r)2

8t+4
+

(d0+r)3

4(2t+1)2

(
2t0 + 3
2t + 1

)d0/2

×

(2t + 1)−r/2
r∏

i=1

√
2τk + 3

1− d0+k
2τk+3

Using the above upper bound we get that

pτ ≤ C(r, d0, t0, t)
r∏

k=1

[
(2τk + 3− (d0 + k))−1/2

(
1 +

1
τk + 1/2

)]

where

C(r, d0, t0, t) =
(d0 + r − 1)!

(d0 − 1)!

(
1− d0

2τ0 + 3

)−(τ0+
3
2)+

d0
2

e
− d0

2
+

(d0+r)2

8t+4
+

(d0+r)3

4(2t+1)2

(
2t0 + 3
2t + 1

)d0/2

(2t+1)−r/2

We need to sum over all possible insertion times to bound the probability of interest p∗.

We set τ ′k ← τk − dd0+k
2 e for k = 1, . . . , r. For d = o(

√
t) and r = o(t2/3) we obtain:



Random Apollonian networks 77

p∗ ≤ C(r, d0, t0, t)
∑

t0+1≤τ1<..<τr≤t

r∏
k=1

[
(2τk + 3− (d0 + k))−1/2

(
1 +

1
τk + 1/2

)]
≤ C(r, d0, t0, t)

∑
t0−d

d0
2 e+1≤τ ′1≤..≤τ ′r≤t−dd0+r

2 e

r∏
k=1

[
(2τ ′k + 3)−1/2

(
1 +

1
τ ′k + d0+k

2 + 1/2

)]

≤ C(r, d0, t0, t)
r!

( t−dd0+r
2 e∑

t0−d
d0
2 e

(2τ ′k + 3)−1/2 + 1√
2
(τ ′k + 3/2)−3/2

)r

≤ C(r, d0, t0, t)
r!

(∫ t− d+r
2

0

[
(2x + 3)−1/2 + 1√

2
(x + 3/2)−3/2

]
dx

)r

≤ C(r, d0, t0, t)
r!

(√
2t + 3− (d0 + r) + 2/3

)r

≤ C(r, d0, t0, t)
r!

(2t)r/2e−
r
2

d0+r−3
2t e

2r

3
√

2t−(d0+r)+3

≤
(

d0 + r − 1
d0 − 1

)(2t0 + 3
2t + 1

)d0/2
[(

1− d0

2t0 + 3
)−(1− d0

2t0+3
)
]t0+3/2

×

( 2t

2t + 1
)r/2 exp

(
− d0

2
+

(d0 + r)2

8t + 4
+

(d0 + r)3

4(2t + 1)2
− r(d0 + r − 3)

4t
+

2r

3
√

2t + 3− (d0 + r)

)

By removing the o(1) terms in the exponential and using the fact that x−x ≤ e we obtain

the following bound on the probability p∗.

p∗ ≤
(

d0 + r − 1
d0 − 1

)(2t0 + 3
2t + 1

)d0/2
e

3
2
+t0− d0

2
+ 2r

3
√

t .

Let A1 denote the event that the supernode consisting of the first t0 vertices has degree

Yt in the modified process Y less than t
1/4
0

√
t. Note that since {Xt ≤ t

1/4
0

√
t} ⊆ {Yt ≤

t
1/4
0

√
t} it suffices to prove that Pr

[
Yt ≤ t

1/4
0

√
t
]

= o(1). Using Claim (1) we obtain
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Pr [A1] ≤
t
1/4
0

√
t−(6t0+6)∑
r=0

(
r + 6t0 + 5

6t0 + 5

)(2t0 + 3
2t + 1

)3t0+3
e−

3
2
−2t0+

2t
1/4
0
3

≤ t
1/4
0 t1/2

(
t
1/4
0 t1/2

)6t0+5

(6t0 + 5)!

(2t0 + 3
2t + 1

)3t0+3
e−

3
2
−2t0+

2t
1/4
0
3

≤
( t

2t + 1

)3t0+3 t
3t0/2+3/2
0 (2t0 + 3)3t0+3

(6t0 + 5)6t0+5
e4t0+7/2+2/3t

1/4
0

≤ 2−(3t0+3) e
4t0+7/2+2/3t

1/4
0

(6t0 + 5)
3
2 t0+

1
2

= o(1).

Lemma 4.12. No vertex added after t1 has degree exceeding t−2
0 t1/2 whp.

Proof. Let A2 denote the event that some vertex added after t1 has degree exceeding

t−2
0 t1/2. We use a union bound, a third moment argument and Lemma 4.10 to prove

that Pr [A2] = o(1). Specifically

Pr [A2] ≤
t∑

s=t1

Pr
[
dt(s) ≥ t−2

0 t1/2
]

=
t∑

s=t1

Pr
[
dt(s)(3) ≥ (t−2

0 t1/2)(3)
]

≤ t60t
−3/2

t∑
s=t1

E
[
dt(s)(3)

]
≤ 5!
√

2t60

t∑
s=t1

s−3/2 ≤ 5!2
√

2t60t
−1/2
1 = o(1).

Lemma 4.13. No vertex added before t1 has degree exceeding t
1/6
0 t1/2 whp.

Proof. Let A3 denote the event that some vertex added before t1 has degree exceed-

ing t
1/6
0 t1/2. We use again a third moment argument and Lemma 4.10 to prove that

Pr [A3] = o(1).

Pr [A3] ≤
t1∑

s=1

Pr
[
dt(s) ≥ t

1/6
0 t1/2

]
=

t1∑
s=1

Pr
[
dt(s)(3) ≥ (t1/6

0 t1/2)(3)
]

≤ t
−1/2
0 t−3/2

t1∑
s=1

E
[
dt(s)(3)

]
≤ t

−1/2
0 t−3/2

t1∑
s=1

5!
√

2
t3/2

s3/2

≤ 5!
√

2ζ(3/2)t−1/2
0 = o(1)
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where ζ(3/2) =
∑+∞

s=1 s−3/2 ≈ 2.612.

Lemma 4.14. The k highest degrees are added before t1 and have degree ∆i bounded by

t−1
0 t1/2 ≤ ∆i ≤ t

1/6
0 t1/2 whp.

Proof. For the upper bound it suffices to show that ∆1 ≤ t
1/6
0 t1/2. This follows immedi-

ately by Lemmas 4.12 and 4.13. The lower bound follows directly from Lemmas 4.11, 4.12

and 4.13. Assume that at most k − 1 vertices added before t1 have degree exceeding

the lower bound t−1
0 t1/2. Then the total degree of the supernode formed by the first t0

vertices is O(t1/6
0

√
t). This contradicts Lemma 4.11. Finally, since each vertex s ≥ t1

has degree at most t−2
0

√
t � t−1

0 t1/2 the k highest degree vertices are added before t1

whp.

The proof of Theorem 4.3 is completed with the following lemma.

Lemma 4.15. The k highest degrees satisfy ∆i ≤ ∆i−1 −
√

t
f(t) whp.

Proof. Let A4 denote the event that there are two vertices among the first t1 with degree

t−1
0 t1/2 and within

√
t

f(t) of each other. By the definition of conditional probability and

Lemma 4.12

Pr [A4] = Pr
[
A4|Ā3

]
Pr
[
Ā3

]
+ Pr [A4|A3] Pr [A3] ≤ Pr

[
A4|Ā3

]
+ o(1)

it suffices to show that Pr
[
A4|Ā3

]
= o(1). Note that by a simple union bound

Pr [A4] ≤
∑

1≤s1<s2≤t1

√
t

f(t)∑
l=−

√
t

f(t)

pl,s1,s2 = O
(
t21

√
t

f(t)
max pl,s1,s2

)

where pl,s1,s2 = Pr
[
dt(s1)− dt(s2) = l|Ā3

]
.

We consider two cases and we show that in both cases max pl,s1,s2 = o( f(t)

t21
√

t
).

• Case 1 (s1, s2) /∈ E(Gt):

Note that at time t1 there exist mt1 = 3t1 + 3 < 4t1 edges in Gt1 .
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pl,s1,s2 ≤
t
1/6
0 t1/2∑

r=t−1
0 t1/2

4t1∑
d1,d2=3

Pr [dt(s1) = r ∧ dt(s2) = r − l|dt1(s1) = d1, dt1(s2) = d2] (2)

≤ t
1/6
0 t1/2

4t1∑
d1,d2=3

(
2t

1/6
0 t1/2

d1 − 1

)(
2t

1/6
0 t1/2

d2 − 1

)(2t0 + 3
2t + 1

)(d1+d2)/2
e

3
2
+t1+

2t
1/6
0
3 (3)

≤ t
1/6
0 t1/2

4t1∑
d1,d2=3

(2t
1/6
0 t1/2)d1+d2−2

(2t0 + 3
2t + 1

)(d1+d2)/2
e2t1

≤ t
1/6
0 t1/2e2t1t21(2t

1/6
0 t1/2)8t1−2

(2t0 + 3
2t + 1

)4t1

= t
4t1/3+1/6
0 t−1/2e2t1t2128t1(2t0 + 3)4t1

( t

2t + 1

)4t1

= o
( f(t)

t21
√

t

)

Note that we omitted the tedious calculation justifying the transition from (2) to (3)

since calculating the upper bound of the joint probability distribution is very similar to

the calculation of Lemma 4.11.

• Case 2 (s1, s2) ∈ E(Gt) :

Notice that in any case (s1, s2) share at most two faces (which may change over time).

Note that the two connected vertices s1, s2 share a common face only if s1, s2 ∈ {1, 2, 3}3.

Consider the following modified process Y ′: whenever an incoming vertex “picks” one

of the two common faces we don’t insert it. We choose two other faces which are not

common to s1, s2 and add one vertex in each of those. Notice that the number of

faces increases by 1 for both s1, s2 as in the original process and the difference of the

degrees remains the same. An algebraic manipulation similar to Case 1 gives the desired

result.

4.5 Proof of Theorem 4.4

Having computed the highest degrees of a RAN in Section 4.4, eigenvalues are computed

by adapting existing techniques [113, 171, 302]. We decompose the proof of Theorem 4.4

in Lemmas 4.16, 4.17, 4.18, 4.19. Specifically, in Lemmas 4.16, 4.17 we bound the

degrees and co-degrees respectively. Having these bounds, we decompose the graph into
3We analyze the case where s1, s2 ≥ 4. The other case is treated in the same manner.
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a star forest and show in Lemmas 4.18 and 4.19 that its largest eigenvalues, which are

(1 ± o(1))
√

∆i, dominate the eigenvalues of the remaining graph. This technique was

pioneered by Mihail and Papadimitriou [302].

We partition the vertices into three set S1, S2, S3. Specifically, let Si be the set of vertices

added after time ti−1 and at or before time ti where

t0 = 0, t1 = t1/8, t2 = t9/16, t3 = t.

In the following we use the recursive variational characterization of eigenvalues [115].

Specifically, let AG denote the adjacency matrix of a simple, undirected graph G and

let λi(G) denote the i-th largest eigenvalue of AG. Then

λi(G) = min
S

max
x∈S,x 6=0

xT AGx

xT x

where S ranges over all (n− i + 1) dimensional subspaces of Rn.

Lemma 4.16. For any ε > 0 and any f(t) with f(t) → +∞ as t → +∞ the following

holds whp: for all s with f(t) ≤ s ≤ t, for all vertices r ≤ s, then ds(r) ≤ s
1
2+εr−

1
2 .

Proof. Set q =
⌈

4
ε

⌉
. We use Lemma 4.10, a union bound and Markov’s inequality to

obtain:

Pr

 t⋃
s=f(t)

s⋃
r=1

{ds(r) ≥ s1/2+εr−1/2}

 ≤ t∑
s=f(t)

s∑
r=1

Pr
[
ds(r)(q) ≥ (s1/2+εr−1/2)(q)

]

≤
t∑

s=f(t)

s∑
r=1

Pr
[
ds(r)(q) ≥ (s−(q/2+qε)rq/2)

]

≤
t∑

s=f(t)

s∑
r=1

(q + 2)!
2

(2s

r

)q/2
s−q/2s−qεrq/2

=
(q + 2)!

2
2q/2

t∑
s=f(t)

s1−qε

≤ (q + 2)!
2

2q/2

∫ t

f(t)−1
x1−qε dx

≤ (q + 2)!
2(qε− 2)

2q/2(f(t)− 1)2−qε = o(1).
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Lemma 4.17. Let S′3 be the set of vertices in S3 which are adjacent to more than one

vertex of S1. Then |S′3| ≤ t1/6 whp.

Proof. First, observe that when vertex s is inserted it becomes adjacent to more than

one vertex of S1 if the face chosen by s has at least two vertices in S1. We call the latter

property A and we write s ∈ A when s satisfies it. At time t1 there exist 2t1 + 1 faces

total, which consist of faces whose three vertices are all from S1. At time s ≥ t2 there can

be at most 6t1 + 3 faces with at least two vertices in S1 since each of the original 2t1 + 1

faces can give rise to at most 3 new faces with at least two vertices in s1. Consider

a vertex s ∈ S3, i.e., s ≥ t2. By the above argument, Pr [|N(s) ∩ S1| ≥ 2] ≤ 6t1+3
2t+1 .

Writing |S′3| as a sum of indicator variables, i.e., |S′3| =
∑t

s=t2
I(s ∈ A) and taking the

expectation we obtain

E
[
|S′3|

]
≤

t∑
s=t2

6t1 + 3
2t + 1

≤ (6t1 + 3)
∫ t

t2

(2x + 1)−1 dx

≤ (3t
1
8 + 3

2) ln
2t + 1
2t2 + 1

= o(t1/7)

By Markov’s inequality:

Pr
[
|S′3| ≥ t1/6

]
≤ E [|S′3|]

t1/6
= o(1).

Therefore, we conclude that |S′3| ≤ t1/6 whp.

Lemma 4.18. Let F ⊆ G be the star forest consisting of edges between S1 and S3−S′3.

Let ∆1 ≥ ∆2 ≥ . . . ≥ ∆k denote the k highest degrees of G. Then λi(F ) = (1−o(1))
√

∆i

whp.

Proof. It suffices to show that ∆i(F ) = (1 − o(1))∆i(G) for i = 1, . . . , k. Note that

since the k highest vertices are inserted before t1 whp, the edges they lose are the

edges between S1 and the ones incident to S′3 and S2 and we know how to bound the

cardinalities of all these sets. Specifically by Lemma 4.17 |S′3| ≤ t1/6 whp and by

Theorem 4.3 the maximum degree in Gt1 , Gt2 is less than t
1/2+ε1
1 = t1/8, t

1/2+ε2
2 = t5/16

for ε1 = 1/16, ε2 = 1/32 respectively whp. Also by Theorem 4.3, ∆i(G) ≥
√

t
log t . Hence,

we obtain

∆i(F ) ≥ ∆i(G)− t1/8 − t5/16 − t1/6 = (1− o(1))∆i(G).
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To complete the proof of Theorem 4.4 it suffices to prove that λ1(H) is o(λk(F )) where

H = G − F . We prove this in the following lemma. The proof is based on bounding

maximum degree of appropriately defined subgraphs using Lemma 4.16 and standard

inequalities from spectral graph theory [115].

Lemma 4.19. λ1(H) = o(t1/4) whp.

Proof. From Gershgorin’s theorem [375] the maximum eigenvalue of any graph is bounded

by the maximum degree. We bound the eigenvalues of H by bounding the maxi-

mum eigenvalues of six different induced subgraphs. Specifically, let Hi = H[Si],

Hij = H(Si, Sj) where H[S] is the subgraph induced by the vertex set S and H(S, T )

is the subgraph containing only edges with one vertex is S and other in T . We use

Lemma 4.18 to bound λ1(H(S1, S3)) and Lemma 4.17 for the other eigenvalues. We set

ε = 1/64.

λ1(H1) ≤ ∆1(H1) ≤ t
1/2+ε
1 = t33/512.

λ1(H2) ≤ ∆1(H2) ≤ t
1/2+ε
2 t

−1/2
1 = t233/1024.

λ1(H3) ≤ ∆1(H3) ≤ t
1/2+ε
3 t

−1/2
2 = t15/64.

λ1(H12) ≤ ∆1(H12) ≤ t
1/2+ε
2 = t297/1024.

λ1(H23) ≤ ∆1(H23) ≤ t
1/2+ε
3 t

−1/2
1 = t29/64.

λ1(H13) ≤ ∆1(H13) ≤ t1/6.

Therefore whp we obtain

λ1(H) ≤
3∑

i=1

λ1(Hi) +
∑
i<j

λ1(Hi,j) = o(t1/4).

4.6 Proof of Theorem 4.5

Before we give the proof of Theorem 4.5, we give a simple proof that the diameter of a

RAN is O(log t) whp.
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Figure 4.3: An instance of the process for t = 2. Each face is labeled with its depth.

We begin with a necessary definition for the proof of Claim (2). We define the depth of

a face recursively. Initially, we have three faces, see Figure 4.1(a), whose depth equals 1.

For each new face β created by subdividing a face γ, we have depth(β) = depth(γ) + 1.

An example is shown in Figure 4.3, where each face is labeled with its corresponding

depth.

Claim 2 (2). The diameter d(Gt) satisfies d(Gt) = O(log t) whp.

Proof. A simple but key observation is that if k∗ is the maximum depth of a face then

d(Gt) = O(k∗). Hence, we need to upper bound the depth of a given face after t rounds.

Let Ft(k) be the number of faces of depth k at time t, then:

E [Ft(k)] =
∑

1≤t1<t2<...<tk≤t

k∏
j=1

1
2tj + 1

≤ 1
k!

(
t∑

j=1

1
2j + 1

)k ≤ 1
k!

(
1
2

log t)k ≤ (
e log t

2k
)k+1

By the first moment method we obtain k∗ = O(log t) whp and by our observation

d(Gt) = O(log t) whp.

The depth of a face can be formalized via a bijection between random ternary trees and

RANs. Using this bijection we prove Theorem 4.5 which gives a refined upper bound on

the asymptotic growth of the diameter.

Proof. Consider the random process which starts with a single vertex tree and at every

step picks a random leaf and adds three children to it. Let T be the resulting tree after

t steps. There exists a natural bijection between the RAN process and this process, see

[128] and also Figure 4.4. The depth of T in probability is ρ
2 log t where 1

ρ = η is the

unique solution less than 1 of the equation η−1− log η = log 3, see Broutin and Devroye
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Figure 4.4: RANs as random ternary trees.

Figure 4.5: The height of the random ternary tree cannot be used to lower bound
the diameter. The height of the random ternary tree can be arbitrarily large but the

diameter is 2.

[93], pp. 284-2854. Note that the diameter d(Gt) is at most twice the height of the tree

and hence the result follows.

The above observation, i.e., the bijection between RANs and random ternary trees

cannot be used to lower bound the diameter. A counterexample is shown in Figure 4.5

where the height of the random ternary tree can be made arbitrarily large but the

diameter is 2. Albenque and Marckert proved in [297] that if v, u are two i.i.d. uniformly

random internal vertices, i.e., v, u ≥ 4, then the distance d(u, v) tends to 6
11 log n with

probability 1 as the number of vertices n of the RAN grows to infinity. Finally, it is

worth mentioning that the diameter of the RAN grows faster asymptotically than the

diameter of the classic preferential attachment model [50] which whp grows as log t
log log t ,

see Bollobás and Riordan [79].

4 There is a typo in [93]. Specifically it says “ρ is the unique solution greater than 1 of ...,”. However,
based on their Theorem 1, they should replace “greater than” with “less than”. Thanks to Abbas
Mehrabian for pointing this out.



Chapter 5

Triangle Counting in Large

Graphs

5.1 Introduction

In this Chapter we focus on algorithmic techniques for approximate triangle counting in

large graphs. Despite the fact that the subgraph of interest is a triangle, our techniques

are extendable to counting other types of fixed-size subgraphs. The outline of this

Chapter is as follows: in Section 5.2 we present triangle sparsifiers, a notion inspired

by the seminal work of Benczúr and Karger [64] and Spielman and Srivastava [370].

Specifically, we present a new randomized algorithm for approximately counting the

number of triangles in a graph G. The algorithm proceeds as follows: keep each edge

independently with probability p, enumerate the triangles in the sparsified graph G′ and

return the number of triangles found in G′ multiplied by p−3. We prove that under mild

assumptions on G and p our algorithm returns a good approximation for the number of

triangles with high probability.

We illustrate the efficiency of our algorithm on various large real-world datasets where

we achieve significant speedups. Furthermore, we investigate the performance of existing

sparsification procedures namely the Spielman-Srivastava spectral sparsifier [370] and the

the Benczúr-Karger cut sparsifier [63, 64] and show that they are not optimal/suitable

with respect to triangle counting.

In Section 5.3 we propose a new triangle counting method which provides a (1 ±
ε) multiplicative approximation to the number of triangles in the graph and runs in

O
(
m + m3/2 log n

tε2

)
time. The key idea of the method is to combine the sampling scheme

introduced by Tsourakakis et al. in [394, 396] with the partitioning idea of Alon, Yuster

86
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and Zwick [25] in order to obtain a more efficient sampling scheme. Furthermore, we

show that this method can be adapted to the semistreaming model [164] with a constant

number of passes and O
(
m1/2 log n + m3/2 log n

tε2

)
space. We apply our methods in var-

ious networks with several millions of edges and we obtain excellent results both with

respect to the accuracy and the running time. Finally, we propose a random projection

based method for triangle counting and provide a sufficient condition to obtain an esti-

mate with low variance. Even if such a method is unlikely to be practical it raises some

interesting theoretical issues.

In Section 5.4 we present an (almost) optimal algorithm for triangle counting. The

proposed randomized algorithm is analyzed via the second moment method and provides

tight theoretical guarantees. We discuss various aspects of the proposed algorithm,

including an implementation in MapReduce.

5.2 Triangle Sparsifiers

5.2.1 Proposed Algorithm

Algorithm 1 Triangle Sparsifier

Input: Set of edges E ⊆
(
[n]
2

)
{Unweighted graph G([n], E)}

Input: Sparsification parameter p
Pick a random subset E′ of edges such that the events {e ∈ E′}, for all e ∈ E are
independent and the probability of each is equal to p.
t′ ← count triangles on the graph G′([n], E′)
Return T ← t′

p3

Our proposed algorithm Triangle Sparsifier is shown in Algorithm 1. The algorithm

takes an unweighted, simple graph G(V,E), where without loss of generality we assume

V = [n], and a sparsification parameter p ∈ (0, 1) as input. The algorithm first chooses

a random subset E′ of the set E of edges. The random subset is such that the events

{
e ∈ E′}, for all e ∈ E,

are independent and the probability of each is equal to p. Then, any triangle counting

algorithm can be used to count triangles on the sparsified graph with edge set E′. Clearly,

the expected size of E′ is pm. The output of our algorithm is the number of triangles

in the sparsified graph multiplied by 1
p3 , or equivalently we are counting the number of

weighted triangles in G′ where each edge has weight 1
p . It follows immediately that the
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expected value E [T ] of our estimate is the number of triangles in G, i.e., t. Our main

theoretical result is the following theorem:

Theorem 5.1. Suppose G is an undirected graph with n vertices, m edges and t trian-

gles. Let also ∆ denote the size of the largest collection of triangles with a common edge.

Let G′ be the random graph that arises from G if we keep every edge with probability p

and write T for the number of triangles of G′. Suppose that γ > 0 is a constant and

pt

∆
≥ log6+γ n, if p2∆ ≥ 1, (5.1)

and

p3t ≥ log6+γ n, if p2∆ < 1. (5.2)

for n ≥ n0 sufficiently large. Then

Pr [|T − E [T ]| ≥ εE [T ]] ≤ n−K

for any constants K, ε > 0 and all large enough n (depending on K, ε and n0).

Proof. Write Xe = 1 or 0 depending on whether the edge e of graph G survives in

G′. Then T =
∑

∆(e,f,g) XeXfXg where ∆(e, f, g) = 1 (edges e, f, g form a triangle).

Clearly E [T ] = p3t.

Refer to Theorem 2.4. We use T in place of Y , k = 3.

We have

E
[

∂T

∂Xe

]
=

∑
∆(e,f,g)

E [XfXg] = p2|∆(e)|.

We first estimate the quantities Ej(T ), j = 0, 1, 2, 3, defined before Theorem 2.4. We get

E1(T ) = p2∆. (5.3)

We also have

E
[

∂2T

∂Xe∂Xf

]
= p1 (∃g : ∆(e, f, g)) ,

hence

E2(T ) ≤ p. (5.4)

Obviously, E3(T ) ≤ 1.

Hence

E≥3(T ) ≤ 1, E≥2(T ) ≤ 1,
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and

E≥1(T ) ≤ max
{

1, p2∆
}
, E≥0(T ) ≤ max

{
1, p2∆, p3t

}
.

• Case 1 (p2∆ < 1):

We get E≥1(T ) ≤ 1, and from (5.2), E [T ] ≥ E≥1(T ).

• Case 2 (p2∆ ≥ 1):

We get E≥1(T ) ≤ p2∆ and, from (5.1), E [T ] ≥ E≥1(T ).

We get, for some constant c3 > 0, from Theorem 2.4:

Pr
[
|T − E [T ]| ≥ c3λ

3(E [T ] E≥1(T ))1/2
]
≤ e−λ+2 log n. (5.5)

Notice that since in both cases we have E [T ] ≥ E≥1(T ).

We now select λ so that the lower bound inside the probability on the left-hand side of

(5.5) becomes εE [T ]. In Case 1 we pick

λ =
ε1/3

c
1/3
3

(p3t)1/6

while in Case 2

λ =
ε1/3

c
1/3
3

(
pt

∆

)1/6

to get

Pr [|T − E [T ]| ≥ εE [T ]] ≤ exp(−λ + 2 log n) (5.6)

Since λ ≥ (K + 2) log n follows from our assumptions (5.1) and (5.2) if n is sufficiently

large, we get Pr [|T − E [T ]| ≥ εE [T ]] ≤ n−K , in both cases.

Complexity Analysis: The expected running time of edge sampling is sublinear, i.e.,

O(pm), see Claim 3. The complexity of the counting step depends on which algorithm

we use to count triangles1. For instance, if we use [25] as our triangle counting algorithm,

the expected running time of Triangle Sparsifier is O(pm+(pm)
2ω

ω+1 ), where ω currently is

2.3727 [416]. If we use the node-iterator (or any other standard listing triangle algorithm)

the expected running time is O(pm + p2
∑

i d
2
i ).

Claim 3 (Sparsification in sublinear expected time). The edge sampling can run in

O(pm) expected time.
1We assume for fairness that we use the same algorithm in both the original graph G and the sparsified

graph G′ to count triangles.
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Proof. We do not “toss a p-coin” m times in order to construct E′. This would be

very wasteful if p is small. Instead we construct the random set E′ with the follow-

ing procedure which produces the right distribution. Observe that the number X of

unsuccessful events, i.e., edges which are not selected in our sample, until a success-

ful one follows a geometric distribution. Specifically, Pr [X = x] = (1 − p)x−1p. To

sample from this distribution it suffices to generate a uniformly distributed variable

U in [0, 1] and set X ←
⌈

lnU
1−p

⌉
. Clearly the probability that X = x is equal to

Pr
[
(1− p)x−1 > U ≥ (1− p)x

]
= (1 − p)x−1 − (1 − p)x = (1 − p)x−1p as required.

This provides a practical and efficient way to pick the subset E′ of edges in subliner

expected time O(pm). For more details see [256].

Expected Speedup: The expected speedup with respect to the triangle counting task

depends on the triangle counting subroutine that we use. If we use [25] as our subroutine

which is the fastest known algorithm, the expected speedup is p−
2ω

ω+1 , i.e., currently

p−1.407 where ω currently is 2.3727 [416]. As already outlined, in practice p−
2ω

ω+1 , i.e.,

currently p−1.41, and p−2 respectively.

Discussion: This theorem states the important result that the estimator of the number

of triangles is concentrated around its expected value, which is equal to the actual

number of triangles t in the graph under mild conditions on the triangle density of the

graph. The mildness comes from condition (5.1): picking p = 1, given that our graph

is not triangle-free, i.e., ∆ ≥ 1, gives that the number of triangles t in the graph has to

satisfy t ≥ ∆ log6+γ n. This is a mild condition on t since ∆ ≤ n and thus it suffices that

t ≥ n log6+γ n (after all, we can always add two dummy connected nodes that connect

to every other node, as in Figure 1(a), even if in empirically ∆ is smaller than n). The

critical quantity besides the number of triangles t, is ∆. Intuitively, if the sparsification

procedure throws away the common edge of many triangles, the triangles in the resulting

graph may differ significantly from the original. A significant problem is the choice of

p for the sparsification. Conditions (5.1) and (5.2) tell us how small we can afford to

choose p, but the quantities involved, namely t and ∆, are unknown. We discuss a

practical algorithm using a doubling procedure in Section 5.2.2.4. Furthermore, our

method justifies significant speedups. For a graph G with t ≥ n3/2+ε and ∆ ∼ n , we

get p = n−1/2 implying a linear expected speedup if we use a practical exact counting

method as the node iterator. Finally, it is worth pointing out that Triangle Sparsifier

essentially outputs a sparse graph H(V,E′, w) with w = 1/p for all edges e ∈ E′ which

approximates G(V,E) with respect to the count of triangles (a triangle formed by the

edges (e1, e2, e3) in a weighted graph counts for w(e1)w(e2)w(e3) unweighted triangles).

As we shall see in Chapter 13, see Figure 13.2, Triangle Sparsifier is not recommended for

weighted graphs. Finally, it is worth mentioning that the sparsification scheme which has
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Description Availability
SNAP http://snap.stanford.edu/

UF Sparse Matrix Collection http://www.cise.ufl.edu/research/sparse
Max Planck http://socialnetworks.mpi-sws.org/

Table 5.1: Dataset sources.

been used for speeding up the computation of linear algebraic decompositions [11, 389]

has also been used to count triangles based on spectral properties of real-world networks

[390, 393, 395].

5.2.2 Experimental Results

In this Section we present our experimental findings. Specifically, in Section 5.2.2.1 we

describe the datasets we used, in Section 5.2.2.2 we give details with respect to the

experimental setup and in Section 5.2.2.3 the experimental results.

5.2.2.1 Datasets

The graphs we used with the exceptions of Livejournal-links and Flickr are available

on the Web. Table 5.1 summarizes the data resources. We preprocessed the graphs

by first making them undirected and removing all self-loops. Furthermore, a common

phenomenon was to have multiple edges in the edge file, i.e., a file whose each line

corresponds to an edge, despite the fact that the graphs were claimed to be simple.

Those multiple edges were removed. Table 5.2 summarizes the datasets we used after

the preprocessing.

5.2.2.2 Experimental Setup

The experiments were performed on a single machine, with Intel Xeon CPU at 2.83 GHz,

6144KB cache size and and 50GB of main memory. The algorithm was implemented

in C++, and compiled using gcc version 4.1.2 and the -O3 optimization flag. Time

was measured by taking the user time given by the linux time command. IO times are

included in that time since the amount of memory operations performed in setting up

the graph is non-trivial. However, we use a modified IO routine that’s much faster than

the standard C/C++ scanf. Furthermore, as we mentioned in Section 5.2.1 picking a

random subset of expected size p|S| from a set S can be done in expected sublinear

time [256]. A simple way to do this in practice is to generate the differences between

indices of entries retained. This allows us to sample in a sequential way and also results

http://snap.stanford.edu/
http://www.cise.ufl.edu/research/sparse
http://socialnetworks.mpi-sws.org/
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Name (Abbr.) Nodes Edges Triangle Count
� AS-Skitter (AS) 1,696,415 11,095,298 28,769,868
?Flickr (FL) 1,861,232 15,555,040 548,658,705
?Livejournal-links (LJ) 5,284,457 48,709,772 310,876,909
?Orkut-links (OR) 3,072,626 116,586,585 621,963,073
?Soc-LiveJournal (SL) 4,847,571 42,851,237 285,730,264
?Youtube (YOU) 1,157,822 2,990,442 4,945,382
�Web-EDU (WE) 9,845,725 46,236,104 254,718,147
�Web-Google (WG) 875,713 3,852,985 11,385,529
�Wikipedia 2005/11 (W0511) 1,634,989 18,540,589 44,667,095
�Wikipedia 2006/9 (W0609) 2,983,494 35,048,115 84,018,183
�Wikipedia 2006/11 (W0611) 3,148,440 37,043,456 88,823,817
�Wikipedia 2007/2 (W0702) 3,566,907 42,375,911 102,434,918

Table 5.2: Datasets used in our experiments. Abbreviations are included. Symbol
� stands for Autonomous Systems graphs, ? for online social networks and � for Web
graphs. Notice that the networks with the highest triangle counts are online social
networks (Flickr, Livejournal, Orkut), verifying the folklore that online social networks

are abundant in triangles.

in better cache performance. As a competitor we use the single pass algorithm of [96, §
2.2].

5.2.2.3 Experimental Results

Table 5.2 shows the count of triangles for each graph used in our experiments. No-

tice that Orkut, Flickr and Livejournal graphs have ∼622M, 550M and 311M triangles

respectively. This confirms the folklore that online social networks are abundant in tri-

angles. Table 5.3 shows the results we obtain for p = 0.1 over 5 trials. All running times

are reported in seconds. The first column shows the running time for the exact counting

algorithm over 5 runs. Standard deviations are neglibible for the exact algorithm and

therefore are not reported. The second and third column show the error and running

time averaged over 5 runs for each dataset (two decimal digits of accuracy). Standard

deviations are also included (three decimal digits of accuracy). The last column shows

the running time averaged over 5 runs for the 1-pass algorithm as stated in [96, §2.2] and

the standard deviations. For each dataset the number of samples needed by the 1-pass

algorithm was set to a value that achieves at most as good accuracy as the ones achieved

by our counting method. Specifically, for any dataset, if α, β(%) are the errors obtained

by our algorithm and the Buriol et al. algorithm, we “tune” the number of samples in

the latter algorithm in such way that α ≤ β ≤ α + 1%. Even by favoring in this way the

1-pass algorithm of Buriol et al. [96], one can see that the running times achieved by

our method are consistently better. However, it is important to outline once again that
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our method and other triangle counting methods can be combined. For example, in Sec-

tion 5.3 we show that Triangle Sparsifiers and other sampling methods can be combined

to obtain a superior performance both in practice and theory by improving the sampling

scheme of Buriol et al. [96]. As we will see in detail, this is achieved by distinguishing

vertices into two subsets according to their degree and using two sampling schemes, one

for each subset [257, 311]. We also tried other competitors, but our running times out-

perform them significantly. For example, even the exact counting method outperforms

other approximate counting methods. As we show in Section 5.2.2.4 smaller values of p

values work as well and these can be found by a simple procedure.

Results
Exact Triangle Sparsifier Buriol et al. [96]

Avg. time Avg. err.% (std) Avg. time (std) Avg. time (std)
AS 4.45 2.60 (0.022) 0.79 (0.023) 2.72 (0.128)
FL 41.98 0.11 (0.003) 0.96 (0.014) 3.40 (0.175)
LJ 50.83 0.34 (0.001) 2.85 (0.054) 12.40 (0.250)
OR 202.01 0.60 (0.004) 5.60 (0.159) 11.71 (0.300)
SL 38.27 8.27 (0.006) 2.50 (0.032) 8.92 (0.115)
YOU 1.35 1.50 (0.050) 0.30 (0.002) 10.91 (0.130)
WE 8.50 0.70 (0.005) 2.79 (0.090) 6.56 (0.025)
WG 1.60 1.58 (0.011) 0.40 (0.004) 1.85 (0.047)
W0511 32.47 1.53 (0.010) 1.19 (0.020) 3.71 (0.038)
W0609 86.62 0.40 (0.055) 2.07 (0.014) 8.10 (0.040)
W0611 96.11 0.62 (0.008) 2.16 (0.042) 7.90 (0.090)
W0702 122.34 0.80 (0.015) 2.48 (0.012) 11.00 (0.205)

Table 5.3: Results of experiments averaged over 5 trials using p = 0.1. All running
times are reported in seconds. The first column shows the running time for the exact
counting algorithm averaged over 5 runs. The second and third column show the
error and running time averaged over 5 runs for each dataset (two decimal digits of
accuracy). Standard deviations are also included (three decimal digits of accuracy).
The last column shows the running time averaged over 5 runs for the 1-pass algorithm
as stated in [96, §2.2] and the corresponding standard deviations. The number of
samples for each dataset was set to a value that achieves at most as good accuracy as

the ones achieved by our counting method. See Section 5.2.2.3 for all the details.

5.2.2.4 The “Doubling” Algorithm

As we saw in Section 5.2.1, setting optimally the parameter p requires knowledge of the

quantity we want to estimate, i.e., the number of triangles. To overcome this problem

we observe that when we have concentration, the squared coefficient of variation Var[T ]

E[T ]2

is “small”. Furthermore, by the Chebyshev inequality and by the median boosting trick

[224] it suffices to sample {T1, . . . , Ts} where s = O(Var[T ]

E[T ]2
1
ε2

ln 1
δ ) in order to obtain a

(1 ± ε) approximation E [T ] = t with probability at least 1-δ. Hence, one can set a

desired value for the number of samples s and of the failure probability δ and calculate
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the expected error ε = O(
√

Var[T ]

E[T ]2
1
s ln 1

δ ). If this value is significantly larger than the

desired error threshold then one increases p and repeats the same procedure until the

stopping criterion is satisfied. One way one can change p is to use the multiplicative

rule p ← cp, where c > 1 is a constant. For example, if c = 2 then we have a doubling

procedure. Notice that we’ve placed the word doubling in the title of this section in

quotes in order to emphasize that one may use any c > 1 to change p from one round

to the next.

For how many rounds can this procedure run? Let’s consider the realistic scenario where

one wishes to be optimistic and picks as an initial guess for p a value p0 = n−α where

α is a positive constant, e.g., α = 1/2. Let p∗ be the minimum value over all possible p

with the property that for p∗ we obtain a concentrated estimate of the true number of

triangles. Clearly, p∗ ≤ 1 and hence the number of rounds performed by our procedure

is less that r where p0c
r = 1. Hence, for any constant c > 1 we obtain that the number of

rounds performed by our algorithm is O(log n). Furtermore, note that the running time

of the doubling procedure is dominated by the last iteration. To see why, consider for

simplicity the scenario where r + 1 rounds are needed to deduce concentration, c =
√

2

and the use of the node-iterator algorithm to count triangles in the triangle sparsifier.

Then, the total running time shall be p2
0

∑
v∈V (G) d(v)2

(
1+2+ . . .+2r−1 +2r

)
. Finally,

observe that 1 + 2 + ... + 2r−1 = O(2r). In practice, this procedure works even for small

values of s. An instance of this procedure with s = 2, δ = 1/100 and error threshold

equal to 3% is shown in Table 5.4.

p {T1, T2}
√

Var[T ]

E[T ]2
1
s ln 1

δ err(%)

0.01 {42, 398, 007 & 50, 920, 488} 0.1960 4.46
0.02 {42, 540, 941 & 43, 773, 753} 0.0307 3.38
0.04 {44, 573, 294 & 43, 398, 549} 0.0287 1.52

Table 5.4: Doubling procedure for the Wikipedia 2005 graph with 44,667,095 trian-
gles.

5.2.3 Theoretical Ramifications

In this Section we investigate the performance of the Benczúr-Karger cut sparsifier and

the Spielman-Srivastava spectral sparsifier with respect to triangle counting.

Consider the graph G shown in Figure 5.1. The strong edge connectivity of any edge

in the graph is 2 and therefore the Benczúr-Karger algorithm does not distinguish the

importance of the edge e = (1, 2) with respect to triangle counting. The Spielman-

Srivastava sparsifier with probability 1 − o(1) throws away the critical edge e = (1, 2)
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Figure 5.1: Graph with linear number O(n) of triangles.

as the number of vertices n tends to infinity. To prove this claim, we need use Foster’s

theorem 2.9.

Claim 4. The effective resistance R(1, 2) of the edge (1, 2) tends to 0 as n grows to infin-

ity, i.e., R(1, 2) = o(1). Furthermore, all other edges have constant effective resistance.

Proof. Using the in-series and in-parallel network simplification rules [76], the effective

conductance of the edge (1, 2) is 1 +
∑n−2

i=1
1
2 = n

2 . Hence, the effective resistance of

the edge e = (1, 2) is 2/n, which also proves the first part of our claim. By Foster’s

theorem 2.9, the sum of the effective resistances of the edges of G is n − 1. Due to

symmetry, we obtain that R(1,3) = R(2,3) = R(1,4) = R(2,4) = . . . = R(1,n) = R(2,n) = Rn.

Therefore we obtain 2
n + 2(n − 2)Rn = n − 1 → Rn = n2−n−2

2n2−4n
. Asymptotically as

n→ +∞, Rn → 1
2 .

Clearly, the Spielman-Srivastava sparsifier fails to capture the importance of the edge

(1, 2) with respect to triangle counting. Finding an easy-to-compute quantity which

allows a sparsification that preserves triangles more efficiently is an interesting problem.

It is worth outlining that our analysis does not exclude effective resistances which can

be computed very efficiently [259], but the use of them as is typically done in the context

of spectral sparsifiers.

5.3 Efficient Triangle Counting in Large Graphs via Degree-

based Vertex Partitioning

5.3.1 Proposed Method

Our algorithm combines two approaches that have been taken on triangle counting:

sparsify the graph by keeping a random subset of the edges, see Section 5.2, followed by

a triple sampling using the idea of vertex partitioning due to Alon, Yuster and Zwick
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[29]. In the following, we shall assume that the input is in the form of an edge file, i.e., a

file whose each line contains an edge. Notice that given this representation, computing

the degrees takes linear time.

5.3.1.1 Edge Sparsification

As we saw in Section 5.2 the following method performs very well in practice: keep each

edge with probability p independently. Then for each triangle, the probability of being

kept is p3. So the expected number of triangles left is p3t. This is an inexpensive way to

reduce the size of the graph as it can be done in one pass over the edge list using O(mp)

random variables.

We also proved that from the number of triangles in the sampled graph we can o btain

a concentrated estimate around the actual triangle count as long as p3 ≥ Ω̃(∆
t )2. Here,

we show a similar bound using more elementary techniques. Suppose we have a set of

k triangles such that no two share an edge. For each such triangle we define a random

variable Xi which is 1 if the triangle is kept by the sampling and 0 otherwise. Then as

the triangles do not have any edges in common, the Xis are independent and take value

0 with probability 1− p3 and 1 with probability p3. So by Chernoff inequality 2.2

Pr

[
|1
k

k∑
i=1

Xi − p3| > εp3

]
≤ 2e−ε2p3k/2.

So when p3kε2 ≥ 4d log n where d is a positive constant, the probability of sparsifi-

cation returning an ε-approximation is at least 1 − n−d. This is equivalent to p3k ≥
(4d log n)/(ε2) which suggests that in order to sample with small p and hence discard

many edges we need like k to be large. To show that such a large set of independent

triangles exist, we invoke the Hajnal-Szemerédi Theorem 2.6 on an auxiliary graph H

which we construct as follows. For each triangle i (i = 1, . . . , t) in G we create a vertex

vi in H. We connect two vertices vi, vj in H if and only if they represent triangles i, j

respectively which share an edge in G. Notice that the maximum degree in the auxiliary

graph H is O(∆). Hence, we obtain the following Corollary.

Corollary 5.2. Given t triangles such that no edge belongs to more than ∆ triangles,

we can partition the triangles into sets S1 . . . Sl such that |Si| > Ω(t/∆) and l is bounded

by O(∆).

Combining Corollary 5.2 and the Chernoff bound allows us to prove the next theorem.
2We use the tilde notation to hide polylogarithmic factors polylog(n).
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Theorem 5.3. If p3 ∈ Ω(∆ log n
ε2t

), then with probability 1− n−2, the sampled graph has

a triangle count that ε-approximates t.

Proof. Consider the partition of triangles given by corollary 5.2 and let d = 5. By choice

of p we get that the probability that the triangle count in each set is preserved within

a factor of ε/2 is at least 1− n−d. Since there are at most n3 such sets, an application

of the union bounds gives that their total is approximated within a factor of ε/2 with

probability at least 1−n3−d. This gives that the triangle count is approximated within a

factor of ε with probability at least 1−n3−d. Substituting d = 5 completes the proof.

5.3.1.2 Triple Sampling

Since each triangle corresponds to a triple of vertices, we can construct a set of triples

U that include all triangles. From this list, we can then sample triples uniformly at

random. Let these samples be numbered from 1 to s. Also, for the ith triple sampled,

let Xi be 1 if it is a triangle and 0 otherwise. Since we pick triples randomly from U and

t of them are triangles, we have E(Xi) = t
|U | and Xis are independent. So by Chernoff

bound we obtain:

Pr

[
|1
s

s∑
i=1

Xi −
t

|U |
| > ε

t

|U |

]
≤ 2e−ε2ts/(2|U |)

If s = Ω( |U | log n
tε2

), then we have that |U |
∑s

i=1
Xi
s approximates t within a factor of ε

with probability at least 1− n−d for any d of our choice. As |U | ≤ n3, this immediately

gives an algorithm with runtime O(n3 log n/(tε2)) that approximates t within a factor

of ε. Slightly more careful bookkeeping can also give tighter bounds on |U | in sparse

graphs.

A simple but crucial observation which allows us to decide whether we will sample a

triple of vertices or an edge and a vertex is the following. Consider any triple containing

vertex u, (u, v, w). Since uv, uw ∈ E, we have the number of such triples involving u is

at most d(u)2. From an edge-vertex sampling point of view, as vw ∈ E, another bound

on the number of such triples is m. When d(u) > m1/2 , the second bound is tighter,

and the first is in the other case.

These two cases naturally suggest that low degree vertices with degree at most m1/2

be treated separately from high degree vertices with degree greater than m1/2. For the

number of triangles around low degree vertices, the value of
∑

u d(u)2 is maximized

when all edges are concentrated in as few vertices as possible [18]. Since the maximum
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degree of such a vertex is m1/2, the number of such triangles is upper bounded by

m1/2 · (m1/2)2 = m3/2. Also, as the sum of all degrees is 2m, there can be at most 2m1/2

high degree vertices, which means the total number of triangles incident to these high

degree vertices is at most 2m1/2 · m = 2m3/2. Combining these bounds give that |U |
can be upper bounded by 3m3/2. Note that this bound is asymptotically tight when G

is a complete graph (n = m1/2). However, in practice the second bound can be further

reduced by summing over the degree of all v adjacent to u, becoming
∑

uv∈E d(v). As a

result, an algorithm that implicitly constructs U by picking the better one among these

two cases by examining the degrees of all neighbors will achieve |U | ≤ O(m3/2).

This improved bound on U gives an algorithm that ε approximates the number of tri-

angles in time:

O

(
m +

m3/2 log n

tε2

)

As our experimental data in Section 4.1 indicate, the value of t is usually Ω(m) in

practice. In such cases, the second term in the above calculation becomes negligible

compared to the first one. In fact, in most of our data, just sampling the first type of

triples (aka. pretending all vertices are of low degree) brings the second term below the

first.

5.3.1.3 Hybrid algorithm

Edge sparsification with a probability of p allows us to only work on O(mp) edges,

therefore the total runtime of the triple sampling algorithm after sparsification with

probability p becomes:

O

(
mp +

log n(mp)3/2

ε2tp3

)
= O

(
mp +

log nm3/2

ε2tp3/2

)
.

As stated above, since the first term in most practical cases are much larger, we can set

the value of p to balance these two terms out:

pm =
m3/2 log n

p3/2tε2
⇒ p5/2tε2 = m1/2 log n⇒ p =

(
m1/2 log n

tε2

)2/5
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The actual value of p picked would also depend heavily on constants in front of both

terms, as sampling is likely much less expensive due to factors such as cache effect and

memory efficiency. Nevertheless, our experimental results in section 4 does seem to

indicate that this type of hybrid algorithms can perform better in certain situations.

5.3.1.4 Sampling in the Semi-Streaming Model

The previous analysis of triangle counting by Alon, Yuster and Zwick was done in the

streaming model [25], where the assumption was constant available space. We show

that our sampling algorithm can be done in a slightly weaker model with space usage

equaling:

O

(
m1/2 log n +

m3/2 log n

tε2

)

We assume the edges adjacent to each vertex are given in order [164]. We first need to

identify high degree vertices, specifically the ones with degree higher than m1/2. This can

be done by sampling O(m1/2 log n) edges and recording the vertices that are endpoints

of one of those edges.

Lemma 5.4. Suppose dm1/2 log n samples were taken, then the probability of all vertices

with degree at least m1/2 being chosen is at least 1− n−d+1.

Proof. Consider some vertex v with degree at least m1/2. The probability of it being

picked in each iteration is at least m1/2/m = m−1/2. As a result, the probability of it

not picked in dm1/2 log n iterations is:

(1−m−1/2)dm1/2 log n =
[
(1−m1/2)m1/2

]d log n
≤
(

1
e

)d log n

= n−d

As there are at most n vertices, applying union bound gives that all vertices with degree

at least m1/2 are sampled with probability at least 1− n−d+1.

Our proposed method is comprised of the following three steps/passes over the stream.

1. Identifying high degree vertices requires one pass of the graph. Also, note that the

number of potential candidates can be reduced to m1/2 using another pass over

the edge list.

2. For all the low degree vertices, we can read their O(m1/2) neighbors and sample

from them. For the high degree vertices, we do the following: for each edge,
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obtain a random variable y from a binomial distribution equal to the number of

edge/vertices pairs that this edge is involved in. Then pick y vertices from the

list of high degree vertices randomly. These two sampling procedures can be done

together in another pass over the data.

3. Finally, we need to check whether each edge in the sampled triples belong to the

edge list. We can store all such queries into a hash table as there are at most

O(m3/2 log n
tε2

) edges sampled w.h.p. Then going through the graph edges in a single

pass and looking them up in table yields the desired answer.

5.3.2 Experiments

5.3.2.1 Data

The graphs used in our experiments are shown in Table 5.5. Multiple edges and self

loops were removed (if any). All graphs with the exceptions of Livejournal-links and

Flickr are available on the Web. Table 5.1 summarizes the resources.

Name Nodes Edges Triangle Count Description
AS-Skitter 1,696,415 11,095,298 28,769,868 Autonomous Systems
Flickr 1,861,232 15,555,040 548,658,705 Person to Person
Livejournal-links 5,284,457 48,709,772 310,876,909 Person to Person
Orkut-links 3,072,626 116,586,585 621,963,073 Person to Person
Soc-LiveJournal 4,847,571 42,851,237 285,730,264 Person to Person
Web-EDU 9,845,725 46,236,104 254,718,147 Web Graph (page to page)
Web-Google 875,713 3,852,985 11,385,529 Web Graph
Wikipedia 2005/11 1,634,989 18,540,589 44,667,095 Web Graph (page to page)
Wikipedia 2006/9 2,983,494 35,048,115 84,018,183 Web Graph (page to page)
Wikipedia 2006/11 3,148,440 37,043,456 88,823,817 Web Graph (page to page)
Wikipedia 2007/2 3,566,907 42,375,911 102,434,918 Web Graph (page to page)
Youtube 1,157,822 2,990,442 4,945,382 Person to Person

Table 5.5: Datasets used in our experiments.

5.3.2.2 Experimental Setup and Implementation Details

The experiments were performed on a single machine, with Intel Xeon CPU at 2.83

GHz, 6144KB cache size and and 50GB of main memory. The graphs are from real

world web-graphs, some details regarding them are in Table 5.1 and in Table 5.5. The

algorithm was implemented in C++, and compiled using gcc version 4.1.2 and the -O3

optimization flag. Time was measured by taking the user time given by the linux time

command. IO times are included in that time since the amount of memory operations
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performed in setting up the graph is non-negligible. However, we use a modified IO

routine that’s much faster than the standard C/C++ scanf.

A major optimization that we used was to sort the edges in the graph and store the

input file in the format as a sequence of neighbor lists per vertex. Each neighbor list

begins with the size of the list, followed by the neighbors. This is similar to how software

like Matlab stores sparse matrices. The preprocessing time to change the data into this

format is not included. It can significantly improve the cache property of the graph

stored, and hence the overall performance.

Some implementation details are based on this graph storage format. Specifically, since

each triple that we check by definition has 2 edges already in the graph, it suffices to

check/query whether the 3rd edge is present in the graph. In order to do this efficiently,

rather than querying the existence of an edge upon sampling each triple, we store the

entire set of the queries and answer them in one pass through the graph.. Finally, in the

next section we discuss certain details behind efficient binomial sampling. Specifically

picking a random subset of expected size p|S| from a set S can be done in expected

sublinear time, as we already saw in Claim 3.

5.3.2.3 Binomial Sampling in Expected Sublinear time

Most of our algorithms have the following routine in their core: given a list of values,

keep each of them with probability p and discard with probability 1 − p. If the list

has length n, this can clearly be done using n random variables. As generating random

variables can be expensive, it’s preferrable to use O(np) random variables in expectation

if possible. One possibility is to pick O(np) random elements, but this would likely

involve random accesses in the list, or maintaining a list of the indices picked in sorted

order. A simple way that we use in our code to perform this sampling is to generate

the differences between indices of entries retained [256]. This variable clearly belongs

to an exponential distribution, and if x is a uniform random number in (0, 1), taking

dlog(1−p) xe as the value of the random variable, see [256]. The primary advantage of

doing so is that sampling can be done while accessing the data in a sequential fashion,

which results in much better cache performances.

5.3.2.4 Results

The six variants of the code involved in the experiment are first separated by whether the

graph was first sparsified by keeping each edge with probability p = 0.1. In either case,

an exact algorithm based on hybrid sampling with performance bounded by O(m3/2)
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was run. Then two triple based sampling algorithms are also considered. They differ

in whether an attempt to distinguish between low and high degree vertices, so the

simple version is essentially sampling all ’V’ shaped triples off each vertex. Note that

no sparsification and exact also generates the exact number of triangles. Errors are

measured by the absolute value of the difference between the value produced and the

exact number of triangles divided by the exact number. The results on error and running

time are averaged over five runs. The results are shown in Tables 5.6, 5.7.

No Sparsification
Graph Exact Simple Hybrid

err(%) time err(%) time err(%) time
AS-Skitter 0.000 4.452 1.308 0.746 0.128 1.204
Flickr 0.000 41.981 0.166 1.049 0.128 2.016
Livejournal-
links

0.000 50.828 0.309 2.998 0.116 9.375

Orkut-links 0.000 202.012 0.564 6.208 0.286 21.328
Soc-
LiveJournal

0.000 38.271 0.285 2.619 0.108 7.451

Web-EDU 0.000 8.502 0.157 2.631 0.047 3.300
Web-Google 0.000 1.599 0.286 0.379 0.045 0.740
Wiki-2005 0.000 32.472 0.976 1.197 0.318 3.613
Wiki-2006/9 0.000 86.623 0.886 2.250 0.361 7.483
Wiki-2006/11 0.000 96.114 1.915 2.362 0.530 7.972
Wiki-2007 0.000 122.395 0.943 2.728 0.178 9.268
Youtube 0.000 1.347 1.114 0.333 0.127 0.500

Table 5.6: Results of experiments averaged over 5 Trials using only triple sampling.

5.3.2.5 Remarks

From Table 5.5 it is evident that social networks are abundant in triangles. For example,

the Flickr graph with only ∼1.9M vertices has ∼550M triangles and the Orkut graph

with ∼3M vertices has ∼620M triangles. Furthermore, from Table 5.6 and Table 5.7 it

is clear that none of the variants clearly outperforms the others on all the data. The

gain/loss from sparsification is likely due to the fixed sampling rate. Adapting a doubling

procedure for the sampling rate as in Section 5.2.2.4 is likely to mitigate this discrepancy.

The difference between simple and hybrid sampling are due to the fact that handling

the second case of triples has a much worse cache access pattern as it examines vertices

that are two hops away. There are alternative implementations of how to handle this

situation, which would be interesting for future implementations. A fixed sparsification

rate of p = 10% was used mostly to simplify the setups of the experiments. In practice

varying p to look for a rate where the results stabilize is the preferred option.
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When compared with previous results on this problem, the error rates and running times

of our results are all significantly lower. In fact, on the wiki graphs our exact counting

algorithms have about the same order of speed with other appoximate triangle counting

implementations. This is also why we did not include any competitors in the exposition

of the results since our implementation is a highly optimized C/C++ implementation

with an emphasis on performance for huge graphs.

Sparsified (p = 0.1)
Graph Exact Simple Hybrid

err(%) time err(%) time err(%) time
AS-Skitter 2.188 0.641 3.208 0.651 1.388 0.877
Flickr 0.530 1.389 0.746 0.860 0.818 1.033
Livejournal-
links

0.242 3.900 0.628 2.518 1.011 3.475

Orkut-links 0.172 9.881 1.980 5.322 0.761 7.227
Soc-
LiveJournal

0.681 3.493 0.830 2.222 0.462 2.962

Web-EDU 0.571 2.864 0.771 2.354 0.383 2.732
Web-Google 1.112 0.251 1.262 0.371 0.264 0.265
Wiki-2005 1.249 1.529 7.498 1.025 0.695 1.313
Wiki-2006/9 0.402 3.431 6.209 1.843 2.091 2.598
Wiki-2006/11 0.634 3.578 4.050 1.947 0.950 2.778
Wiki-2007 0.819 4.407 3.099 2.224 1.448 3.196
Youtube 1.358 0.210 5.511 0.302 1.836 0.268

Table 5.7: Results of experiments averaged over 5 trials using sparsification and triple
sampling.

As we mentioned earlier in Section 5.1 there exists a lot of interest into signed networks.

It is clear that our method applies to this setting as well, by considering individually

each possible configuration of a signed triangle. However, we do not include any of our

experimental findings here due to the small size of the signed networks available to us

via the Stanford Network Analysis library (SNAP).

5.3.3 Theoretical Ramifications

In Section 5.3.3.1 we discuss random projections and triangles, motivated by the simple

observation that the inner product of two rows of the adjacency matrix corresponding

to two connected vertices forming edge e gives the count of triangles ∆(e).
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5.3.3.1 Random Projections and Triangles

Consider any two vertices i, j ∈ V which are connected, i.e., (i, j) ∈ E. Observe that

the inner product of the i-th and j-th column of the adjacency matrix of graph G gives

the number of triangles that edge (i, j) participates in. Viewing the adjacency matrix

as a collection of n points in Rn, a natural question to ask is whether we can use results

from the theory of random projections [227] to reduce the dimensionality of the points

while preserving the inner products which contribute to the count of triangles. Magen

and Zouzias [293] have considered a similar problem, namely random projections which

preserve approximately the volume for all subsets of at most k points.

According to Lemma 2.5 projecton x → Rx from Rd → Rk approximately preserves

all Euclidean distances. However it does not preserve all pairwise inner products. This

can easily be seen by considering the set of points e1, . . . , en ∈ Rn = Rd where e1 =

(1, 0, . . . , 0) etc. Indeed, all inner products of the above set are zero, which cannot

happen for the points Rej as they belong to a lower dimensional space and they cannot

all be orthogonal. For the triangle counting problem we do not need to approximate

all inner products. Suppose A ∈ {0, 1}n is the adjacency matrix of a simple undirected

graph G with vertex set V (G) = {1, 2, . . . , n} and write Ai for the i-the column of A.

The quantity we are interested in is the number of triangles in G (actually six times the

number of triangles)

t =
∑

u,v,w∈V (G)

AuvAvwAwu.

If we apply a random projection of the above kind to the columns of A

Ai → RAi

and write

X =
∑

u,v,w∈V (G)

(RA)uv(RA)vw(RA)wu

it is easy to see that E [X] = 0 since X is a linear combination of triple products

RijRklRrs of entries of the random matrix R and that all such products have expected

value 0, no matter what the indices. So we cannot expect this kind of random projection

to work.

Therefore we consider the following approach which still has limitations as we will show

in the following. Let

t =
∑
u∼v

A>
u Av, where u ∼ v means Auv = 1,
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and look at the quantity

Y =
∑
u∼v

(RAu)>(RAv)

=
k∑

l=1

n∑
i,j=1

(∑
u∼v

AiuAjv

)
RliRlj

=
k∑

l=1

n∑
i,j=1

#{i− ∗ − ∗ − j}RliRlj .

This is a quadratic form in the gaussian N(0, 1) variables Rij . By simple calculation for

the mean value and diagonalization for the variance we see that if the Xj are independent

N(0, 1) variables and

Z = X>BX,

where X = (X1, . . . , Xn)> and B ∈ Rn×n is symmetric, that

E [Z] = Tr B

Var [Z] = Tr B2 =
n∑

i,j=1

(Bij)2.

Hence E [Y ] =
∑k

l=1

∑n
i=1 #{i− ∗ − ∗ − i} = k · t so the mean value is the quantity we

want (multiplied by k). For this to be useful we should have some concentration for

Y near E [Y ]. We do not need exponential tails because we have only one quantity to

control. In particular, a statement of the following type

Pr [|Y − E [Y ]| > εE [Y ]] < 1− cε,

where cε > 0 would be enough. The simplest way to check this is by computing the

standard deviation of Y . By Chebyshev’s inequality it suffices that the standard devia-

tion be much smaller than E [Y ]. According to the formula above for the variance of a

quadratic form we get

Var [Y ] =
k∑

l=1

n∑
i,j=1

#{i− ∗ − ∗ − i}2

= C · k ·#{x− ∗ − ∗ − ∗ − ∗ − ∗ − x}

= C · k · (number of circuits of length 6 in G).
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Algorithm 2 Colorful Triangle Sampling

Input: Unweighted graph G([n], E)
Input: Number of colors N = 1/p

Let f : V → [N ] have uniformly random values
E′ ← {{u, v} ∈ E | f(u) = f(v)}
T ← number of triangles in the graph (V,E′)
return T/p2

Therefore, to have concentration it is sufficient that

Var [Y ] = o(k · (E [Y ])2). (5.7)

Observe that (5.7) is a sufficient -and not necessary- condition. Furthermore,(5.7) is

certainly not always true as there are graphs with many 6-circuits and no triangles at

all (the circuits may repeat vertices or edges).

5.4 Colorful Triangle Counting

In this Section we present a new sampling approach to approximating the number of

triangles in a graph G(V,E), that significantly improves existing sampling approaches.

Furthermore, it is easily implemented in parallel. The key idea of our algorithm is to

correlate the sampling of edges such that if two edges of a triangle are sampled, the

third edge is always sampled. This decreases the degree of the multivariate polynomial

that expresses the number of sampled triangles. This Section is organized as follows:

in Section 5.4.1 we present our randomized algorithm. In Section 5.4.2 we present our

main theoretical results, we analyze our algorithm and we discuss some of its important

properties. In Section 5.4.3 we present an implementation of our algorithm in the popular

MapReduce framework.

5.4.1 Algorithm

Our algorithm, summarized as Algorithm 2, samples each edge with probability p, where

N = 1/p is integer, as follows. Let f : [n] → [N ] be a random coloring of the vertices

of G([n], E), such that for all v ∈ [n] and i ∈ [N ], Pr [f(v) = i] = p. We call an edge

monochromatic if both its endpoints have the same color. Our algorithm samples exactly

the set E′ of monochromatic edges, counts the number T of triangles in ([n], E′) (using

any exact or approximate triangle counting algorithm), and multiplies this count by p−2.
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Work presented in Sections 5.2, 5.3 has used a related sampling idea, the difference

being that edges were sampled independently with probability p. Some intuition why this

sampling procedure is less efficient than what we propose can be obtained by considering

the case where a graph has t edge-disjoint triangles. With independent edge sampling

there will be no triangles left (with probability 1−o(1)) if p3t = o(1). Using our colorful

sampling idea there will be ω(1) triangles in the sample with probability 1−o(1) as long

as p2t = ω(1). This means that we can choose a smaller sample, and still get accurate

estimates from it.

5.4.2 Analysis

We wish to pick p as small as possible but at the same time have a strong concentration

of the estimate around its expected value. How small can p be? In Section 5.4.2.1 we

present a second moment argument which gives a sufficient condition for picking p. Our

main theoretical result, stated as Theorem 5.5 in Section 5.4.2.2, provides a sufficient

condition to this question. In Section 5.4.2.3 we analyze the complexity of our method.

Finally, in Section 5.4.2.4 we discuss several aspects of our work.

5.4.2.1 Second Moment Method

Using the second moment method we are able to obtain the following strong theoretical

guarantee:

Theorem 5.5. Let n, t, ∆, T denote the number of vertices in G, the number of triangles

in G, the maximum number of triangles an edge of G is contained in and the number

of monochromatic triangles in the randomly colored graph respectively. Also let N = 1
p

the number of colors used. If p ≥ max (∆ log n
t ,

√
log n

t ), then T ∼ E [T ] with probability

1− 1
log n .

Proof. By Chebyshev’s inequality 2.1, if Var [T ] = o(E [T ]2) then T ∼ E [T ] with prob-

ability 1 − o(1) [26]. Let Xi be a random variable for the i-th triangle, i = 1, . . . , t,

such that Xi = 1 if the i-th triangle is monochromatic. The number of monochromatic

triangles T is equal to the sum of these indicator variables, i.e., T =
∑t

i=1 Xi. By the lin-

earity of expectation and by the fact that Pr [Xi = 1] = p2 we obtain that E [T ] = p2t.

It is easy to check that the only case where two indicator variables are dependent is

when they share an edge. In this case the covariance is non-zero and for any p > 0,

Cov [Xi, Xj ] = p3 − p4 < p3. We write i ∼ j if and only if Xi, Xj are dependent.
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We obtain the following upper bound on the variance of T , where δe is the number of

triangles edge e is contained in and ∆ = maxe∈E(G) δe:

Var [T ] ≤ E [T ] +
∑
i∼j

Cov [Xi ∧Xj ] < p2t + p3
∑

e

δ2
e ≤ p2t + 3p3t∆

We pick p large enough to obtain Var [T ] = o(E [T ]2). It suffices:

p4t2 � p2t + 3p3t∆⇒ p2t� 1 + 3p∆ (5.8)

We consider two cases, determined by which of the two terms of the right hand side is

larger:

• Case 1 (p∆ < 1/3):

Since the right hand side of Inequality (5.8) is constant, it suffices that p2t = ω(n) where

ω(n) is some slowly growing function. We pick ω(n) = log n and hence p ≥
√

log n
t .

• Case 2 (p∆ ≥ 1/3):

In this case the right hand side of Inequality (5.8) is Θ(p∆) and therefore it suffices to

pick pt
∆ = log n.

Combining the above two cases we get that if

p ≥ max (
∆ log n

t
,

√
log n

t
)

inequality (5.8) is satisfied and hence by Chebyshev’s inequality T ∼ E [T ] with proba-

bility 1− 1
log n .

Extremal Cases and Tightness of Theorem 5.5

Given the assumptions of Theorem 5.5, is the condition on p tight? The answer is

affirmative as shown in Figure 5.2. Specifically, in Figure 5.2(a) G consists of t/∆

“books” of triangles, each of size ∆. This shows that p has to be at least ω(n)∆
t to

hope for concentration, where ω(n) is some growing function of n. Similarly, when G

consists of t disjoint triangles as shown in Figure 5.2(b) p has to be at least ω(n)t−1/2.
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(a) (b)

Figure 5.2: Conditions of Theorem 5.5 are tight. In order to hope for concentration
p has to be greater than (a) ∆

t and (b) t−1/2.

Therefore, unless we know more about G, we cannot hope for milder conditions on p,

i.e., Theorem 5.5 provides an optimal condition on p.

5.4.2.2 Concentration via the Hajnal-Szemerédi Theorem

Here, we present a different approach to obtaining concentration, based on partitioning

the set of triangles/indicator variables in sets containing many independent random

indicator variables and then taking a union bound. Our theoretical result is the following

theorem:

Theorem 5.6. Let tmax be the maximum number of triangles a vertex v is contained in.

Also, let n, t, p, T be defined as above and ε a small positive constant. If p2 ≥ 16tmax log n
ε2t

,

then Pr [|T − E [T ] | > εE [T ]] ≤ n−1.

Proof. Let Xi be defined as above, i = 1, . . . , t. Construct an auxiliary graph H as

follows: add a vertex in H for every triangle in G and connect two vertices representing

triangles t1 and t2 if and only if they have a common vertex. The maximum degree of

H is 3tmax = O(δ2), where δ = O(n) is the maximum degree in the graph. Invoke the

Hajnal-Szemerédi Theorem on H: we can partition the vertices of H (triangles of G)

into sets S1, . . . , Sq such that |Si| > Ω( t
tmax

) and q = Θ(tmax). Let k = t
tmax

. Note that

the set of indicator variables Xi corresponding to any set Sj is independent. Applying

the Chernoff bound for each set Si, i = 1, . . . , q we obtain

Pr

[
|1
k

k∑
i=1

Xi − p2| > εp2

]
≤ 2e−ε2p2k/2

.
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If p2kε2 ≥ 4d′ log n, then 2e−ε2p2k/2 is upper bounded by n−d′ , where d′ > 0 is a constant.

Since q = O(n3) by taking a union bound over all sets Si we see that the triangle count

is approximated within a factor of ε with probability at least 1 − n3−d′ Setting d′ = 4

completes the proof.

It’s worth noting that for any constant K > 0 the above proof gives that if p2 ≥
4(K+3)tmax log n

ε2t
then Pr [|T − E [T ] | > εE [T ]] ≤ n−K .

5.4.2.3 Complexity

The running time of our procedure of course depends on the subroutine we use on the

second step, i.e., to count triangles in the edge set E′. Let d(i) denote the degree

of vertex i. Assuming we use node iterator, i.e., the exact method that examines each

vertex independently and counts the number of edges among its neighbors, our algorithm

runs in O(n + m + p2
∑

i∈[n] d2(i)) expected time 3 by efficiently storing the graph and

retrieving the neighbors of v colored with the same color as v in O(1 + p d(v)) expected

time. Note that this implies that the speedup with respect to the counting task is 1/p2.

5.4.2.4 Discussion

Despite the fact that the second moment argument gave us strong conditions on p, the

use of the Hajnal-Szemerédi theorem, see Theorem 2.6 and [208], has the potential of

improving the ∆ factor. The condition we provide on p is sufficient to obtain con-

centration. Note –see Figure 5.3– that it was necessary to partition the triangles into

vertex disjoint rather than edge disjoint triangles since we need mutually independent

variables per chromatic class in order to apply the Chernoff bound. If we were able

to remove the dependencies in the chromatic classes defined by edge disjoint triangles,

then the overall result could probably be improved. It’s worth noting that for p = 1

we obtain that t ≥ nω(n), where ω(n) is any slowly growing function of n. This is –to

the best of our knowledge– the mildest condition on the triangle density needed for a

randomized algorithm to obtain concentration. Finally, notice that when t ≤ ∆2 log n
tmax

and tmax ≥ 1 Theorem 5.6 yields a better bound than Theorem 5.5. The same holds

when t > ∆2 log n and tmax ≤ 1. The latter scenario is far more restrictive and both

Theorem 5.5 and Theorem 5.6 give for instance the same bound p ≥
√

log n
t for the graph

of Figure 5.2(b).
3We assume that uniform sampling of a color takes constant time. If not, then we obtain the term

O(n log ( 1
p
) for the vertex coloring procedure.
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Figure 5.3: Consider the indicator variable Xi corresponding to the i-th triangle.
Note that Pr [Xi|rest are monochromatic] = p 6= Pr [Xi] = p2. The indicator variables

are pairwise but not mutually independent.

Furthermore, the powerful theorem of Kim and Vu 2.4 that was used in Section 5.2 is

not immediately applicable here: let Ye be an indicator variable for each edge e such

that Ye = 1 if and only if e is monochromatic, i.e., both its endpoints receive the same

color. Note that the number of triangles is a Boolean polynomial T = 1
3

∑
∆(e,f,g)

(
YeYf +

YfYg+YeYg

)
but the Boolean variables are not independent as the Kim-Vu [249] theorem

requires. It is worth noting that the degree of the polynomial is two. Essentially, this is

the reason for which our method obtains better results than work in Section 5.2 where

the degree of the multivariate polynomial is three. Finally, it is worth noting that using

a simple doubling procedure as the one outlined in Section 5.2, we can pick p effectively

in practice despite the fact that it depends on the quantity t which we want to estimate

by introducing an extra logarithm in the running time.

Finally, from an experimentation point of view, it is interesting to see how well the upper

bound 3∆t matches the sum
∑

e∈E(G) δ2
e , where δe is the number of triangles edge e is

contained in, and the typical values for ∆ and tmax in real-world graphs. The following

table shows these numbers for five graphs 4 taken from the SNAP library [5]. We see

that ∆ and tmax are significantly less than their upperbounds and that typically 3∆t is

significantly larger than
∑

e∈E(G) δ2
e except for the collaboration network of Arxiv Astro

Physics. The results are shown in Table 5.8.

5.4.3 A MapReduce Implementation

MapReduce [130] has become the de facto standard in academia and industry for an-

alyzing large scale networks. For a brief overview of MapReduce see Section 1.1.6.1.
4AS:Autonomous Systems, Oregon: Oregon route views, Enron: Email communication network,

ca-HepPh and AstroPh:Collaboration networks. Self-edges were removed.
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Name Vertices(n) Edges(m) Triangle Count(t) ∆ tmax
∑

e∈E(G) δ2
e 3∆t

AS 7,716 12,572 6,584 344 2,047 595,632 6,794,688
Oregon 11,492 23,409 19,894 537 3,638 2,347,560 32,049,234
Enron 36,692 183,831 727,044 420 17,744 75,237,684 916,075,440
ca-HepPh 12,008 118,489 3,358,499 450 39,633 1.8839 ×109 4.534×109

AstroPh 18,772 198,050 1,351,441 350 11,269 148,765,753 1.419×109

Table 5.8: Values for the variables involved in our formulae for five real-world graphs.
Typically, ∆ and tmax are significantly less than the obvious upper bounds n − 2 and(

n−1
2

)
respectively. Furthermore, 3∆t is significantly larger than

∑
e∈E(G) δ2

e .

Algorithm 3 MapReduce Colorful Triangle Counting G(V,E), p = 1/N

Map: Input 〈e = (u, f(u), v, f(v)); 1〉 {Let f be a uniformly at random coloring of
the vertices with N colors}
if f(u) = f(v) then emit 〈f(u); (u, v)〉
Reduce: Input 〈c; Ec = {(u, v)} ⊆ E〉 { Every edge (u, v) ∈ Ec has color c, i.e.,
f(u) = f(v)}
Scale each triangle by 1

p2 .

Recent work by Suri and Vassilvitskii [377] proposes two algorithms for counting trian-

gles. The first is an efficient MapReduce implementation of the node iterator algorithm,

see also [352] and the second is based on partitioning the graph into overlapping subsets

so that each triangle is present in at least one of the subsets.

Our method is amenable to being implemented in MapReduce and the skeleton of such

an implementation is shown in Algorithm 25. We implicitly assume that in a first round

vertices have received a color uniformly at random from the N available colors and that

we have the coloring information for the endpoints of each edge. Each mapper receives

an edge together with the colors of its edgepoints. If the edge is monochromatic, then

it’s emitted with the color as the key and the edge as the value. Edges with the same

color are shipped to the same reducer where locally a triangle counting algorithm is

applied. The total count is scaled appropriately. Trivially, the following lemma holds by

the linearity of expectation and the fact that the endpoints of any edge receive a given

color c with probability p2.

Lemma 5.7. The expected size to any reduce instance is O(p2m) and the expected total

space used at the end of the map phase is O(pm).

5It’s worth pointing out for completeness reasons that in practice one would not scale the triangles
after the first reduce. It would emit the count of monochromatic triangles which would be summed up
in a second round and scaled by 1/p2.



Chapter 6

Dense Subgraphs

6.1 Introduction

Given a graph G = (V,E) and a subset of vertices S ⊆ V , let G[S] = (S, E[S]) be the

subgraph induced by S, and let e[S] be the size of E[S]. The edge density of the set S is

defined as δ(S) = e[S]/
(|S|

2

)
. Finding a dense subgraph of G would in principle require to

find a set of vertices S ⊆ V that maximizes δ(S). However, the direct maximization of δ

is not a meaningful problem, as even a single edge achieves maximum density. Therefore,

effort has been devoted to define alternative density functions whose maximization allows

for extracting subgraphs having large δ and, at the same time, non-trivial size. Different

choices of the density function lead to different variants of the dense-subgraph problem.

Some variants can be solved in polynomial time, while others are NP-hard, or even

inapproximable.

In this Chapter we introduce a new framework for finding dense subgraphs. We focus

on a special case of the framework which we refer to as optimal quasi-cliques. Table 6.1

offers a preview of the results that will follow. Specifically, it compares our optimal quasi-

cliques with densest subgraphs on some popular graphs.1 The results in the table clearly

show that optimal quasi-cliques have much larger edge density than densest subgraphs,

smaller diameters and larger triangle densities. Moreover, densest subgraphs are usually

quite large-sized: in the graphs we report in Table 6.1, the densest subgraphs contain

always more than the 30% of the vertices in the input graph. For instance, in the Football

graph, the densest subgraph corresponds to the whole graph, with edge density < 0.1 and

diameter 4, while the extracted optimal quasi-clique is a 12-vertex subgraph with edge

density 0.73 and diameter 2. The Jazz graph contains a perfect clique of 30 vertices: our
1Densest subgraphs are extracted here with the exact Goldberg’s algorithm [199]. As far as optimal quasi-cliques,

we optimize fα with α = 1
3

and use our local-search method.

113
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densest subgraph optimal quasi-clique
|S|
|V | δ D τ |S|

|V | δ D τ

Dolphins 0.32 0.33 3 0.04 0.12 0.68 2 0.32
Football 1 0.09 4 0.03 0.10 0.73 2 0.34

Jazz 0.50 0.34 3 0.08 0.15 1 1 1
Celeg. N. 0.46 0.13 3 0.05 0.07 0.61 2 0.26

Table 6.1: Difference between densest subgraph and optimal quasi-clique on some
popular graphs. δ = e[S]/

(|S|
2

)
is the edge density of the extracted subgraph, D is the

diameter, and τ = t[S]/
(|S|

3

)
is the triangle density.

method finds this clique achieving perfect edge density, diameter, and triangle density

scores. By contrast, the densest subgraph contains 100 vertices, and has edge density

0.34 and triangle density 0.08.

6.2 A General Framework

Let G = (V,E) be a graph, with |V | = n and |E| = m. For a set of vertices S ⊆ V ,

let e[S] be the number of edges in the subgraph induced by S. We define the following

function.

Definition 6.1 (Edge-surplus). Let S ⊆ V be a subset of the vertices of a graph

G = (V,E), and let α > 0 be a constant. We define edge-surplus as:

fα(S) = g(e[S])− αh(|S|),

where functions g, h are both strictly increasing. We also define fα(∅) = 0.

We note that the first term g(e[S]) encourages subgraphs abundant in edges whereas

the second term −αh(|S|) penalizes large subgraphs. Our framework for finding dense

subgraphs is based on the following optimization problem.

Problem 1 (optimal (g, h, α)-edge-surplus). Given a graph G = (V,E), a positive real α

and a pair of functions g, h, find a subset of vertices S∗ ⊆ V such that fα(S∗) ≥ fα(S),

for all sets S ⊆ V . We refer to the set S∗ as the optimal (g, h, α)-edge-surplus of the

graph G.

The edge-surplus definition subsumes numerous popular existing density measures by

choosing appropriately g, h, α. Three important cases follow.

• By setting g(x) = h(x) = log x, α = 1, the optimal (g, h, α)-edge-surplus problem

becomes equivalent to maximizing log e[S]− log |S| = log e[S]
|S| . This is equivalent to

the popular densest subgraph .
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• By setting g(x) = log x, h(x) = log
(

x(x−1)
2

)
, α = 1 the optimal (g, h, α)-edge-surplus

problem becomes equivalent to maximizing e[S]

(|S|2 )
.

• By setting g(x) = x, h(x) = x(x−1)
2 and restricting α ∈ (0, 1) we obtain the following

optimal (g, h, α)-edge-surplus problem: max∅6=S⊆V e[S] − α
(|S|

2

)
. We call this prob-

lem OQC-Problem. We notice that it turns the quasi-clique condition into an

objective. To the best of our knowledge, this optimization problem does not appear

in the existing literature.

The densest subgraph problem on the one hand is polynomially time solvable but results

typically in very large subgraphs. Also, maximizing the edge density δ(S) results in

trivial subgraphs such as edges or triangles which achieve the maximum possible density

value 1. We wish to better understand the OQC-Problem problem. We start by

discussing properties of the objective. Understanding the objective: Consider the

case α = 0. Clearly, the optimal solution is the whole graph. When 0 < α < 1 the

problem in general is NP-hard. We discuss the case where α > 1/2. It is straightforward

to check that by setting α = 1− 1
Ω(n2)

, e.g., α = 1−n−3, one solves the maximum clique

problem. Furthermore, assuming that finding a hidden clique of order O(n1/2−δ) where

δ > 0 in a random binomial graph G ∼ G(n, 1/2) is hard, then one can see that our

problem is hard. To see why, notice that for any set of S vertices the expected score

is
(

1
2 − α

)(
n1/2−δ

2

)
and for the hidden clique (1 − α)

(
n1/2−δ

2

)
. Therefore, if we could

optimally solve the OQC-Problem problem, then by setting α > 1/2, we could solve

in expectation the hidden clique problem.

Theorem 6.2. The OQC-Problem is NP-hard.

Proving that the problem is NP-hard for any α ∈ (0, 1) remains open. When α = 1

all cliques receive score equal to 0, independent of their size. When α > 1 then the

problem stops being interesting as the optimal solution will be any single edge. An

important property of the edge-surplus abstraction is that it allows us to model scenaria

in numerous practical situations where we wish to find a dense subgraph with bounds

on its size. For instance, by relaxing the monotonicity property of function h() the

k-densest subgraph problem can be modeled as an optimal (g, h, α)-edge-surplus problem

by setting g(x) = x and

h(x) =

0 x = k

+∞ otherwise.

By choosing h(x) to penalize severely undesired size, a good algorithm will avoid output-

ing a subgraph of undesired size.
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Finally, we outline that we cannot make any general statement on the optimal (g, h, α)-

edge-surplus problem, since certain cases are polynomially time solvable whereas others

NP-hard. The following theorem provides a family of optimal (g, h, α)-edge-surplus

problems that are efficiently solvable

Theorem 6.3. Let g(x) = x and h(x) be a concave function. Then the optimal (g, h, α)-

edge-surplus problem is in P.

Proof. The optimal (g, h, α)-edge-surplus problem becomes max∅6=S⊆V e[S]−αh(|S|) where

h(x) is a concave function. The claim follows directly from combining the following facts.

Fact 1 The function defined by the map S 7→ e[S] is a supermodular function.

Fact 2 The function h(|S|) is submodular given that h is concave. Since α > 0, the

function −αh(|S|) is supermodular.

Fact 3 Combining the above facts with the fact that the sum of two supermodular

functions is supermodular, we obtain fα(S) is a supermodular function.

Fact 4 Maximizing supermodular functions is strongly polynomially time solvable [357].

However, we outline that the scenario where g(x) = x and h(x) is concave cannot be

useful in real applications as the output subgraph will be large.

6.3 Optimal Quasi-cliques

Scalable Algorithms. The first efficient algorithm we propose is an adaptation of

the greedy algorithm by Asashiro et al. [41], which has been shown to provide a 1
2 -

approximation for the densest subgraph problem [104]. The outline of our algorithm,

called GreedyOQC, is shown as Algorithm 4. The algorithm iteratively removes the

vertex with the smallest degree. The output is the subgraph produced over all iterations

that maximizes the objective function fα. The algorithm can be implemented in O(n +

m) time: the trick consists in keeping a list of vertices for each possible degree and

updating the degree of any vertex v during the various iterations of the algorithm simply

by moving v to the appropriate degree list.

The GreedyOQC algorithm provides an additive approximation guarantee for the

OQC-Problem, as shown next.

Theorem 6.4. Let S̄ be the set of vertices outputted by the GreedyOQC algorithm

and let S∗ be the optimal vertex set. Consider also the specific iteration of the algorithm
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Algorithm 4 GreedyOQC

Input: Graph G(V,E)
Output: Subset of vertices S̄ ⊆ V

Sn ← V
for i← n downto 1 do

Let v be the vertex with the smallest degree in G[Si]
Si−1 ← Si \ {v}

end for
S̄ ← arg maxi=1,...,n fα(Si)

where a vertex within S∗ is removed for the first time and let SI denote the vertex set

currently kept in that iteration. It holds that:

fα(S̄) ≥ fα(S∗)− α

2
|SI |(|SI | − |S∗|).

Proof. Given a subset of vertices S ⊆ V and a vertex u ∈ S, let dS(u) denote the degree

of u in G[S].

We start the analysis by considering the first vertex belonging to S∗ removed by the

algorithm from the current vertex set. Let v denote such a vertex, and let also SI denote

the set of vertices still present just before the removal of v. By the optimality of S∗, we

obtain:

fα(S∗) ≥ fα(S∗ \ {u}), ∀u ∈ S∗

⇔ e[S∗]−α

(
|S∗|

2

)
≥(e[S]−dS∗(u))−α

(
|S∗|−1

2

)
,∀u∈S∗

⇔ dS∗(u) ≥ α(|S∗| − 1), ∀u ∈ S∗.

As the algorithm greedily removes vertices with the smallest degree in each iteration, it

is easy to see that dV (u) ≥ dSI
(u) ≥ dS∗(u) ≥ α(|S∗| − 1), ∀u. Therefore, noticing also
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that S∗ ⊆ SI , it holds that:

fα(SI) = e[SI ]− α

(
|SI |
2

)
+ α

(
n

2

)
=

1
2

(∑
u∈S∗

dS∗(u) +
∑
u∈S∗

(dSI
(u)− dS∗(u)) +

+
∑

u∈SI\S∗
dSI

(u)

− α

(
|SI |
2

)
+ α

(
n

2

)

≥ 1
2

∑
u∈S∗

dS∗(u) +
∑

u∈SI\S∗
dSI

(u)

− α

(
|SI |
2

)
+ α

(
n

2

)

= e[S∗] +
1
2

∑
u∈SI\S∗

dSI
(u)− α

(
|SI |
2

)
+ α

(
n

2

)

≥ e[S∗] +
1
2

(|SI | − |S∗|)α(|S∗| − 1)− α

(
|SI |
2

)
+ α

(
n

2

)
= fα(S∗)− α

2
|SI |(|SI | − |S∗|).

As the final output of the algorithm is the best over all iterations, we finally obtain:

fα(S̄) ≥ fα(SI) ≥ fα(S∗)− α

2
|SI |(|SI | − |S∗|).

The above result can be interpreted as follows. Assuming that |SI | is O(|S̄|), the additive

approximation factor proved in Theorem 6.4 becomes fα(S̄) ≥ fα(S∗)− α
2 |S̄|(|S̄|− |S

∗|).
Thus, the error achieved by the GreedyOQC algorithm is guaranteed to be bounded

by an additive factor proportional to the size of the optimal quasi-clique outputted.

As optimal quasi-cliques are typically small graphs, this results in an approximation

guarantee that is very tight in practice.

Finally, we present a local search heuristic for solving the OQC-Problem. The algo-

rithm, called LocalSearchOQC, performs local operations and outputs a vertex set S

that is guaranteed to be locally optimal, i.e., if any single vertex is added to or removed

from S, then the objective function decreases.

The outline of LocalSearchOQC is shown as Algorithm 5. The algorithm initially

selects a random vertex and then it keeps adding vertices to the current set S while the

objective improves. When no vertex can be added, the algorithm tries to find a vertex

in S whose removal may improve the objective. As soon as such a vertex is encountered,

it is removed from S and the algorithm re-starts from the adding phase. The process
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Algorithm 5 LocalSearchOQC

Input: Graph G = (V,E); maximum number of iterations TMAX

Output: Subset of vertices S̄ ⊆ V
S ← {v}, where v is chosen uniformly at random
b1, b2 ← TRUE, t← 1.
while b1 and t ≤ TMAX do

while b2 do
If there exists u ∈ V \S such that fα(S ∪ {u}) ≥ fα(S)
then let S ← S ∪ {u}
otherwise set b2 ← FALSE

end while
If there exists u ∈ S such that fα(S\{u}) ≥ fα(S)
then let S ← S\{u}
otherwise, set b1 ← FALSE
t← t + 1

end while
S̄ ← arg maxŜ∈{S,V \S} fα(Ŝ)

continues until a local optimum is reached or the number of iterations exceeds Tmax.

The time complexity of LocalSearchOQC is O(Tmax m).

In order to enhance the performance of the LocalSearchOQC algorithm, one may use

the following heuristic [197]. Let v∗ be the vertex that maximizes the ratio t(v∗)
d(v∗) , where

t(v∗) is the number of triangles of v∗ and d(v∗) its degree (we approximate the number of

triangles in which each vertex participates with the technique described in [257]). Given

vertex v∗, we use as a seed the set {v∗ ∪N(v∗)}, where N(v∗) = {u : (u, v∗) ∈ E} is the

neighborhood of v∗.

Parameter Selection. Finally, a natural question that arises whenever a parameter

exists, is how to choose an appropriate value. No doubt, there exist different possible,

principled ways which lead to different choices of α. For instance, setting α to be the

graph edge density δ(G) results into a normalized version of our criterion. However,

since real-world networks are sparse, we do not encourage this for practical purposes.

Instead, we provide a simple criterion to pick α.

Let us consider two disjoint sets of vertices S1, S2 in the graph G. Assume that G[S1∪S2]

is disconnected, i.e., G[S1] and G[S2] form two separate connected components. Also,

without any loss of generality, assume that fα(S1) ≤ fα(S2). As our goal is to favor

small dense subgraphs, a natural condition to satisfy is fα(S1 ∪ S2) ≤ fα(S1) ≤ fα(S2),

i.e., we require for our objective to prefer the set S1 (or S2) rather than the larger set

S1 ∪ S2. Therefore, we obtain:

e[S1] + e[S2]− α

(
|S1|+|S2|

2

)
+ α

(
n

2

)
≤e[S1]− α

(
|S1|
2

)
+ α

(
n

2

)
,
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which, considering that e[S2] ≤
(|S2|

2

)
, leads to:

α ≥
(|S2|

2

)(|S1|+|S2|
2

)
−
(|S1|

2

) =
|S2| − 1

2|S1|+ |S2| − 1
.

Let us now assume for simplicity that |S1| = |S2| = k; then the above condition becomes:

α ≥ k−1
3k−1 . As k−1

3k−1 < 1
3 , it suffices choosing α ≥ 1

3 to have the condition satisfied.

On the other hand, it is easy to see that, when α is close to 1, fα tends to be maximized

even by subgraphs of trivial structure (e.g., single edges), which is clearly something

that we want to avoid. By combining the two arguments above, we conclude that a

good choice for α is a value around 1
3 , which is the value we adopt in our experiments.

Multiplicative Approximation, a 0.796-approximation algorithm for a shifted

objective. We also design a multiplicative approximation algorithm for a shifted ob-

jective which works for any α > 0. Notice that this shifting is not necessary since the

optimal objective value is positive in the interesting range of 0 < α < 1 as a single edge

results in a positive score 1−α. Our algorithm is based on semidefinite programming and

in particular on the techniques developed by Goemans-Williamson [198]. Our algorithm

is a β-approximation algorithm, where β > 0.796, for a shifted objective. Specifically,

we shift our objective by a constant c = c(n) to make it non-negative.

Observation 1. Consider f ′α(S) = fα(S) + α
(
n
2

)
. Then f ′α(S) ≥ 0 for any S ⊆ V since(

n
2

)
−
(
s
2

)
≥ 0 for any S ⊆ V and e[S] ≥ 0. Furthermore we have f ′α(S1) ≥ f ′α(S2) if and

only if fα(S1) ≥ fα(S2).

All the guarantees we obtain in this Section refer to the shifted objective f ′α. Therefore,

from now on we will abuse slightly the notation and use fα to denote f ′α. We formulate

our maximization problem as an integer program. We introduce a variable xi ∈ {−1, +1}
for each vertex i ∈ V = {1, . . . , n} and an extra variable x0 which expresses whether a

vertex belongs to S or not:

It is i ∈ S if and only if x0x1 = 1.

Notice that the term 1+x0xi+x0xj+xixj

4 equals 1 if and only if both i, j belong in S, other-

wise it equals 0. Furthemore, the term
(
n
2

)
enters the objective as 1

2

∑
i6=j 1. Therefore,

we get the following integer program:
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max
∑

e=(i,j)

1 + x0xi + x0xj + xixj

4
+

α

2

∑
i6=j

(
1− 1 + x0xi + x0xj + xixj

4

)
subject to xi ∈ {−1, +1}, for all i ∈ {0, 1, .., n}.

(6.1)

We relax the integrality constraint and we allow the variables to be vectors in the unit

sphere in Rn+1. By using the variable transformation yij = xixj , we obtain the following

semidefinite programming relaxation:

max α
∑

e=(i,j)

1 + y0i + y0j + yij

4
+

1
2

∑
i6=j

(
1− 1 + y0i + y0j + yij

4

)
subject to yii = 1, for all i ∈ {0, 1, .., n}

and Y � 0, Y symmetric.

(6.2)

The above SDP can be solved within an additive error of δ of the optimum in polynomial

time by interior point algorithms or the ellipsoid method [24]. In what follows, we refer

to the optimal value of the integer program as IP∗ and of the semidefinite program as

SDP∗. Our algorithm, SDP-OQC, is shown as Algorithm 6.

Theorem 6.5. Algorithm SDP-OQC is a β-approximation algorithm for fα where β >

0.796 with probability at least 1−O(n−1).

Proof. First, notice that we can rewrite the objective as

∑
e=(i,j)

1 + y0i + y0j + yij

4
+

α

4

(∑
i6=j

1− y0i

2
+
∑
i6=j

1− y0j

2
+
∑
i6=j

1− yij

2

)
.
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Algorithm 6 SDP-OQC

Input: G = (V,E)
1. Relaxation

Solve the semidefinite program (6.2)
Compute a Cholesky decomposition of the resulting Y
Let v0, v1, . . . , vn be the resulting vectors

2. Randomized Rounding
Randomly choose a unit length vector r ∈ Rn+1

Set S = {i ∈ [n] : sgn(vir) = sgn(v0r)}
3. Boosting the success probability

Repeat steps 1–2 for t = 1, .., T
Output the best solution over T = cε,α,β log n runs
% Here ε > 0 and cε,α,β ≥ 2(α+1)

3εαβ + 1.

Let Y = [v0v1 . . . vn]T [v0v1 . . . vn] be the Cholesky decomposition of matrix Y . We

analyze the randomized rounding step which is equivalent to considering a random hy-

perplane H that goes through the origin and placing in set S all the vertices whose

corresponding vector for the Cholesky decomposition vi is on the same side of H with

v0. Our goal now is to lower bound the expectation of our objective upon this ran-

domized rounding. The expectation of the terms of the form 1−yij

2 is equal to the

probability that the two vectors vi, vj are on different sides of the random hyperplane.

As in Goemans-Williamson [198] this probability is

Pr [sgn(vir) 6= sgn(vjr)] =
arccos(vivj)

π
.

Furthermore, again as in Goemans-Williamson [198], for any 0 ≤ θ ≤ π we have

θ

π
≥ 0.87856

1− cos θ

2
> β

1− cos θ

2
.

Now, we lower bound the expectation of the first term in our objective. To do so, we

need to compute the probability that sgn(vir) = sgn(vjr) = sgn(v0r). Consider the

following events:

A : sgn(vir) = sgn(vjr) = sgn(v0r)

Bi : sgn(vir) 6= sgn(vjr) = sgn(v0r)

Bj : sgn(vjr) 6= sgn(vir) = sgn(v0r)

B0 : sgn(v0r) 6= sgn(vjr) = sgn(vir)

Notice that Pr [Bi] = Pr [sgn(vjr) = sgn(v0r)]−Pr [A], and that similar equations hold

for indices (j, 0). Furthermore, by the pidgeonhole principle Pr [A]+Pr [Bi]+Pr [Bj ]+
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Pr [B0] = 1. Hence, by solving for Pr [A] and by using elementary calculus we obtain

the following lower bound:

Pr [A] = 1− 1
2π

(
arccos(v0vi) + arccos(v0vj) + arccos(vivj)

)
≥ β

4
(
1 + v0vi + v0vj + vivj

)
.

Combining the above lower bounds, we obtain

E [fα(S)] ≥ β
( ∑

e=(i,j)

1 + y0i + y0j + yij

4

)
+

αβ

4

(∑
i6=j

1− y0i

2
+
∑
i6=j

1− y0j

2
+
∑
i6=j

1− yij

2

)
= β SDP∗ ≥ β IP∗.

Now, we boost the probability of success of our randomized algorithm. Specifically, we

analyze part 3 of our algorithm. First, we lower bound IP∗. Consider adding each vertex

with probability 1
2 to S. The expected value of the objective is m

4 + α
((

n
2

)
−
(
n/2
2

))
≈

m
4 + α3n2

8 ≥
3α
2

(
n
2

)
. Hence,

IP∗ ≥ 3α

2

(
n

2

)
.

Also notice that the objective is upper bounded always by (α+ 1)
(
n
2

)
. Define a constant

γ as

γ =
E [fα(S)]

(α + 1)
(
n
2

) .
Note that γ ≤ 1. We obtain the following lower bound on γ:

(α + 1)
(

n

2

)
≥ E [fα(S)] = γ(α + 1)

(
n

2

)
≥ β IP∗ ≥ β

3α

2

(
n

2

)
,

and hence 1 ≥ γ ≥ 3αβ
2(α+1) .

Let p = Pr [W < (1− ε)E [fα(S)]], where W is the actual objective value achieved by

our randomized algorithm. We obtain the following (generous) upper bound on p as

follows:

E [fα(S)] ≤ p(1− ε)E [fα(S)] + (1− p)(α + 1)
(

n

2

)
,



Densest Subgraphs 124

which by solving for p gives

p ≤ 1− εγ

1− γ + εγ
≤ 1−

ε 3αβ
2(α+1)

1− (1−ε)3αβ
2(α+1)

= 1− q.

Let cε,α,β ≥ 2(α+1)
3εαβ + 1. Running the algorithm cε,α,β log n ≥ 1

q log n times times gives

that the success probability is 1− o(1), i.e.,

Pr [fα(S) ≥ (1− ε)E [fα(S)]] ≥ 1− (1− q)
log n

q ≈ 1−O(n−1).

6.4 Problem variants

We present two variants of our basic problem, that have many practical applications:

finding top-k optimal quasi-cliques (Section 6.4.1) and finding an optimal quasi-clique that

contains a given set of query vertices (Section 6.4.2).

6.4.1 Top-k optimal quasi-cliques

The top-k version of our problem is as follows: given a graph G = (V,E) and a constant

k, find top-k disjoint optimal quasi-cliques. This variant is particularly useful in scenarios

where finding a single dense subgraph is not sufficient, rather a set of k > 1 dense

components is required.

From a formal viewpoint, the problem would require to find k subgraphs for which the

sum of the various objective function values computed on each subgraph is maximized.

Due to its intrinsic hardness, however, here we heuristically tackle the problem in a

greedy fashion: we find one dense subgraph at a time, we remove all the vertices of the

subgraph from the graph, and we continue until we find k subgraphs or until we are left

with an empty graph. Note that this iterative approach allows us to automatically fulfil

a very common requirement of finding top-k subgraphs that are pairwise disjoint.

6.4.2 Constrained optimal quasi-cliques

The constrained optimal quasi-cliques variant consists in finding an optimal quasi-clique

that contains a set of pre-specified query vertices. This variant is inspired by the com-

munity-search problem [368], which has many applications, such as finding thematic

groups, organizing social events, tag suggestion. Next, we formalize the problem, prove
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that it is NP-hard, and adapt our scalable algorithms (i.e., GreedyOQC and Local-

SearchOQC) for this variant.

Let G = (V,E) be a graph, and Q ⊆ V be a set of query vertices. We want to find a

set of vertices S ⊆ V , so that the induced subgraph contains the query vertices Q and

maximizes our objective function fα. Formally, we define the following problem.

Problem 2 (Constrained-OQC-Problem). Given a graph G = (V,E) and set Q ⊆ V ,

find S∗ ⊆ V such that fα(S∗) = maxQ⊆S⊆V fα(S).

It is easy to see that, when Q = ∅, the Constrained-OQC-Problem reduces to the

OQC-Problem. The following hardness result is immediate from Theorem 1 in [399].

Theorem 6.6. The Constrained-OQC-Problem is NP-hard.

The GreedyOQC algorithm can be adapted to solve the Constrained-OQC-Problem

simply by ignoring the nodes u ∈ Q during the execution of the algorithm, so as to never

remove vertices of Q.

Similarly, our LocalSearchOQC algorithm can solve the Constrained-OQC-Problem

with a couple of simple modifications: the set S is initialized to the set of query ver-

tices Q, while, during the iterative phase of the algorithm, we never allow a vertex u ∈ Q

to leave S.

6.5 Experimental evaluation

In this section we present our empirical evaluation, first on publicly available real-world

graphs (Section 6.5.1), whose main characteristics are shown in Table 6.2, and then on

synthetic graphs where the ground truth is known (Section 6.5.2).

We compare our optimal quasi-cliques with densest subgraphs. The latter is chosen as

our baseline given its popularity. For extracting optimal quasi-cliques we use our scalable

algorithms, GreedyOQC and LocalSearchOQC. As far as the semidefinite-program-

ming algorithm presented in Section 6.3, we recall that it has been introduced mainly

to show theoretical properties of the problem tackled in this paper. From a practical

viewpoint, we have been able to run it only on the smallest datasets. We do not present

the results we obtained with the semidefinite-programming algorithm presented in Sec-

tion 6.3, which we implemented using sdtp3 [381] in Matlab for the following reasons:

(i) it does not scale to large networks; (ii) the results are inferior to the results of the

scalable algorithms for the small graphs we tested it on. For instance, for the polbooks
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Vertices Edges Description
Dolphins 62 159 Biological Network
Polbooks 105 441 Books Network
Adjnoun 112 425 Adj. and Nouns in

‘David Copperfield’
Football 115 613 Games Network

Jazz 198 2 742 Musicians Network
Celegans N. 297 2 148 Biological Network
Celegans M. 453 2 025 Biological Network

Email 1 133 5 451 Email Network
AS-22july06 22 963 48 436 Auton. Systems
Web-Google 875 713 3 852 985 Web Graph

Youtube 1 157 822 2 990 442 Social Network
AS-Skitter 1 696 415 11 095 298 Auton. Systems

Wikipedia 2005 1 634 989 18 540 589 Web Graph
Wikipedia 2006/9 2 983 494 35 048 115 Web Graph

Wikipedia 2006/11 3 148 440 37 043 456 Web Graph

Table 6.2: Graphs used in our experiments.

network, the corresponding edge density is 0.19 compared to 0.67 and 0.61 that we ob-

tain using GreedyOQC and LocalSearchOQC respectively; (iii) it serves mainly as

a theoretical contribution.

Following our discussion in Section 6.3, we run our algorithms with α = 1
3 . For Local-

SearchOQC, we set Tmax = 50. For finding densest subgraphs, we use the Goldberg’s

exact algorithm [199] for small graphs, while for graphs whose size does not allow the

Goldberg’s algorithm to terminate in reasonable time we use Charikar’s approximation

algorithm [104].

All algorithms are implemented in java, and all experiments are performed on a single

machine with Intel Xeon cpu at 2.83GHz and 50GB ram.

6.5.1 Real-world graphs

We experiment with the real graphs in Table 6.2. The results are shown in Table 6.3. We

compare optimal quasi-cliques outputted by the GreedyOQC and LocalSearchOQC

algorithms with densest subgraphs extracted with Charikar’s algorithm. Particularly,

we use Charikar’s method to be able to handle the largest graphs. For consistence,

Table 6.3 reports on results achieved by Charikar’s method also for the smallest graphs.

We recall that the results in Table 6.1 refer instead to the exact Goldberg’s method.

However, a comparison of the two tables on their common rows shows that Charikar’s

algorithm, even though it is approximate, produces almost identical results with the

results produced by Goldberg’s algorithm.
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Table 6.3 clearly confirms the preliminary results reported in the Introduction: optimal

quasi-cliques have larger edge and triangle densities, and smaller diameter than densest

subgraphs. Particularly, the edge density of optimal quasi-cliques is evidently larger on all

graphs. For instance, on Football and Youtube, the edge density of optimal quasi-cliques

(for both the GreedyOQC and LocalSearchOQC algorithms) is about 9 times larger

than the edge density of densest subgraphs, while on Email the difference increases up to

20 times (GreedyOQC) and 14 times (LocalSearchOQC). Still, the triangle density

of the optimal quasi-cliques outputted by both GreedyOQC and LocalSearchOQC

is one order of magnitude larger than the triangle density of densest subgraphs on 11 out

of 15 graphs.

Comparing our two algorithms, we can see that LocalSearchOQC performs generally

better than GreedyOQC. Indeed, the edge density achieved by LocalSearchOQC

is higher than that of GreedyOQC on 10 out of 15 graphs, while the diameter of

the LocalSearchOQC optimal quasi-cliques is never larger than the diameter of the

GreedyOQC optimal quasi-cliques.

Concerning efficiency, all algorithms are linear in the number of edges of the graph.

Charikar’s and GreedyOQC algorithm are somewhat slower than LocalSearchOQC,

but mainly due to bookkeeping. LocalSearchOQC algorithm’s running times vary

from milliseconds for the small graphs (e.g., 0.004s for Dolphins, 0.002s for Celegans N.),

few seconds for the larger graphs (e.g., 7.94s for Web-Google and 3.52s for Youtube) and

less than one minute for the largest graphs (e.g., 59.27s for Wikipedia 2006/11).

Top-k optimal quasi-cliques. Figure 6.1 evaluates top-k optimal quasi-cliques and top-k

densest subgraphs on the AS-Skitter and Wikipedia 2006/11 graphs using the iterative

method described in Section 6.4.1. Similar results hold for the other graphs but are

omitted due to space constraints.

For each graph we show two scatterplots. The x axis in logarithmic scale reports the

size of each of the top-k dense components, while the y axes show the edge density and

the diameter, respectively. In all figures, optimal quasi-cliques correspond to blue filled

circles (LocalSearchOQC) or red diamonds (GreedyOQC), while densest subgraphs

correspond to green circles. It is evident that optimal quasi-cliques are significantly better

in terms of both edge density and diameter also in this top-k variant. The edge density

is in the range 0.4− 0.7 and the diameter is always 2 or 3, except for a 56-vertex clique

in Wikipedia 2006/11 with diameter 1. On the contrary, the densest subgraphs are large

graphs, with diameter ranging typically from 3 to 5, with significantly smaller edge

densities: besides few exceptions, the edge density of densest subgraphs is always around

0.1 or even less.
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|S| δ D τ
densest opt. quasi-clique densest opt. quasi-clique densest opt. quasi-clique densest opt. quasi-clique

subgraph greedy ls subgraph greedy ls subgraph greedy ls subgraph greedy ls
Dolphins 19 13 8 0.27 0.47 0.68 3 3 2 0.05 0.12 0.32
Polbooks 53 13 16 0.18 0.67 0.61 6 2 2 0.02 0.28 0.24
Adjnoun 45 16 15 0.20 0.48 0.60 3 3 2 0.01 0.10 0.12
Football 115 10 12 0.09 0.89 0.73 4 2 2 0.03 0.67 0.34

Jazz 99 59 30 0.35 0.54 1 3 2 1 0.08 0.23 1
Celeg. N. 126 27 21 0.14 0.55 0.61 3 2 2 0.07 0.20 0.26
Celeg. M. 44 22 17 0.35 0.61 0.67 3 2 2 0.07 0.26 0.33

Email 289 12 8 0.05 1 0.71 4 1 2 0.01 1 0.30
AS-22july06 204 73 12 0.40 0.53 0.58 3 2 2 0.09 0.19 0.20
Web-Google 230 46 20 0.22 1 0.98 3 2 2 0.03 0.99 0.95

Youtube 1874 124 119 0.05 0.46 0.49 4 2 2 0.02 0.12 0.14
AS-Skitter 433 319 96 0.41 0.53 0.49 2 2 2 0.10 0.19 0.13

Wiki ’05 24555 451 321 0.26 0.43 0.48 3 3 2 0.02 0.06 0.10
Wiki ’06/9 1594 526 376 0.17 0.43 0.49 3 3 2 0.10 0.06 0.11

Wiki ’06/11 1638 527 46 0.17 0.43 0.56 3 3 2 0.31 0.06 0.35

Table 6.3: Densest subgraphs extracted with Charikar’s method vs. optimal quasi-
cliques extracted with the proposed GreedyOQC algorithm (greedy) and Local-

SearchOQC algorithm (ls). δ = e[S]/
(|S|

2

)
is the edge density of the extracted sub-

graph S, D is the diameter, and τ = t[S]/
(|S|

3

)
is the triangle density.

6.5.2 Synthetic graphs

Experiments on synthetic graphs deal with the following task: a (small) clique is planted

in two different types of random graphs, and the goal is to check if the dense subgraph

algorithms are able to recover those cliques. Two different random-graph models are

used as host graphs for the cliques: (i) Erdős-Rényi and (ii) random power-law graphs.

In the former model, each edge exists with probability p independently of the other

edges. To generate a random power-law graph, we follow the Chung-Lu model [114]: we

first generate a degree sequence (d1, . . . , dn) that follows a power law with a pre-specified

slope and we connect each pair of vertices i, j with probability proportional to didj .

We evaluate our algorithms by measuring how “close” are the returned subgraphs to the

planted clique. In particular, we use the measures of precision P and recall R, defined

as

P =
#{returned vertices from hidden clique}

size{subgraph returned}
, and

R =
#{returned vertices from hidden clique}

size{hidden clique}
.

Next we discuss the results obtained. For the Erdős-Rényi model we also provide a

theoretical justification of the outcome of the two tested algorithms.
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Figure 6.1: Edge density and diameter of the top-10 subgraphs found by our
GreedyOQC and LocalSearchOQC methods, and Charikar’s algorithm, on the

AS-skitter graph (top) and the Wikipedia 2006/11 graph (bottom).

Erdős-Rényi graphs. We plant a clique of 30 vertices on Erdős-Rényi graphs with

n = 3 000 and edge probabilities p ∈ {0.5, 0.1, 0.008}. Those values of p are selected to

represent very dense, medium-dense, and sparse graphs.

We report in Table 6.4 the results of running our LocalSearchOQC and GreedyOQC

algorithms for extracting optimal quasi-cliques, as well as the Goldberg’s algorithm for

extracting densest subgraphs. We observe that our two algorithms, LocalSearchOQC

and GreedyOQC, produce identical results, thus we refer to both of them as optimal

quasi-cliques algorithms. We see that the algorithms produce two kinds of results: they

either find the hidden clique, or they miss it and return the whole graph. In the very

dense setting (p = 0.5) all algorithms miss the clique, while in the sparse setting (p =

0.008) all algorithms recover it. However, at the middle-density setting (p = 0.1) only the

optimal quasi-cliques algorithms find the clique, while the Goldberg’s algorithm misses

it.

To better understand the results shown on Table 6.4, we provide a theoretical explanation

of the behavior of the algorithms depending on their objective. Assume that h is the

size of the hidden clique. If np ≥ h− 1 the densest subgraph criterion always returns the



Densest Subgraphs 130

Erdős-Rényi
parameters densest subgraph optimal quasi-clique
n p |S| P R |S| P R

3 000 0.5 3 000 0.01 1.00 3 000 0.01 1.00
3 000 0.1 3 000 0.01 1.00 30 1.00 1.00
3 000 0.008 30 1.00 1.00 30 1.00 1.00

Table 6.4: Subgraphs returned by Goldberg’s max-flow algorithm and by our two
algorithms (GreedyOQC, LocalSearchOQC) on Erdős-Rényi graphs with 3 000

vertices and three values of p, and with a planted clique of 30 vertices.

whole graph. In our experiments, this happens with p = 0.5 and p = 0.1. On the other

hand, if np < h− 1 the densest subgraph corresponds to the hidden clique, and therefore

the Goldberg’s algorithm cannot miss it.

Now consider our objective function , i.e., the edge-surplus function fα, and let us discard

for simplicity the constant
(
n
2

)
, because this does not affect the validity of the following

reasoning. The expected score for the hidden clique is E [fα(H)] = fα(H) = (1− α)
(
h
2

)
.

The expected score for the whole network is E [fα(V )] =
(
p
(
n
2

)
+ (1− p)

(
h
2

))
−α
(
n
2

)
. We

obtain the following two cases: (A) when p > α, we have E [fα(V )] ≥ fα(H). (B) when

p < α, we have fα(H) ≥ E [fα(V )]. This rough analysis explains our findings.2

Power-law graphs. We plant a clique of 15 vertices in random power-law graphs of

again 3 000 vertices, with power-law exponent varying from 2.2 to 3.1. We select these

values since most real-world networks have power-law exponent in this range [315]. For

each exponent tested, we generate five random graphs, and all the figures we report are

averages over these five trials.

Again, we compare our GreedyOQC and LocalSearchOQC algorithms with the

Goldberg’s algorithm. The LocalSearchOQC algorithm is run seeded with one of the

vertices of the clique. The justification of this choice is that we can always re-run the

algorithm until it finds such a vertex with high probability.3

The precision and recall scores of the three competing algorithms as a function of

the power-law exponent are shown in Figure 6.2. As the exponent increases the host

graph becomes sparser and both algorithms have no difficulty in finding the hidden

clique. However, for exponent values ranging between 2.2 and 2.6 the optimal quasi-

cliques are significantly better than the densest subgraphs. Indeed, in terms of precision,

the Goldberg’s algorithm is outperformed by both our algorithms. In terms of recall,

our LocalSearchOQC is better than Goldberg’s, while our GreedyOQC performs
2The analysis can be tightened via Chernoff bounds, but we avoid this here due to space constraints.
3If the hidden clique is of size O(nε), for some 0 ≤ ε < 1, a rough calculation shows that it suffices to run the

algorithm a sub-linear number of times (i.e., O((1− γ)n1−ε) times) in order to obtain one of the vertices of the
clique as a seed with probability at least 1− γ.
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Figure 6.2: Precision and recall for our method and Goldberg’s algorithm vs. the
power-law exponent of the host graph.

slightly worse. An explanation for this is that the GreedyOQC algorithm detects other

high-density subgraphs, but not exactly the planted clique. As an example, with power-

law exponent 2.3, GreedyOQC finds a subgraph with 23 vertices and edge density

0.87.

Stability with respect to α. We also test the sensitivity of our density measure

with respect to the parameter α. We use again the planted-clique setting, and we test

the ability of our algorithms to recover the clique as we vary the parameter α. We

omit detailed plots, due to space constraints, but we report that the behavior of both

algorithms is extremely stable with respect to α. Essentially, the algorithms again either

find the clique or miss it, depending on the graph-generation parameters, as we saw in the

previous section, namely, the probability p of the Erdős-Rényi graphs, or the exponent

of the power-law graphs. Moreover, in all cases, the performance of our algorithms,

measured by precision and recall as in the last experiment, does not depend on α.

6.6 Applications

In this section we show experiments concerning our constrained optimal quasi-cliques

variant introduced in Section 6.4.2. To this end, we focus on two applications that

can be commonly encountered in real-world scenarios: finding thematic groups and

finding highly correlated genes from a microarray dataset. For the sake of brevity of

presentation, we show next results for only one of our scalable algorithms, particularly

the LocalSearchOQC algorithm.
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Abiteboul, Bernstein, Brodie, Carey, Ceri, Crof,
DeWitt, Ehrenfeucht, Franklin, Gawlick, Gray, Haas,
Halevy, Hellerstein, Ioannidis, Jagadish, Kanellakis,

Kersten, Lesk, Maier, Molina, Naughton, Papadimitriou,
Pazzani, Pirahesh, Schek, Sellis, Silberschatz, Snodgrass,

Stonebraker, Ullman, Weikum, Widom, Zdonik

Figure 6.3: Authors returned by our LocalSearchOQC algorithm when queried
with Papadimitriou and Abiteboul. The set includes well-known database scientists. The
induced subgraph has 34 vertices and 457 edges. The edge density is 0.81, the diameter

is 3, the triangle density is 0.66.

Alt, Blum, Garey, Guibas, Johnson,
Karp, Mehlhorn, Papadimitriou, Preparata,

Tarjan, Welzl, Widgerson, Yannakakis,

Figure 6.4: Authors returned by our LocalSearchOQC algorithm when queried
with Papadimitriou and Blum. The set includes well-known theoretical computer scien-
tists. The induced subgraph has 13 vertices and 38 edges. The edge density is 0.49, the

diameter is 3, the triangle density is 0.14.

6.6.1 Thematic groups

Motivation. Suppose that a set of scientists Q wants to organize a workshop. How

do they invite other scientists to participate in the workshop so that the set of all the

participants, including Q, have similar interests?

Setup. We use a co-authorship graph extracted from the dblp dataset. The dataset

contains publications in all major computer-science journals. There is an undirected

edge between two authors if they have coauthored a journal article. Taking the largest

connected component gives a graph of 226K vertices and 1.4M edges.

We evaluate the results of our algorithm qualitatively, in a sanity check form rather than

a strict and quantitative way, which is not even well-defined. We perform the following

two queries: Q1 = {Papadimitriou, Abiteboul} and Q2 = {Papadimitriou, Blum}.

Results. Papadimitriou is one of the most prolific computer scientists and has worked

on a wide range of areas. With query Q1 we invoke his interests in database theory

given that Abiteboul is an expert in this field. As we can observe from Figure 6.3, the

optimal quasi-clique outputted contains database scientists. On the other hand, with

query Q2 we invoke Papadimitriou’s interests in theory, given that Blum is a Turing-

award theoretical computer scientist. As we can see in Figure 6.4, the returned optimal

quasi-clique contains well-known theoretical computer scientists.



Densest Subgraphs 133

p53, BRCA1, ARID1A, ARID1B, ZNF217, FGFR1, KRAS,
NCOR1, PIK3CA, APC, MAP3K13, STK11, AKT1, RB1

Figure 6.5: Genes returned by our LocalSearchOQC algorithm when queried with
p53. The induced subgraph is a clique with 14 vertices.

Figure 6.6: A tumorigenesis pathway consistent with our findings.

6.6.2 Correlated genes

Motivation. Detecting correlated genes has several applications. For instance, clusters

of genes with similar expression levels are typically under similar transcriptional con-

trol. Furthermore, genes with similar expression patterns may imply co-regulation or

relationship in functional pathways. Detecting gene correlations has played a key role

in discovering unknown types of breast cancer [366]. Here, we wish to illustrate that

optimal quasi-cliques provide a useful graph theoretic framework for gene co-expression

network analysis [267], without delving deeply into biological aspects of the results.

Setup. We use the publicly available breast-cancer dataset of van de Vijner et al. [402],

which consists of measurements across 295 patients of 24 479 probes. Upon running a

standard probe selection algorithm based on Singular Value Decomposition (SVD), we

obtain a 295×1000 matrix. The graph G in input to our LocalSearchOQC algorithm

is derived using the well-established approach defined in [267]: each gene corresponds

to a vertex in G, while an edge between any pair of genes i, j is drawn if and only if the

the modulus of the Pearson’s correlation coefficient |ρ(i, j)| exceeds a given threshold θ

(θ = 0.99 in our setting). We perform the following query, along the lines of the previous

section: “find highly correlated genes with the tumor protein 53 (p53)”. We select p53

since it is known to play a key role in tumorigenesis.

Results. The output of our algorithm is a clique consisting of 14 genes shown in Fig-

ure 6.5. A potential explanation of our finding is the pathway depicted in Figure 6.6,
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which shows that the activation of the p53 signaling can be initiated by signals com-

ing from the PI3K/AKT pathway. Both PI3KCA and AKT1 that are detected by our

method are key players of this pathway.Furthermore, signals from the JUN kinase path-

way can also trigger the p53-cascade; MAP3K13 is a member of this pathway.

One of the results of p53 signaling is apoptosis, a process promoted by RB. The latter

can also regulate the stability and the apoptotic function of p53.Finally, our output

includes BRCA1, which is known to physically associate with p53 and affect its actions

[413].



Chapter 7

Structure of the Web Graph

7.1 Introduction

In this Chapter we design scalable algorithms which allow us to understand better the

structure of information, social and economic networks, including the Web graph, a

prominent information network. Our goal is to shed light on important properties of the

Web graph and other large real-world networks such as the effective diameter, number

and sizes of connected components and temporal patterns of evolution. Specifically, we

perform experiments on the YahooWeb graph with 60 billion edges. We reveal facts

about the structure of the Web, including the well known small-world phenomenon, the

multimodal shape of the radius distribution and time-varying patters.

Analyzing networks of this scale is a challenge. For this purpose we design Hadi, a

MapReduce algorithm which scales to large-scale networks. Our algorithm relies on

approximate counting of distinct elements of a multiset. We use the algorithm of Flajolet

and Martin [168] as our “black-box”, which is historically the first algorithm proposed

for this problem. Since then, many other algorithms have been proposed, including

the Hyperloglog counters [169]. It is worth mentioning that the current state-of-the-art

method [75] which outperforms Hadi is based on the latter counters [169], which provide

an exponential space improvement over the original Flajolet-Martin counters [168].

The rest of the Chapter is organized as follows: Section 7.2 defines the notions of ef-

fective radius and diameter and reviews briefly related work. Section 7.3 provides an

explanation of how the number of distinct elements of multisets is related to finding the

diameter of a graph. Section 7.4 presents algorithmic tools for finding the distribution

of radii and the diameter of large-scale networks. Section 7.5 provides wall-clock times.

Section 7.6 presents findings on the structure of real-world networks.

135
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7.2 Related Work

Definitions: First, we review basic graph theoretic definitions [83] and then introduce

the notions of effective radius and diameter. Let G(V,E) be a directed graph. The

radius/eccentricity of a vertex v is the greatest shortest-path distance between v and

any other vertex. The radius r(G) is the minimum radius of any vertex. The diameter

d(G) is the maximum radius of any vertex. Since the radius and the diameter are

susceptible to outliers (e.g., long chains), we follow the literature [279] and define the

effective radius and diameter as follows.

Definition 7.1 (Effective Radius). For a node v in a graph G, the effective radius

reff (v) of v is the 90th-percentile of all the shortest distances from v.

Definition 7.2 (Effective Diameter). The effective diameter deff (G) of a graph G is

the minimum number of hops in which 90% of all connected pairs of nodes can reach

each other.

In Section 7.6 we use the following three radius-based Plots:

1. Static Radius Plot (or just “Radius plot”) of graph G shows the distribution

(count) of the effective radius of nodes at a specific time.

2. Temporal Radius Plot shows the distributions of effective radius of nodes at

several times.

3. Radius-Degree Plot shows the scatter-plot of the effective radius reff (v) versus

the degree dv for each node v.

Computing Radius and Diameter: Typical algorithms to compute the radius and

the diameter of a graph include Breadth First Search (BFS) and Floyd’s algorithm [125]

when no negative cycles are present. Both approaches are prohibitively slow for large-

scale graphs, requiring O(n2 + nm) and O(n3) time respectively. For the same reason,

related BFS or all-pair shortest-path based algorithms like [46, 166, 292, 364] can not

handle large-scale graphs.

A sampling approach starts BFS from a subset of nodes, typically chosen at random as

in [90]. Despite its practicality, this approach has no obvious solution for choosing the

representative sample for BFS. An interesting approach has been proposed by Cohen

[119], but according to practitioner’s experience [74] it appears not to be as scalable as

the ANF algorithm [327]. The latter is closely related to our work since it is a sequential



Stucture of the Web Graph 137

algorithm based on Flajolet-Martin sketches [168]. We review its key idea in the next

Section.

Distinct Elements in Multisets: Let A = {a1, . . . , am} be a multiset where ai ∈ [n]

for all i = 1, . . . ,m. Let mi = |{j : aj = i}|. For each k ≥ 0 define Fk =
∑n

i=1 mk
i . The

numbers Fk are called frequency moments of the multiset and provide useful statistics.

We notice that F0 is the number of distinct elements in A, F1 = m. Historically, Morris

was the first to show that F1 can be approximated with O(log log m = O(log log n

[309]. Flajolet and Martin designed an algorithm that needs O(log n) bits of memory

to approximate F0 [168]. Since then, many excellent researches have looked into this

problem, see [27, 48, 49, 67, 119, 142, 169, 219, 418]. Recently, Kane, Nelson and

Woodruff provided an optimal algorithm for estimating F0 [234].

7.3 Distinct Elements and the Diameter

In this Section, we sketch the key idea of [327], which shows how one can use a space

efficient algorithm for estimating distinct elements in a multiset to estimate the diameter

and radius distribution of a graph. Assume that for each vertex v in the graph, we

maintain the number of neighbors reachable from v within h hops. As h increases, the

number of neighbors increases until it stabilzes. The diameter is h where the number of

neighbors within h + 1 does not increase for every node.

To generate the Radius plot, we need to calculate the effective radius of every node. In

addition, the effective diameter is useful for tracking the evolution of networks. Assume

we have a ‘set’ data structure that supports two functions: add() for adding an item,

and size() for returning the count of distinct items. With the set, radii of vertices can

be computed as follows:

1. For each vertex i, create a set Si and initialize it by adding i to it.

2. For each vertex i, continue updating Si by adding 1,2,3,...-step neighbors of i to Si.

When the size of Si stabilizes for first time, then the vertex i reached its radius.

Iterate until all vertices reach their radii.

Although simple and clear, the above algorithm requires Ω(n2) space, since there are n

vertices and each vertex requires Ω(n) space. This is prohibitive in practice. We describe

the ANF algorithm which serves as the basis of our investigation into the structure of

real-world networks [327]. We use the Flajolet-Martin algorithm [168, 327] for counting

the number of distinct elements in a multiset. The main idea of the Flajolet-Martin
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algorithm is as follows. We maintain a bitstring BITMAP[0 . . . L− 1] of length L which

encodes the set. For each item we add, we do the following:

1. Pick an index ∈ [0 . . . L− 1] with probability 1/2index+1.

2. Set BITMAP[index] to 1.

Let R denote the index of the leftmost ‘0’ bit in BITMAP. It is clear that 2R should be

a good estimate of the number of distinct elements. The main result of Flajolet-Martin

is that the unbiased estimate of the size of the set is given by

1
ϕ

2R (7.1)

where ϕ = 0.77351 · · · . A more concentrated estimate can be obtained by using multiple

bitstrings and averaging the R. If we use K bitstrings R1 to RK , the size of the set can

be estimated by

1
ϕ

2
1
K

PK
l=1 Rl (7.2)

The application of the Flajolet-Martin algorithm to radius and diameter estimation is

straight-forward. We maintain K Flajolet-Martin (FM) bitstrings b(h, i) for each vertex

i and the current hop number h. b(h, i) encodes the number of vertices reachable from

vertex i within h hops, and can be used to estimate radii and diameter as shown below.

The bitstrings b(h, i) are iteratively updated until the bitstrings of all vertices stabilize.

At the h-th iteration, each vertex receives the bitstrings of its neighboring vertices, and

updates its own bitstrings b(h− 1, i) handed over from the previous iteration:

b(h, i) = b(h− 1, i) BIT-OR {b(h− 1, j)|(i, j) ∈ E} (7.3)

where “BIT-OR” denotes bitwise-OR function. After h iterations, a vertex i has K

bitstrings that encode the neighborhood function N(h, i), that is, the number of vertices

within h hops from the vertex i. N(h, i) is estimated from the K bitstrings by

N(h, i) =
1

0.77351
2

1
K

PK
l=1 bl(i) (7.4)

where bl(i) is the position of leftmost ‘0’ bit of the lth bitstring of vertex i. The iterations

continue until the bitstrings of all vertices stabilize, which is a necessary condition that
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the current iteration number h exceeds the diameter d(G). After the iterations finish at

hmax, we calculate the effective radius for every node and the diameter of the graph, as

follows:

• reff (i) is the smallest h such that N(h, i) ≥ 0.9 ·N(hmax, i).

• deff (G) is the smallest h such that N(h) =
∑

i N(h, i) = 0.9 ·N(hmax). If N(h) >

0.9 · N(hmax) > N(h − 1), then deff (G) is linearly interpolated from N(h) and

N(h− 1). That is, deff (G) = (h− 1) + 0.9·N(hmax)−N(h−1)
N(h)−N(h−1) .

The parameter K is typically set to 32 [168], and MaxIter is set to 256 since real graphs

have relatively small effective diameter.

7.4 Hadoop Algorithms

In this Section we present a way to implement ANF [327] on the top of both a MapRe-

duce system and a parallel SQL DBMS. Our algorithm is Hadi, a parallel radius and

diameter estimation algorithm. It is important to notice that Hadi is a disk-based algo-

rithm. Hadi saves two pieces of information to a distributed file system (such as HDFS

(Hadoop Distributed File System) in the case of Hadoop):

• Edge has a format of (srcid, dstid).

• Bitstrings has a format of (nodeid, bitstring1, ..., bitstringK).

Section 7.4.1 presents Hadi-naive which gives the big picture and explains why this kind

of an implementation should not be used in practice. Section 7.4.2 presents Hadi-plain,

a significantly improved implementation. Section 7.4.3 presents the optimized version of

Hadi-optimized, which scales almost linearly as a function of the number of machines

allocated. Section 7.4.4 presents the space and time complexity of Hadi. Finally,

Section 7.4.5 shows how Hadi can run on the top of a relational database management

system (RDBMS).

7.4.1 HADI-naive in MapReduce

Data: The edge file is saved as a sparse adjacency matrix in HDFS. Each line of the file

contains a nonzero element of the adjacency matrix of the graph, in the format of (srcid,

dstid). Also, the bitstrings of each node are saved in a file in the format of (nodeid,
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Figure 7.1: One iteration of Hadi-naive. Stage 1. Bitstrings of all vertex are sent
to every reducer. Stage 2. Sums up the count of changed nodes.

flag, bitstring1, ..., bitstringK). The flag variable records whether a bitstring changed

or not.

Main Program Flow The main idea of Hadi-naive is to use the bitstrings file as a

logical “cache” to machines which contain edge files. The bitstring update operation in

Equation (7.3) of Section 7.3 requires that the machine which updates the bitstrings of

node i should have access to (a) all edges adjacent from i, and (b) all bitstrings of the

adjacent nodes. To meet the requirement (a), it is needed to reorganize the edge file

so that edges with a same source id are grouped together. That can be done by using

an identity mapper which outputs the given input edges in (srcid, dstid) format. The

most simple yet naive way to meet the requirement (b) is sending the bitstrings to every

reducer which receives the reorganized edge file.

Thus, Hadi-naive iterates over two-stages of MapReduce. The first stage updates the

bitstrings of each node and sets the ‘Changed’ flag if at least one of the bitstrings of the

node is different from the previous bitstring. The second stage counts the number of

changed vertex and stops iterations when the bitstrings stabilized, as illustrated in the

swim-lane diagram of Figure 7.1.

Although conceptually simple and clear, Hadi-naive is unnecessarily expensive, because

it ships all the bitstrings to all reducers.
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7.4.2 HADI-plain in MapReduce

Hadi-plain improves Hadi-naive by copying only the necessary bitstrings to each reducer.

The details follow.

Data: As in Hadi-naive, the edges are saved in the format of (srcid, dstid), and

bitstrings are saved in the format of (nodeid, flag, bitstring1, ..., bitstringK) in files

over HDFS. The initial bitstrings generation can be performed in completely parallel

way. The flag of each node records the following information:

• Effective Radii and Hop Numbers to calculate the effective radius.

• Changed flag to indicate whether at least a bitstring has been changed or not.

Main Program Flow: As mentioned in the beginning, Hadi-plain copies only the

necessary bitstrings to each reducer. The main idea is to replicate bitstrings of node j

exactly x times where x is the in-degree of node j. The replicated bitstrings of node

j is called the partial bitstring and represented by b̂(h, j). The replicated b̂(h, j)’s are

used to update b(h, i), the bitstring of node i where (i, j) is an edge in the graph. Hadi-

plain iteratively runs three-stage MapReduce jobs until all bitstrings of all vertex stop

changing. Algorithm 7, 8, and 9 shows Hadi-plain, and Figure 7.2 shows the swim-lane.

We use h for denoting the current iteration number which starts from h=1. Output(a,b)

means to output a pair of data with the key a and the value b.

Stage 1 We generate (key, value) pairs, where the key is the node id i and the value is

the partial bitstrings b̂(h, j)’s where j ranges over all the neighbors adjacent from node i.

To generate such pairs, the bitstrings of node j are grouped together with edges whose

dstid is j. Notice that at the very first iteration, bitstrings of vertex do not exist; they

have to be generated on the fly, and we use the Bitstring Creation Command for that.

The NewFMBitstring() function generates K FM bitstrings [168]. Notice also that line

19 of Algorithm 7 is used to propagate the bitstrings of one’s own node. These bitstrings

are compared to the newly updated bitstrings at Stage 2 to check convergence.

Stage 2 Bitstrings of node i are updated by combining partial bitstrings of itself and

vertex adjacent from i. For the purpose, the mapper is the Identity mapper (output the

input without any modification). The reducer combines them, generates new bitstrings,

and sets flag by recording (a) whether at least a bitstring changed or not, and (b) the

current iteration number h and the neighborhood value N(h, i). This h and N(h, i)

are used to calculate the effective radius of vertex after all bitstrings converge. Notice

that only the last neighborhood N(hlast, i) and other neighborhoods N(h′, i) that satisfy
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Figure 7.2: One iteration of Hadi-plain. Stage 1. Edges and bitstrings are matched to
create partial bitstrings. Stage 2. Partial bitstrings are merged to create full bitstrings.
Stage 3. Sums up the count of changed nodes, and compute N(h), the neighborhood

function. Computing N(h) is not drawn in the figure for clarity.

N(h′, i) ≥ 0.9 ·N(hlast, i) need to be saved to calculate the effective radius. The output

of Stage 2 is fed into the input of Stage 1 at the next iteration.

Stage 3 We calculate the number of changed vertex and sum up the neighborhood

value of all vertex to calculate N(h). We use only two unique keys(key for changed and

key for neighborhood), which correspond to the two calculated values. The analysis of

line 2 can be done by checking the flag field and using Equation (7.4) in Section 7.3.

The variable changed is set to 1 or 0, based on whether the bitmask of node k changed

or not.

When all bitstrings of all vertex converge, a MapReduce job to finalize the effective

radius and diameter is performed and the program finishes. Compared to Hadi-naive,

the advantage of Hadi-plain is clear: bitstrings and edges are evenly distributed over

machines so that the algorithm can handle as much data as possible, given sufficiently

many machines.
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Algorithm 7 Hadi Stage 1. Output is a set of partial bitstrings B′ = {(i, b(h− 1, j))}
Input: Edge data E = {(i, j)}
Input: Current bitstring B = {(i, b(h − 1, i))} or Bitstring Creation Command BC =
{(i, cmd)}

1: Stage1-Map(key k, value v)
2: if (k, v) is of type B or BC then
3: Output(k, v)
4: else if (k, v) is of type E then
5: Output(v, k)
6: end if
7: Stage1-Reduce(key k, values V [])
8: SRC ← []
9: for v ∈ V do

10: if (k, v) is of type BC then
11: b̂(h− 1, k)←NewFMBitstring()
12: else if (k, v) is of type B then
13: b̂(h− 1, k)← v
14: else if (k, v) is of type E then
15: Add v to SRC
16: end if
17: end for
18: for src ∈ SRC do
19: Output(src, b̂(h− 1, k))
20: end for
21: Output(k, b̂(h− 1, k))

7.4.3 HADI-optimized in MapReduce

Hadi-optimized further improves Hadi-plain. It uses two orthogonal ideas: “block

operation” and “bit shuffle encoding”. Both try to address some subtle performance

issues. Specifically, Hadoop has the following two major bottlenecks:

• Materialization: at the end of each map/reduce stage, the output is written to the

disk, and it is also read at the beginning of next reduce/map stage.

• Sorting: at the Shuffle stage, data is sent to each reducer and sorted before they

are handed over to the Reduce stage.

Hadi-optimized addresses these two issues.

Block Operation: Our first optimization is the block encoding of the edges and the

bitstrings. The main idea is to group w by w sub-matrix into a super-element in the

adjacency matrix E, and group w bitstrings into a super-bitstring. Now, Hadi-plain

is performed on these super-elements and super-bitstrings, instead of the original edges
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Algorithm 8 Hadi Stage 2. Output is a set of full bitstring B = {(i, b(h, i)}

Input: Partial bitstring B = {(i, b̂(h− 1, j)}
1: Stage2-Map(key k, value v)
{ Identity Mapper }

2: Output(k, v)
3: Stage2-Reduce(key k, values V [])
4: b(h, k)← 0
5: for v ∈ V do
6: b(h, k)← b(h, k) BIT-OR v
7: end for
8: Update flag of b(h, k)
9: Output(k, b(h, k))

10: if (k, v) is of type BC then
11: b̂(h− 1, k)←NewFMBitstring()
12: else if (k, v) is of type B then
13: b̂(h− 1, k)← v
14: else if (k, v) is of type E then
15: Add v to SRC
16: end if
17: for src ∈ SRC do
18: Output(src, b̂(h− 1, k))
19: end for
20: Output(k, b̂(h− 1, k))

Algorithm 9 Hadi Stage 3. Output is the number of changed nodes, Neighborhood
N(h)
Input: Full bitstring B = {(i, b(h, i))}
1: Stage3-Map(key k, value v)
2: Analyze v to get (changed, N(h, i))
3: Output(key for changed,changed)
4: Output(key for neighborhood, N(h, i))
5: Stage3-Reduce(key k, values V [])
6: Changed← 0
7: N(h)← 0
8: for v ∈ V do
9: if k is key for changed then

10: Changed← Changed + v
11: else if k is key for neighborhood then
12: N(h)← N(h) + v
13: end if
14: end for
15: Output(key for changed,Changed)
16: Output(key for neighborhood, N(h))

and bitstrings. Of course, appropriate decoding and encoding is necessary at each stage.

Figure 7.3 shows an example of converting data into block-format.

By this block operation, the performance of Hadi-plain changes as follows:
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Figure 7.3: Converting the original edge and bitstring to blocks. The 4-by-4 edge and
length-4 bitstring are converted to 2-by-2 super-elements and length-2 super-bitstrings.
Notice the lower-left super-element of the edge is not produced since there is no nonzero

element inside it.

• Input size decreases in general, since we can use fewer bits to index elements inside

a block.

• Sorting time decreases, since the number of elements to sort decreases.

• Network traffic decreases since the result of matching a super-element and a super-

bitstring is a bitstring which can be at maximum block width times smaller than

that of Hadi-plain.

• Map and Reduce functions take more time, since the block must be decoded to be

processed, and be encoded back to block format.

For reasonable-size blocks, the performance improvement are significant.

Bit Shuffle Encoding: In our effort to decrease the input size, we propose an encoding

scheme that can compress the bitstrings. Recall that in Hadi-plain, we use K (e.g., 32,

64) bitstrings for each node, to increase the accuracy of our estimator. Since Hadi

requires O(K(m + n) log n) space, the amount of data increases when K is large. For

example, the YahooWeb graph spans 120 GBytes (with 1.4 billion nodes, 6.6 billion

edges). However the required disk space for just the bitstrings is 32 · (1.4B + 6.6B) · 8
byte = 2 Tera bytes (assuming 8 byte for each bitstring), which is more than 16 times

larger than the input graph.

The main idea of Bit Shuffle Encoding is to carefully reorder the bits of the bitstrings

of each node, and then use Run Length Encoding. By construction, the leftmost part

of each bitstring is almost full of one’s, and the rest is almost full of zeros. Specifically,

we make the reordered bit strings to contain long sequences of 1’s and 0’s: we get all

the first bits from all K bitstrings, then get the second bits, and so on. As a result we

get a single bit-sequence of length K · |bitstring|, where most of the first bits are ‘1’s,

and most of the last bits are ‘0’s. Then we encode only the length of each bit sequence,

achieving good space savings (and, eventually, time savings, through fewer I/Os).
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7.4.4 Analysis

Hadi depends on four parameters: the number M of machines, the number of vertices

n and edges m, and the diameter d. The time complexity is dominated by the shorting

time needed for the shuffling during Stage1. Specifically, Hadi takes O(m+n
M log m+n

M )

time to run. It requires O((m + n) log n) space units and is required O((m + n) log n).

7.4.5 Hadi in SQL

Using relational database management systems (RDBMS) for graph mining is a promis-

ing research direction, especially given the findings of [334]. We mention that Hadi

can be implemented on the top of an Object-Relational DBMS (parallel or serial): it

needs repeated joins of the edge table with the appropriate table of bit-strings, and a

user-defined function for bit-OR-ing. We sketch a potential implementation of Hadi in

a RDBMS.

Data: In parallel RDBMS implementations, data is saved in tables. The edges are

saved in the table E with attributes src (source node id) and dst (destination node id).

Similarly, the bitstrings are saved in the table B with

Main Program Flow: The main flow comprises iterative execution of SQL statements

with appropriate user defined functions. The most important and expensive operation is

updating the bitstrings of nodes. Observe that the operation can be concisely expressed

as a SQL statement:

SELECT INTO B NEW E.src, BIT-OR(B.b)
FROM E, B
WHERE E.dst=B.id
GROUP BY E.src

The SQL statement requires BIT-OR(), a UDF function that implements the bit-OR-ing

of the Flajolet-Martin bitstrings. The RDBMS implementation iteratively runs the SQL

until B NEW is same as B. B NEW created at an iteration is used as B at the next

iteration.

7.5 Wall-clock Times

In this section, we perform experiments to answer the following questions:

• Q1: How fast is Hadi?
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• Q2: How does it scale up with the graph size and the number of machines?

• Q3: How do the optimizations help performance?

7.5.1 Experimental Setup

We use both real and synthetic graphs in our experiments. These datasets are shown in

Table 7.1.

• YahooWeb: web pages and their hypertext links indexed by Yahoo! Altavista

search engine in 2002.

• Patents: U.S. patents, citing each other (from 1975 to 1999).

• LinkedIn: people connected to other people (from 2003 to 2006).

• Kronecker: Synthetic Kronecker graphs [279] using a chain of length two as the

seed graph.

Graph Nodes Edges File Description
YahooWeb 1.4 B 6.6 B 116G page-page

LinkedIn 7.5 M 58 M 1G person-person
Patents 6 M 16 M 264M patent-patent

Kronecker 177 K 1,977 M 25G synthetic
120 K 1,145M 13.9G
59 K 282 M 3.3G

Erdős-Rényi 177 K 1,977 M 25G random Gn,p

120 K 1,145 M 13.9G
59 K 282 M 3.3G

Table 7.1: Datasets (B: Billion, M: Million, K: Thousand, G: Gigabytes)

In order to test the scalability of Hadi, we use synthetic graphs, namely Kronecker and

Erdős-Rényi graphs. Hadi runs on M45, one of the fifty most powerful supercomputers

in the world. M45 has 480 hosts (each with 2 quad-core Intel Xeon 1.86 GHz, running

RHEL5), with 3Tb aggregate RAM, and over 1.5 Peta-byte disk size.

Finally, we use the following notations to indicate different optimizations of Hadi:

• Hadi-BSE: Hadi-plain with bit shuffle encoding.

• Hadi-BL: Hadi-plain with block operation.

• Hadi-OPT: Hadi-plain with both bit shuffle encoding and block operation.



Stucture of the Web Graph 148

Figure 7.4: Running time versus number of edges with Hadi-OPT on Kronecker
graphs for three iterations. Notice the excellent scalability: linear on the graph size

(number of edges).

Figure 7.5: “Scale-up” (throughput 1/TM ) versus number of machines M , for the
Kronecker graph (2B edges). Notice the near-linear growth in the beginning, close to

the ideal(dotted line).

7.5.2 Running Time and Scale-up

Figure 7.4 gives the wall-clock time of Hadi-OPT versus the number of edges in the

graph. Each curve corresponds to a different number of machines used (from 10 to 90).

Hadi has excellent scalability, with its running time being linear on the number of edges.

The rest of the Hadi versions (Hadi-plain, Hadi-BL, and Hadi-BSE), were slower, but

had a similar linear trend.

Figure 7.5 gives the throughput 1/TM of Hadi-OPT. We also tried Hadi with one

machine; however it didn’t complete, since the machine would take so long that it would

often fail in the meanwhile. For this reason, we do not report the typical scale-up score
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s = T1/TM (ratio of time with 1 machine, over time with M machine), and instead we

report just the inverse of TM . Hadi scales up near-linearly with the number of machines

M , close to the ideal scale-up.

Figure 7.6: Run time of Hadi with/without optimizations for Kronecker and Erdős-
Rényi graphs with several billions of edges, on the M45 Hadoop cluster using 90

machines for 3 iterations. Hadi-OPT is up to 7.6× faster than Hadi-plain.

7.5.3 Effect of Optimizations

Among the optimizations that we mentioned earlier, which one helps the most, and

by how much? Figure 7.6 plots the running time of different graphs versus different

Hadi optimizations. For the Kronecker graphs, we see that block operation is more

efficient than bit shuffle encoding. Here, Hadi-OPT achieves 7.6× better performance

than Hadi-plain. For the Erdős-Rényi graphs, however, we see that block operations

do not help more than bit shuffle encoding, because the adjacency matrix has no block

structure, while Kronecker graphs do. Also notice that Hadi-BLK and Hadi-OPT run

faster on Kronecker graphs than on Erdős-Rényi graphs of the same size. Again, the

reason is that Kronecker graphs have fewer nonzero blocks (i.e., “communities”) by their

construction, and the “block” operation yields more savings.

7.6 Structure of Real-World Networks

Hadi reveals new patterns in massive graphs which we present in this section. We

distinguish these new patterns into static (Section 7.6.1) and temporal (Section 7.6.2).
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(a) Radius plot of YahooWeb (b) Radius plot of GCC of YahooWeb

Figure 7.7: (a) Radius plot (Count versus Radius) of the YahooWeb graph. Notice
the effective diameter is surprisingly small. Also notice the peak (marked ‘S’) at radius

2, due to star-structured disconnected components.
(b) Radius plot of GCC (Giant Connected Component) of YahooWeb graph. The only

vertex with radius 5 (marked ‘C’) is google.com.

7.6.1 Static Patterns

7.6.1.1 Diameter

What is the diameter of the Web? Albert et al. [22] computed the diameter on a directed

Web graph with approximately 0.3 million vertices and conjectured that it should be

around 19 for a 1.4 billion-vertex Web graph as shown in the upper line of Figure 7.8.

Broder et al. [90] used their sampling approach from approximately 200 million-vertices

and reported 16.15 and 6.83 as the diameter for the directed and the undirected cases,

respectively. What should the effective diameter be, for a significantly larger crawl of

the Web, with billions of vertices ? Figure 7.7 gives the surprising answer:

Observation 2 (Small Web). The effective diameter of the YahooWeb graph (year: 2002)

is surprisingly small, between 7 and 8.

The previous results from Albert et al. [22] and Broder et al. [90] also consider the

undirected version of the Web graph. We compute the average diameter and show the

comparison of diameters of different graphs in Figure 7.8. We first observe that the

average diameters of all graphs are relatively small (< 20) for both the directed and the

undirected cases. We also observe that the Albert et al.’s conjecture for the diameter

of the directed graph is over-pessimistic: both the sampling approach and Hadi output

smaller values for the diameter of the directed graph. For the diameter of the undirected

graph, we observe the constant/shrinking diameter pattern [280].
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Figure 7.8: Average diameter vs. number of vertices in lin-log scale for the three dif-
ferent Web graphs, where M and B stand for millions and billions respectively. (0.3M):
web pages inside nd.edu at 1999, from Albert et al.’s work. (203M): web pages crawled
by Altavista at 1999, from Broder et al.’s work (1.4B): web pages crawled by Yahoo
at 2002 (YahooWeb in Table 7.1). Notice the relatively small diameters for both the

directed and the undirected cases.

7.6.1.2 Shape of Distribution

Figure 7.7 shows that the radii distribution in the Web Graph is multimodal. In other

relatively smaller networks, we observe a bimodal structure. As shown in the Radius

plot of U.S. Patent and LinkedIn network in Figure 7.9, they have a peak at zero, a dip

at a small radius value (9, and 4, respectively) and another peak very close to the dip.

(a) U.S. Patent (b) LinkedIn

Figure 7.9: Static Radius Plot (Count versus Radius) of U.S. Patent and LinkedIn
graphs. Notice the bimodal structure with ‘outsiders’ (vertices in the DCs), ‘core’
(central vertices in the GCC), and ‘whiskers’ (vertices connected to the GCC with long

paths).

Observation 3 (Multi-modal and Bi-modal). The radius distribution of the Web graph

has a multimodal structure. Smaller networks have a bimodal structure.
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A natural question to ask with respect to the bimodal structure is what are the common

properties of the vertices that belong to the first peak; similarly, for the vertices in the

first dip, and the same for the vertices of the second peak. After investigation, the

former are vertices that belong to disconnected components (DCs); vertices in the dip

are usually core vertices in the giant connected component (GCC), and the vertices at

the second peak are the vast majority of well connected vertices in the GCC. Figure 7.10

exactly shows the radii distribution for the vertices of the GCC (in blue), and the vertices

of the few largest remaining components.

Figure 7.10: Radius plot (Count versus radius) for several connected components
of the U.S. Patent data in 1985. In blue: the distribution for the giant connected

component; rest colors: several disconnected components.

In Figure 7.10, we clearly see that the second peak of the bimodal structure came from

the giant connected component. But, where does the first peak around radius 0 come

from? We can get the answer from the distribution of connected component of the same

graph in Figure 7.11. Since the ranges of radius are limited by the size of connected

components, we see the first peak of Radius plot came from the disconnected components

whose size follows a power law.

Now we can explain the three important areas of Figure 7.9: ‘outsiders’ are the vertices

in the disconnected components, and responsible for the first peak and the negative

slope to the dip. ‘Core’ are the central vertices with the smallest radii from the giant

connected component. ‘Whiskers’ [277] are the vertices connected to the GCC with long

paths.
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(a) Patent (b) LinkedIn

Figure 7.11: Size distribution of connected components. Notice the size of the dis-
connected components (DCs) follows a power-law which explains the first peak around

radius 0 of the radius plots in Figure 7.9.

(a) Patent (b) YahooWeb

(c) LinkedIn

Figure 7.12: Radius-Degree plots of real-world graphs. HD represents the vertex
with the highest degree. Notice that HD belongs to core vertices inside the GCC, and

whiskers have small degree.
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7.6.1.3 Radius plot of GCC

Figure 7.7(b) shows that all vertices of the GCC of the YahooWeb graph have radius 6

or more except for google.com that has radius one.

7.6.1.4 “Core” and “Whisker” vertices

Figure 7.12 shows the Radius-Degree plot of Patent, YahooWeb and LinkedIn graphs.

The Radius-Degree plot is a scatterplot with one dot for every vertex plotting the degree

of the vertex versus its radius. The points corresponding to vertices in the GCC are

colored with blue, while the rest is in magenta. We observe that the highest degree

vertices belong to the set of core vertices inside the GCC but are not necessarily the

ones with the smallest radius. Finally, the whisker vertices have small degree and belong

to chain subgraphs.

7.6.2 Temporal Patterns

Here we study the radius distribution as a function of time. We know that the diameter

of a graph typically grows with time, spikes at the ‘gelling point’, and then shrinks [280,

301]. Indeed, this holds for our datasets as shown in Figure 7.13.

(a) Patent (b) LinkedIn

Figure 7.13: Evolution of the effective diameter of real graphs. The diameter in-
creases until a ‘gelling’ point, and starts to decrease after the point.

Figure 7.14 shows our findings. The radius distribution expands to the right until it

reaches the gelling point. Then, it contracts to the left. Finally, the decreasing segments

of several, real radius plots seem to decay exponentially, that is

count(r) ∝ exp (−cr) (7.5)
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for every time tick after the gelling point. count(r) is the number of vertices with radius

r, and c is a constant. For the Patent and LinkedIn graphs, the absolute correlation

coefficient was at least 0.98.

(a) Patent-Expansion (b) Patent-Contraction

(c) LinkedIn-Expansion (d) LinkedIn-Contraction

Figure 7.14: Radius distribution over time. “Expansion”: the radius distribution
moves to the right until the gelling point. “Contraction”: the radius distribution moves

to the left after the gelling point.



Chapter 8

FENNEL: Streaming Graph

Partitioning for Massive Scale

Graphs

8.1 Introduction

Big volumes of data are typically managed and analyzed on large distributed systems

[130]. Specifically, the data is partitioned across a large number of cheap, commodity

machines which are typically connected by gigabit Ethernet. Minimizing the communi-

cation between the machines is critical, since the communication cost often dominates

computation cost. A key problem towards minimizing communication cost for big graph

data is the balanced graph partitioning (BGPA) problem: partition the vertex set of the

graph in a given number of machines in such a way that each partition is balanced and

the number edges cut is minimized. The balanced graph partitioning problem is a classic

NP-hard problem [258] for which several approximation algorithms have been designed.

Fennel Best competitor Hash Partition METIS
# Clusters (k) λ ρ λ ρ λ ρ λ ρ

2 6.8% 1.1 34.3% 1.04 50% 1 11.98% 1.02
4 29% 1.1 55.0% 1.07 75% 1 24.39% 1.03
8 48% 1.1 66.4% 1.10 87.5% 1 35.96% 1.03

Table 8.1: Fraction of edges cut λ and the normalized maximum load ρ for Fennel, the
previously best-known heuristic (linear weighted degrees [373]) and hash partitioning
of vertices for the Twitter graph with approximately 1.5 billion edges. Fennel and best

competitor require around 40 minutes, METIS more than 8 1
2 hours.

156
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In practice, systems aim at providing good partitions in order to enhance their perfor-

mance, e.g., [295, 346]. It is worth emphasizing that the balanced graph partitioning

problem appears in various guises in numerous domains [244].

Another major challenge in the area of big graph data is efficient processing of dy-

namic graphs. For example, new accounts are created and deleted every day in online

services such as Facebook, Skype and Twitter. Furthermore, graphs created upon post-

processing datasets such as Twitter posts are also dynamic, see for instance [36]. It

is crucial to have efficient graph partitioners of dynamic graphs. For example, in the

Skype service, each time a user logs in, his/her online contacts get notified. It is ex-

pensive when messages have to be sent across different graph partitions since this would

typically involve using network infrastructure. The balanced graph partitioning prob-

lem in the dynamic setting is known as streaming graph partitioning [373]. Vertices (or

edges) arrive and the decision of the placement of each vertex (edge) has to be done

“on-the-fly” in order to incur as little computational overhead as possible.

It is worth noting that the state-of-the-art work on graph partitioning seems to roughly

divide in two main lines of research. Rigorous mathematically work and algorithms that

do not scale to massive graphs, e.g., [260], and heuristics that are used in practice [244,

245, 344, 373]. Our work contributes towards bridging the gap between theory and

practice.

The remainder of the Chapter is organized as follows. In Section 8.2, we introduce our

graph partitioning framework and present our main theoretical result. In Section 8.3,

we present our scalable, streaming algorithm. In Section 8.4, we evaluate our method

versus the state-of-the-art work on a broad set of real-world and synthetic graphs, while

in Section 8.5 we provide our experimental results in the Apache Giraph.

8.2 Proposed Framework

Notation. Throughout this Chapter we use the following notation. Let G(V,E) be a

simple, undirected graph. Let the number of vertices and edges be denoted as |V | = n

and |E| = m. For a subset of vertices S ⊆ V , let e(S, S) be the set of edges with both

end vertices in the set S, and let e(S, V \ S) be the set of edges whose one end-vertex is

in the set S and the other is not. For a given vertex v let tSv be the number of triangles

(v, w, z) such that w, z ∈ S. We define a partition of vertices P = (S1, . . . , Sk) to be

a family of pairwise disjoint sets vertices, i.e., Si ⊆ V , Si ∩ Sj = ∅ for every i 6= j.

We call Si to be a cluster of vertices. Finally, for a graph G = (V,E) and a partition
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P = (S1, S2, . . . , Sk) of the vertex set V , let ∂e(P) be the set of edges that cross partition

boundaries, i.e. ∂e(P) = ∪k
i=1e(Si, V \ Si).

Graph Partitioning Framework. We formulate a graph partitioning framework that

is based on accounting for the cost of internal edges and the cost of edges cut by a

partition of vertices in a single global objective function.

The size of individual partitions. We denote with σ(Si) the size of the cluster of vertices

Si, where σ is a mapping to the set of real numbers. Special instances of interest are (1)

edge cardinality where the size of the cluster i is proportional to the total number of edges

with at least one end-vertex in the set Si, i.e. |e(Si, Si)|+ |e(Si, V \Si)|, (2) interior-edge

cardinality where the size of cluster i is proportional to the number of internal edges

|e(Si, Si)|, and (3) vertex cardinality where the size of partition i is proportional to the

total number of vertices |Si|. The edge cardinality of a cluster is an intuitive measure of

cluster size. This is of interest for computational tasks over input graph data where the

computational complexity within a cluster of vertices is linear in the number of edges

with at least one vertex in the given cluster. For example, this is the case for iterative

computations such as solving the power iteration method. The vertex cardinality is a

standard measure of the size of a cluster and for some graphs may serve as a proxy for

the edge cardinality, e.g. for the graphs with bounded degrees.

The global objective function. We define a global objective function that consists of two

elements: (1) the inter-partition cost cOUT : Nk → R+ and (2) the intra-partition cost

cIN : Nk → R+. These functions are assumed to be increasing and super-modular (or

convex, if extended to the set of real numbers). For every given partition of vertices

P = (S1, S2, . . . , Sk), we define the global cost function as

f(P) = cOUT(|e(S1, V \ S1)|, . . . , |e(Sk, V \ Sk)|)

+cINT(σ(S1), . . . , σ(Sk)).

It is worth mentioning some particular cases of interest. Special instance of interest for

the inter-partition cost is the linear function in the total number of cut edges |∂e(P)|.
This case is of interest in cases where an identical cost is incurred per each edge cut,

e.g. in cases where messages are exchanged along cut edges and these messages are

transmitted through some common network bottleneck. For the intra-partition cost, a

typical goal is to balance the cost across different partitions and this case is accomodated

by defining cINT(σ(S1), . . . , σ(Sk)) =
∑k

i=1 c(σ(Si)), where c(x) is a convex increasing

function such that c(0) = 0. In this case, the intra-partition cost function, being defined

as a sum of convex functions of individual cluster sizes, would tend to balance the cluster

sizes, since the minimum is attained when sizes are equal.
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We formulate the graph partitioning problem as follows.

Optimal k-Graph Partitioning

Given a graph G = (V,E), find a partition P∗ = {S∗1 , . . . , S∗k} of the

vertex set V , such that f(P∗) ≥ f(P), for all partitions P such that

|P| = k.

We refer to the partition P∗ as the optimal k graph partition of the

graph G.

Streaming setting. The streaming graph partitioning problem can be defined as follows.

Let G = (V,E) be an input graph and let us assume that we want to partition the graph

into k disjoint subsets of vertices. The vertices arrive in some order, each one with the

set of its neighbors.We consider three different stream orders, as in [373].

• Random: Vertices arrive according to a random permutation.

• BFS: This ordering is generated by selecting a vertex uniformly at random and

performing breadth first search starting from that vertex.

• DFS: This ordering is identical to the BFS ordering, except that we perform depth

first search.

A k-partitioning streaming algorithm has to decide whenever a new vertex arrives to

which cluster it is going to be placed. A vertex is never moved after it has been assigned

to a cluster. The formal statement of the problem follows.

Classic Balanced Graph Partitioning. We consider the traditional instance of a

graph partitioning problem that is a special case of our framework by defining the inter-

partition cost to be equal to the total number of edges cut and the intra-partition cost

defined in terms of the vertex cardinalities.

The starting point in the existing literature, e.g., [258, 260], is to admit hard cardinality

constraints, so that |S∗i | ≤ ν n
k for i = 1, . . . , k , where ν ≥ 1 is a fixed constant. This

set of constaints makes the problem significantly hard. Currently, state-of-the-art work

depends on the impressive ARV barrier [37] which results in a O(
√

log n) approximation

factor. The typical formulation is the following:

minimizeP=(S1,...,Sk) |∂e(P)|
subject to |Si| ≤ ν n

k , ∀i ∈ {1, . . . , k}
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Our approach: Just Relax ! The idea behind our approach is to relax the hard cardinality

constraints by introducing a term in the objective cIN(P) whose minimum is achieved

when |Si| = n
k for all i ∈ {1, . . . , k}. Therefore, our framework is based on a well-defined

global graph partitioning objective function, which allows for a principled design of

approximation algorithms and heuristics as shall be demonstrated in Section 8.3. Our

graph partitioning method is based on solving the following optimization problem:

minimizeP=(S1,...,Sk) |∂e(P)|+ cIN(P) (8.1)

Intra-partition cost: With the goal in mind to favor balanced partitions, we may define

the intra-partition cost function by cIN(P) =
∑k

i=1 c(|Si|) where c(x) is an increasing

function choosen to be super-modular, so that the following increasing returns property

holds c(x + 1)− c(x) ≥ c(y + 1)− c(y), for every 0 ≤ y ≤ x.

We shall focus our attention to the following family of functions c(x) = αxγ , for α > 0

and γ ≥ 1. By the choice of the parameter γ, this family of cost functions allows us

to control how much the imbalance of cluster sizes is accounted for in the objective

function. In one extreme case where γ = 1, we observe that the objective corresponds to

minimizing the number of cut-edges, thus entirely ignoring any possible imbalance of the

cluster sizes. On the other hand, by taking larger values for the parameter γ, the more

weight is put on the cost of partition imbalance, and this cost may be seen to approximate

hard constraints on the imbalance in the limit of large γ. Parameter α is also important.

We advocate a principled choice of α independently of whether it is suboptimal compared

to other choices. Specifically, we choose α = mkγ−1

nγ . This provides us a proper scaling,

since for this specific choice of α, our optimization problem is equivalent to minimizing

a natural normalization of the objective function
Pk

i=1 e(Si,V \Si)
m + 1

k

∑k
i=1

(
|Si|
n
k

)γ

.

An equivalent maximization problem. We note that the optimal k graph partitioning

problem admits an equivalent formulation as a maximization problem. It is of interest

to consider this alternative formulation as it allows us to make a connection with the

concept of graph modularity, which we do later in this section. For a graph G = (V,E)

and S ⊆ V , we define the function h : 2V → R as:

h(S) = |e(S, V \ S)| − c(|S|)
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where h(∅) = h({v}) = 0 for every v ∈ V . Given k ≥ 1 and a partition P = {S1, . . . , Sk}
of the vertex set V , we define the function g as

g(P) =
k∑

i=1

h(Si).

Now, we observe that maximizing the function g(P) over all possible partitions P of the

vertex set V such that |P| = k corresponds to the k graph partitioning problem. Indeed,

this follows by noting that

g(P) =
k∑

i=1

|e(Si, Si)| − c(|Si|)

= (m−
k∑

i=1

|e(Si, V \ Si)|)− c(|Si|)

= m− f(P).

Thus, maximizing function g(P) corresponds to minimizing function f(P), which is

precisely the objective of our k graph partitioning problem.

Modularity: We note that when the function c(x) is taken from the family c(x) = αxγ ,

for α > 0 and γ = 2, our objective has a combinatorial interpretation. Specifically, our

problem is equivalent to maximizing the function

k∑
i=1

[|e(Si, Si)| − p

(
|Si|
2

)
]

where p = α/2. In this case, each summation element admits the following intepretation:

it corresponds to the difference between the realized number of edges within a cluster

and the expected number of edges within the cluster under the null-hypothesis that the

graph is an Erdös-Rényi random graph with parameter p. This is intimately related to

the concepts of graph modularity [196, 314, 316] and quasi-cliques [399]. Recall that an

approximation algorithm for a maximization problem is meaningful as a notion if the

optimum solution is positive. However, in our setting our function g does not results as

it can easily be seen in a non-negative optimum. For instance, if G is the empty graph

on n vertices, any partition of G in k parts results in a negative objective (except when

k = n when the objective becomes 0). Therefore, we need to shift our objective in order

to come up with a multiplicative approximation algorithm. We define the following

shifted objective, along the lines of Chapter 6.
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Definition 8.1. k ≥ 1. Also let P∗ = {S∗1 , . . . , S∗k} be a partition of the vertex set V .

We define the function g as

g̃(P) = α

(
n

2

)
+

k∑
i=1

f(Si).

Claim 5. For any partition P, g̃(P) ≥ 0.

Proof. The proof follows directly from the fact that for any positive-valued s1, s2, . . . , sk

such that
∑k

i=1 si = n, the following holds n2 ≥ s2
1 + · · ·+ s2

k.

Due to the combinatorial interpretation of the objective function, we design a semidefi-

nite programming approximation algorithm. Before that, we see how random partition-

ing performs.

Random Partitioning: Suppose each vertex is assigned to one of k partitions uni-

formly at random. This simple graph partition is a faithful approximation of hash

partitioning of vertices that is commonly used in practice. In expectation, each of the

k clusters will have n
k vertices. Let S1, . . . , Sk be the resulting k clusters. How well

does this simple algorithm perform with respect to our objective? Let P∗ be an optimal

partition for the optimal quasi-clique problem, i.e. g(P∗) ≥ g(P), for every partition P
of the vertex set V into k partitions. Notice that P∗ is also an optimal partition for the

optimal quasi-clique problem with shifted objective function. Now, note that an edge

e = (u, v) has probability 1
k that both its endpoints belong to the same cluster. By the

linearity of expectation, we obtain by simple calculations:

E [g̃(S1, . . . , Sk)] =
|E|
k

+ α
k − 1

k

(
n

2

)
≥ 1

k

(
|E|+ α

(
n

2

))
≥ 1

k
g̃(P∗)

where last inequality comes from the simple upper bound g̃(P) ≤ |E| + α
(
n
2

)
for any

partition P.

An SDP Rounding Algorithm

We define a vector variable xi for each vertex i ∈ V and we allow xi to be one of the

unit vectors e1, . . . , ek, where ej has only the j-th coordinate 1.
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maximize
∑

e=(i,j) xixj + α
∑

i<j

(
1− xixj

)
subject to xi ∈ {e1, . . . , ek}, ∀i ∈ {1, . . . , n}

(8.2)

We obtain the following semidefinite programming relaxation:

maximize
∑

e=(i,j) yij + α
∑

i<j

(
1− yij

)
subject to yii = 1, ∀i ∈ {1, . . . , n}

yij ≥ 0, ∀i 6= j

Y � 0, Y symmetric

(8.3)

The above SDP can be solved within an additive error of δ of the optimum in time

polynomial in the size of the input and log (1
δ ) by interior point algorthms or the ellipsoid

method [24]. In what follows, we refer to the optimal value of the integer program as

OPTIP and of the semidefinite program as OPTSDP. Our algorithm is the following:

SDP-Relax

• Relaxation: Solve the semidefinite program [24] and compute a

Cholesky decomposition of Y . Let v0, v1, . . . , vn be the resulting

vectors.

• Randomized Rounding: Randomly choose t = dlog ke unit length

vectors ri ∈ Rk, i = 1, . . . , t. These t random vectors define

2t = k possible regions in which the vectors vi can fall: one

region for each distinct possibility of whether rjvi ≥ 0 or rjvi < 0.

Define a cluster by adding all vertices whose vector vi fall in a

given region.

Theorem 8.2. Algorithm SDP-Relax is a Ω( log k
k ) approximation algorithm for the Op-

timal Quasi-Clique Partitioning.

Proof. Let Ck be the score of the partition produced by our randomized rounding. Define

Ai,j to be the event that vertices i and j are assigned to the same partition. Then,

E [Ck] =
∑

e=(i,j)

Pr [Ai,j ] + α
∑
i<j

(
1−Pr [Ai,j ]

)



FENNEL: Streaming Graph Partitioning for Massive Scale Graphs 164

As in Goemans-Williamson [198], given a random hyperplane with normal vector r that

goes through the origin, the probability of sgn(vT
i r) = sgn(vT

j r), i.e., i and j fall on the

same side of the hyperplane, is 1− arccos(vT
i vj)

π . Since we have t independent hyperplanes

Pr [Ai,j ] =
(

1− arccos(vT
i vj)

π

)t

.

Let us define, for t ≥ 1,

f1(θ) =

(
1− θ

π

)t
cos(θ)

, θ ∈ [0,
π

2
)

and

ρ1 = min
0≤θ< π

2

f1(θ).

Similarly, define for t ≥ 1,

f2(θ) =
1−

(
1− θ

π

)t
1− cos(θ)

, θ ∈ [0,
π

2
)

and

ρ2 = min
0≤θ< π

2

f2(θ).

We wish to find a ρ such that E [Ck] ≥ ρOPTSDP. Since, OPTSDP ≥ OPTIP, this would

then imply E [Ck] ≥ ρOPTIP.

We note that

f ′1(θ) =
− t

π

(
1− θ

π

)t−1
cos(θ) +

(
1− θ

π

)t
sin(θ)

cos2(θ)
.

It follows that f ′1(θ(t)) = 0 is equivalent to

t = (π − θ(t)) tan(θ(t)).

Notice that the following two hold

lim
t→∞

θ(t) =
π

2

and
π

2
tan(θ(t)) ≤ t ≤ π tan(θ(t)). (8.4)
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We next show that f1(θ(t)) ≥ 1
π t2−t, by the the following series of relations

f1(θ(t)) =

(
1− θ(t)

π

)t

cos(θ(t))
=
√

1 + tan2(θ(t))
(

1− θ(t)
π

)t

≥
√

1 + tan2(θ(t))2−t ≥

√
1 +

(
t

π

)2

2−t

≥ 1
π

t2−t

where the second equality is by the fact cos(θ) = 1√
1+tan2(θ)

, the first inequality is by

the fact θ(t) ≤ π
2 , and the second inequality is by (8.4).

Thus, for t = log2(k), we conclude

ρ1 ≥
1

π log(2)
log(k)

k
.

Now, we show that ρ2 = 1
2 . First we show that for any t ≥ 1, f2(θ) ≥ 1/2. To this end,

we note

1−
(
1− θ

π

)t
1− cos(θ)

≥ 1
2
⇔ 1

2

(
1 + cos(θ)

)
≥
(

1− θ

π

)t

.

Notice that for all θ ∈ [0, π/2), if t1 ≥ t2 ≥ 1, then
(

1 − θ
π

)t1
≤
(

1 − θ
π

)t2
. Hence,

it suffices 1
2

(
1 + cos(θ)

)
≥
(
1− θ

π

)
. With the use of simple calculus, the latter is true

and is also tight for θ = 0 and θ = π/2. It is worth observing the opposite trend of the

values of ρ1 and ρ2. The reason is that Pr [Ai,j ] drops as we use more hyperplanes and,

of course, 1 − Pr [Ai,j ] grows. Now, we can establish the following lower bound on the

expected score of our randomized rounding procedure. Let θi,j = arccos(vT
i vj).

E [Ck] =
∑

e=(i,j)

Pr [Ai,j ] + α
∑
i<j

(
1−Pr [Ai,j ]

)
=
∑

e=(i,j)

(
1− θi,j

π

)t

+ α
∑
i<j

(
1−

(
1− θi,j

π

)t )
≥
∑

e=(i,j)

ρ1 cos(θi,j) + α
∑
i<j

ρ2

(
1− cos(θi,j)

)
≥ min{ρ1, ρ2}OPTSDP

≥ min{ρ1, ρ2}OPTIP
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It suffices to set ρ = min{ρ1, ρ2}. The above analysis shows that our algorithm is a

ρ-approximation algorithm, where ρ = Ω( log(k)
k ).

The approximation guarantees that hold for the shifted objective function have the fol-

lowing meaning for the original objective function. Suppose that P is a ρ-approximation

with respect to the shifted-objective quasi-clique partitioning problem, i.e. g̃(P) ≥
ρg̃(P∗). Then, it holds

g(P) ≥ ρg(P∗)− (1− ρ)α
(

n

2

)
.

Notice that this condition is equivalent to

g(P)− g(P∗) ≥ −(1− ρ)[g(P∗) + α

(
n

2

)
].

We wish to outline that this approximation guarantee is near to a ρ-approximation if

the parameter α is small enough so that the term g(P∗) dominates the term α
(
n
2

)
. For

example, for an input graph that consists of k cliques, we have that g(P∗) ≥ α
(
n
2

)
corresponds to α

1−α ≤
1
k

n+k
n+1 , from which we conclude that it suffices that α ≤ 1

k+1 .

Alternative Roundings

One may ask whether the relaxation of Frieze and Jerrum [181], Karger, Motwani and

Sudan [243] can improve significalty the approximation factor. We provide negative

evidence. Before we go into further details, we notice that the main “bottleneck” in our

approximation is the probability of two vertices being in the same cluster, as k grows.

The probability that i, j are in the same cluster in our rounding is p(θ) where

p(θ) =
(

1− θ
π

)log k
.

Suppose θ = π
2 (1− ε). Then,

p(θ) =
(

1− θ
π

)log k
=
(1 + ε

2

)log k

=
1
k

+ ε
log k

k
+ O(ε2).

As we see from Lemma 5 in [181], for this θ, the asymptotic expression matches ours:

Nk(cos(θ)) ≈ 1
k

+
2 log k

k
cos
(π

2
(1− ε)

)
=

1
k

+ πε
log k

k
+ O(ε2).
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8.3 One-Pass Streaming Algorithm

We derive a streaming algorithm by using a greedy assignment of vertices to partitions

as follows: assign each arriving vertex to a partition such that the objective function of

the k graph partitioning problem, defined as a maximization problem, is increased the

most. Formally, given that current vertex partition is P = (S1, S2, . . . , Sk), a vertex v

is assigned to partition i such that

g(S1, . . . , Si ∪ {v}, . . . , Sj , . . . , Sk)

≥ g(S1, . . . , Si, . . . , Sj ∪ {v}, . . . , Sk), for all j ∈ [k].

Defining δg(v, Si) = g(S1, . . . , Si∪{v}, . . . , Sj , . . . , Sk)−g(S1, . . . , Si, . . . , Sj , . . . , Sk), the

above greedy assignment of vertices corresponds to that in the following algorithm.

Greedy vertex assignment

• Assign vertex v to partition i such that δg(v, Si) ≥ δg(v, Sj), for

all j ∈ [k]

Special case: edge-cut and balanced vertex cardinality. This is a special case of introduced

that we discussed in Section 8.2. In this case, δg(v, Sl) = |N(v) ∩ Sl| − δc(|Sl|), where

δc(x) = c(x + 1)− c(x), for x ∈ R+, and N(v) denotes the set of neighbors of vertex v.

The two summation elements in the greedy index δg(v, Sl) account for the two underlying

objectives of minimizing the number of cut edges and balancing of the partition sizes.

Notice that the component |N(v)∩Si| corresponds to the number of neighbours of vertex

v that are assigned to partition Si. In other words, this corresponds to the degree of

vertex v in the subgraph induced by Si. On the other hand, the component δc(|Si|) can

be interpreted as the marginal cost of increasing the partition i by one additional vertex.

For our special family of cost functions c(x) = αxγ , we have δc(x) = αγxγ−1. For

γ = 1, the greedy index rule corresponds to assigning a new vertex v to partition i with

the largest number of neighbours in Si, i.e |N(v) ∩ Si|. This is one of the greedy rules

considered by Stanton and Kliot [373], and is a greedy rule that may result in highly

imbalanced partition sizes.

On the other hand, in case of quadratic cost c(x) = 1
2x2, the greedy index is |N(v)∩Si|−

|Si|, and the greedy assignment corresponds to assigning a new vertex v to partition i

that minimizes the number of non-neighbors of v inside Si, i.e. |Si \N(v)|. Hence, this

yields the following heuristic: place a vertex to the partition with the least number of
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Figure 8.1: Fraction of edges cut λ and maximum load normalized ρ as a function
of γ, ranging from 1 to 4 with a step of 0.25, over five randomly generated power law

graphs with slope 2.5. The straight lines show the performance of METIS.

non-neighbors [344]. This assignment accounts for both the cost of cut edges and the

balance of partition sizes.

Finally, we outline that in many applications there exist very strict constraints on the

load balance. Despite the fact that we investigate the effect of the parameter γ on the

load balance, one may apply the following algorithm, which enforces to consider only

machines whose load is at most ν × n
k . This algorithm for 1 ≤ γ ≤ 2 amounts to

interpolating between the basic heuristics of [373] and [344]. The overall complexity of

our algorithm is O(n + m).

Greedy vertex assignment with threshold ν

• Let Iν = {i : µi ≤ ν n
k }. Assign vertex v to partition i ∈ Iν such that

δg(v, Si) ≥ δg(v, Sj), for all j ∈ Iν

8.4 Experimental Evaluation

In this section we present results of our experimental evaluations of the quality of graph

partitions created by our method and compare with alternative methods. We first

describe our experimental setup in Sections 8.4.1, and then present our findings using

synthetic and real-world graphs, in Section 8.4.2 and 8.4.3, respectively.

8.4.1 Experimental Setup

The real-world graphs used in our experiments are shown in Table 9.2. Multiple edges,

self loops, signs and weights were removed, if any. Furthermore, we considered the

largest connected component from each graph in order to ensure that there is a non-zero
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Nodes Edges Description
amazon0312 400 727 2 349 869 Co-purchasing
amazon0505 410 236 2 439 437 Co-purchasing
amazon0601 403 364 2 443 311 Co-purchasing

as-735 6 474 12 572 Auton. Sys.
as-Skitter 1 694 616 11 094 209 Auton. Sys.
as-caida 26 475 53 381 Auton. Sys.

ca-AstroPh 17 903 196 972 Collab.
ca-CondMat 21 363 91 286 Collab.

ca-GrQc 4 158 13 422 Collab.
ca-HepPh 11 204 117 619 Collab.
ca-HepTh 8 638 24 806 Collab.
cit-HepPh 34 401 420 784 Citation
cit-HepTh 27 400 352 021 Citation
cit-Patents 3 764 117 16 511 740 Citation

email-Enron 33 696 180 811 Email
email-EuAll 224 832 339 925 Email

epinions 119 070 701 569 Trust
Epinions1 75 877 405 739 Trust

LiveJournal1 4 843 953 42 845 684 Social
p2p-Gnutella04 10 876 39 994 P2P
p2p-Gnutella05 8 842 31 837 P2P
p2p-Gnutella06 8 717 31 525 P2P
p2p-Gnutella08 6 299 20 776 P2P
p2p-Gnutella09 8 104 26 008 P2P
p2p-Gnutella25 22 663 54 693 P2P
p2p-Gnutella31 62 561 147 878 P2P

roadNet-CA 1 957 027 2 760 388 Road
roadNet-PA 1 087 562 1 541 514 Road
roadNet-TX 1 351 137 1 879 201 Road

Slashdot0811 77 360 469 180 Social
Slashdot0902 82 168 504 230 Social

Slashdot081106 77 258 466 661 Social
Slashdot090216 81 776 495 661 Social
Slashdot090221 82 052 498 527 Social

usroads 126 146 161 950 Road
wb-cs-stanford 8 929 2 6320 Web
web-BerkStan 654 782 6 581 871 Web

web-Google 855 802 4 291 352 Web
web-NotreDame 325 729 1 090 108 Web

web-Stanford 255 265 1 941 926 Web
wiki-Talk 2 388 953 4 656 682 Web

Wikipedia-20051105 1 596 970 18 539 720 Web
Wikipedia-20060925 2 935 762 35 046 792 Web

Twitter 41 652 230 1 468 365 182 Social

Table 8.2: Datasets used in our experiments.

number of edges cut. All graphs are publicly available on the Web. All algorithms have

been implemented in java, and all experiments were performed on a single machine,

with Intel Xeon cpu at 3.6GHz, and 16GB of main memory. Wall-clock times include

only the algorithm execution time, excluding the required time to load the graph into

memory.
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BFS Random
Method λ ρ λ ρ

H 96.9% 1.01 96.9% 1.01
B [373] 97.3% 1.00 96.8% 1.00

DG [373] 0% 32 43% 1.48
LDG [373] 34% 1.01 40% 1.00
EDG [373] 39% 1.04 48% 1.01
T [373] 61% 2.11 78% 1.01
LT [373] 63% 1.23 78% 1.10
ET [373] 64% 1.05 79% 1.01
NN [344] 69% 1.00 55% 1.03
Fennel 14% 1.10 14% 1.02

METIS [245] 8% 1.00 8% 1.02

Table 8.3: Performance of various existing methods on amazon0312, k is set to 32.

In our synthetic experiments, we use two random graph models. The first model is

the hidden partition model [122]. It is specified by four parameters parameters: the

number of vertices n, the number of clusters k, the intercluster and intracluster edge

probabilities p and q, respectively. First, each vertex is assigned to one of k clusters

uniformly at random. We add an edge between two vertices of the same (different)

cluster(s) with probability p (q) independently of the other edges. We denote this model

as HP(n, k, p, q). The second model we use is a standard model for generating random

power law graphs. Specifically, we first generate a power-law degree sequence with a

given slope δ and use the Chung-Lu random graph model to create an instance of a

power law graph [114]. The model CL(n, δ) has two parameters: the number of vertices

n and the slope δ of the expected power law degree sequence.

We evaluate our algorithms by measuring two quantities from the resulting partitions.

In particular, for a fixed partition P we use the measures of the fraction of edges cut λ

and the normalized maximum load ρ, defined as

λ =
# edges cut by P

# total edges
=
|∂e(P)|

m
, and

ρ =
maximum load

n
k

.

Throughout this section, we also use the notation λM and µM to indicate the partition-

ing method M used in a particular context. In general, we omit indices whenever it is

clear to which partition method we refer to. Notice that k ≥ ρ ≥ 1 since the maximum

load of a cluster is at most n and there always exists at least one cluster with at least n
k

vertices.
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In Section 8.4.2, we use the greedy vertex assignment without any threshold. Given that

we are able to control ground truth, we are mainly interested in understanding the effect

of the parameter γ on the tradeoff between the fraction of edges cut and the normalized

maximum load. In Section 8.4.3, the setting of the parameters we use throughout our

experiments is γ = 3
2 , α =

√
k m

n3/2 , and ν = 1.1. The choice of γ is based on our findings

from Section 8.4.2 and of α based on Section 8.2. Finally, ν = 1.1 is a reasonable load

balancing factor for real-world settings.

As our competitors we use state-of-the-art heuristics. Specifically, in our evaluation we

consider the following heuristics from [373], which we briefly describe here for complete-

ness. Let v be the newly arrived vertex.

• Balanced (B): place v to the cluster Si with minimal size.

• Hash partitioning (H): place v to a cluster chosen uniformly at random.

• Deterministic Greedy (DG): place v to Si that maximizes |N(v) ∩ Si|.

• Linear Weighted Deterministic Greedy (LDG): place v to Si that maximizes |N(v)∩
Si| × (1− |Si|

n
k

).

• Exponentially Weighted Deterministic Greedy (EDG): place v to Si that maximizes

|N(v) ∩ Si| ×
(

1− exp
(
|Si| − n

k

))
.

• Triangles (T): place v to Si that maximizes tSi(v).

• Linear Weighted Triangles (LT): place v to Si that maximizes tSi(v)×
(

1− |Si|
n
k

)
.

• Exponentially Weighted Triangles (ET): place v to Si that maximizes tSi(v)×
(

1−

exp
(
|Si| − n

k

))
.

• Non-Neighbors (NN): place v to Si that minimizes |Si \N(v)|.

In accordance with [373], we observed that LDG is the best performing heuristic. Even

if Stanton and Kliot do not compare with NN, LDG outperforms it also. Non-neighbors

typically have very good load balancing properties, as LDG as well, but cut significantly

more edges. Table 8.3 shows the typical performance we observe across all datasets.

Specifically, it shows λ and ρ for both BFS and random order for amazon0312. DFS

order is omitted since qualitatively it does not differ from BFS. We observe that LDG

is the best competitor, Fennel outperforms all existing competitors and is inferior to

METIS, but of comparable performance. In whatever follows, whenever we refer to the

best competitor, unless otherwise mentioned we refer to LDG.
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Fennel METIS
m k λ ρ λ ρ

7 185 314 4 62.5 % 1.04 65.2% 1.02
6 714 510 8 82.2 % 1.04 81.5% 1.02
6 483 201 16 92.9 % 1.01 92.2% 1.02
6 364 819 32 96.3% 1.00 96.2% 1.02
6 308 013 64 98.2% 1.01 97.9% 1.02
6 279 566 128 98.4 % 1.02 98.8% 1.02

Table 8.4: Fraction of edges cut λ and normalized maximum load ρ for Fennel and
METIS [245] averaged over 5 random graphs generated according to the HP(5000,0.8,0.5)

model.

8.4.2 Synthetic Datasets

Before we delve into our findings, it is worth summarizing the main findings of this

section. (a) For all synthetic graphs we generated, the value γ = 3
2 achieves the best

performance pointwise, not in average. (b) The effect of the stream order is minimal on

the results. Specifically, when γ ≥ 3
2 all orders result in the same qualitative results.

When γ < 3
2 BFS and DFS orders result in the same results which are worse with respect

to load balancing –and hence better for the edge cuts– compared to the random order.

(c) Fennel’s performance is comparable to METIS.

Hidden Partition: We report averages over five randomly generated graphs according

to the model HP(5000, k, 0.8, 0.5) for each value of k we use. We study (a) the effect of

the parameter γ, which parameterizes the function c(x) = αxγ , and (b) the effect of the

number of clusters k.

We range γ from 1 to 4 with a step of 1/4, for six different values of k shown in the

second column of Table 8.4. For all k, we observe, consistently, the following behavior:

for γ = 1 we observe that λ = 0 and ρ = k. This means that one cluster receives all

vertices. For any γ greater than 1, we obtain excellent load balancing with ρ ranging

from 1 to 1.05, and the same fraction of edges cut with METIS up the the first decimal

digit. This behavior was not expected a priori, since in general we expect λ shifting from

small to large values and see ρ shifting from large to small values as γ grows. Given the

insensitivity of Fennel to γ in this setting, we fix γ = 3
2 and present in Table 8.4 our

findings. For each k shown in the second column we generate five random graphs. The

first column shows the average number of edges. Notice that despite the fact that we

have only 5,000 vertices, we obtain graphs with several millions of edges. The four last

columns show the performance of Fennel and METIS. As we see, their performance is

comparable and in one case (k=128) Fennel clearly outperforms METIS.

Power Law: It is well known that power law graphs have no good cuts [201], but they are

commonly observed in practice. We examine the effect of parameter γ for k fixed to 10.
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Figure 8.2: (Left) CDF of the relative difference (λFennel−λc
λc

)× 100% of percentages
of edges cut of our method and the best competitor. (Right) Same but for the absolute

difference (λFennel − λc)× 100%.

In contrast to the hidden partition experiment, we observe the expected tradeoff between

λ and ρ as γ changes. We generate five random power law graphs CL(20 000,2.5), since

this value matches the slope of numerous real-world networks [315]. Figure 8.1 shows the

tradeoff when γ ranges from 1 to 4 with a step of 0.25 for the random stream order. The

straight line shows the performance of METIS. As we see, when γ < 1.5, ρ is unacceptably

large for demanding real-world applications. When γ = 1.5 we obtain essentially the

same load balancing performance with METIS. Specifically, ρFennel = 1.02, ρMETIS =

1.03. The corresponding cut behavior for γ = 1.5 is λFennel = 62.58%, λMETIS = 54.46%.

Furthermore, we experimented with the random, BFS and DFS stream orders. We

observe that the only major difference between the stream orders is obtained for γ = 1.25.

For all other γ values the behavior is identical. For γ = 1.25 we observe that BFS and

DFS stream orders result in significantly worse load balancing properties. Specifically,

ρBFS = 3.81, ρDFS = 3.73, ρRandom = 1.7130. The corresponding fractions of edges cut

are λBFS = 37.83%, λDFS = 38.85%, and λRandom = 63.51%.

8.4.3 Real-World Datasets

Again, before we delve into the details of the experimental results, we summarize the

main points of this Section: (1) Fennel is superior to existing streaming partitioning al-

gorithms. Specifically, it consistently, over a wide range of k values and over all datasets,

performs better than the current state-of-the-art. Fennel achieves excellent load balanc-

ing with significantly smaller edge cuts. (2) For smaller values of k (less or equal than

64) the observed gain is more pronounced. (c) Fennel is fast. Our implementation scales

well with the size of the graph. It takes about 40 minutes to partition the Twitter graph

which has more than 1 billion of edges.
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k Relative Gain ρFennel − ρc

2 25.37% 0.47%
4 25.07% 0.36%
8 26.21% 0.18%
16 22.07% -0.43%
32 16.59% -0.34%
64 14.33% -0.67%
128 13.18% -0.17%
256 13.76% -0.20%
512 12.88% -0.17%
1024 11.24% -0.44%

Table 8.5: The relative gain (1− λFennel
λc

)×100% and load imbalance, where subindex
c stands for the best competitor, averaged over all datasets in Table 9.2 as a function

of k.

Twitter Graph. Twitter graph is the largest graph in our collection of graphs, with

more than 1.4 billion edges. This feature makes it the most interesting graph from

our collection, even if, admittedly, is a graph that can be loaded into the main mem-

ory. The results of Fennel on this graph are excellent. Specifically, Table 8.1 shows

the performance of Fennel, the best competitor LDG, the baseline Hash Partition and

METIS for k = 2, 4 and 8. All methods achieve balanced partitions, with ρ ≤ 1.1.

Fennel, is the only method that always attains this upper bound. However, this rea-

sonable performance comes with a high gain for λ. Specifically, we see that Fennel

achieves better performance of k = 2 than METIS. Furthermore, Fennel requires 42

minutes whereas METIS requires 81
2 hours. Most importantly, Fennel outperforms LDG

consistently. Specifically, for k = 16, 32 and 64, Fennel achieves the following results

(λ, ρ) = (59%, 1.1), (67%, 1.1), and (73%, 1.1), respectively. Linear weighted degrees

(LDG) achieves (76%, 1.13), (80%, 1.15), and (84%, 1.14), respectively. Now we turn our

attention to smaller bur reasonably-sized datasets.

In Figure 8.2, we show the distribution of the difference of the fraction of edges cut of

our method and that of the best competitor, conditional on that the maximum observed

load is at most 1.1. This distribution is derived from the values observed by partitioning

each input graph from our set averaged over a range of values of parameter k that

consists of values 2, 4, . . . , 1024. These results demonstrate that the fraction of edges

cut by our method is smaller than that of the best competitor in all cases. Moreover,

we observe that the median difference (relative difference) is in the excess of 20% (15%),

thus providing appreciable performance gains.

Furthermore, in Table 8.5, we present the average performance gains conditional on the

number of partitions k. These numerical results amount to an average relative reduction

of the fraction of edges cut in the excess of 18%. Moreover, the performance gains
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Figure 8.3: Absolute difference δλ and Relative gain versus the maximum load
imbalance δρ.

observed are consistent across different values of parameter k, and are more pronounced

for smaller values of k.

Bicriteria. In our presentation of experimental results so far, we focused on the fraction

of edges cut by conditioning on the cases where the normalized maximum load was

smaller than a fixed threshold. We now provide a closer look at both criteria and their

relation. In Figure 8.3, we consider the difference of the fraction of edges cut vs. the

difference of normalized maximum loads of the best competitor and our method. We

observe that in all the cases, the differences of normalized maximum loads are well within

10% while the fraction of edges cut by our method is significantly smaller. These results

confirm that the observed reduction of the fraction of edges cut by our method is not at

the expense of an increased maximum load.

Speed of partitioning. We now turn our attention to the efficiency of our method with

respect to the running time to partition a graph. Our graph partitioning algorithm is

a one-pass streaming algorithm, which allows for fast graph partitioning. In order to

support this claim, in Figure 8.4, we show the run time it took to partition each graph

from our dataset vs. the graph size in terms of the number of edges. We observe that

it takes in the order of minutes to partition large graphs of tens of millions of edges.

As we also mentioned before, partitioning the largest graph from our dataset collection

took about 40 minutes.

8.5 System Evaluation

Evaluating a partitioning algorithm is not an easy task from a systems perspective,

since it depends on system characteristics. For instance, in a large-scale production

data-center it is more important to balance the traffic across clusters than the traffic or

the amount of computation executed within a cluster. However, in a small-scale cluster
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Figure 8.4: Fennel: time vs. number of edges.

Run time [s] Communication [MB]

# Clusters (k) Hash Fennel Hash Fennel
4 32.27 25.49 321.41 196.9
8 17.26 15.14 285.35 180.02
16 10.64 9.05 222.28 148.67

Table 8.6: The average duration of a step and the average amount of MB exchanged
per node and per step during the execution of PageRank on LiveJournal data set.

consisting of few tens of nodes, rented by a customer from a large cloud provider such as

Amazon’s Elastic Map-Reduce, it is important to minimize the network traffic across the

nodes but also to balance well the computational load on each node. Given this diversity

of scenaria, a detailed evaluation is out of the scope of this work. Here, we perform a

basic experiment to verify the superiority of our proposed method versus the de facto

standard of hash partitioning with respect to speeding up a large-scale computation.

We select Pagerank as the computation of interest. Notice, that an advantage of Fennel

is that it gives a flexibility in choosing a suitable objective that accomodates the needs

of the specific application. We demonstrate the efficiency and flexibility of Fennel with

the typical Elastic Map-Reduce scenario in mind. We set up a cluster and we vary the

number of nodes to 4, 8 and 16 nodes. Each node is equipped with Intel Xeon CPU at

2.27 GHz and 12 GB of main memory. On the cluster we run Giraph, a graph processing

platform running on the top of Hadoop. We implemented a PageRank algorithm on

Giraph and we run it on Live Journal data set1.

Since the complexity of PageRank depends on the number of edges and not vertices, we

use a version of the Fennel objective (eq. 8.1) that balances the number of edges per

cluster. In particular, we choose the cIN(P) =
∑k

i=1 e(Si, Si)γ with γ = 1.5.

1Twitter data set was too large to fit on a 16-nodes Giraph cluster.
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We compare with hash partitioning, the default partitioning scheme used by Giraph.

We look at two metrics. The first is the average duration of an iteration of the PageR-

ank algorithm. This metric is directly proportional to the actual running time and

incorporates both the processing and the communication time. The second metric is

the average number of Megabytes transmitted by a cluster node in each iteration. This

metric directly reflects the quality of the cut and is proportional to the incurred network

load.

The results are shown in Table 8.6. We see that Fennel has the best run time in all cases.

This is because it achieves the best balance between the computation and communication

load. Hash partitioning takes 25% more time than Fennel and it also has a much higher

traffic load.

8.6 Discussion

In this section we discuss some of the extensions that can be accomodated by our frame-

work and discuss some details about distributed implementation.

Assymetric edge costs. As discussed in Section 8.5, in some application scenarios some

edges that cross partition boundaries may be more costly than other. For example,

this is the case if individual graph partitions are assigned to machines in a data center

and these machines are connected with an asymmetric network topology, so that the

available network bandwidth varies across different pairs of machines, e.g. intra-rack

vs. inter-rack machines in standard data center architectures [203]. Another example

are data center network topologies where the number of hops between different pairs

of machines vary substantially, e.g. torus topologies [127]. In such scenarios, it may

be beneficial to partition a graph by accounting for the aforementioned asymmetries of

edge-cut costs. This can be accomodated by appropriately defining the inter-partition

cost function in our framework.

Distributed implementation. Our streaming algorithm requires computing marginal

value indices that can be computed in a distributed fashion by maintaining local views

on a global state. For concretness, let us consider the traditional objective where the

inter-partition cost is a linear function of the total number of cut edges and the intra-

partition cost is a sum of convex functions of vertex cardinalities of individual partitions.

In this case, computing the marginal value indices requires to compute per each vertex

arrival: (1) the number of neighbors of given vertex that were already assigned to given

cluster of vertices, and (2) the number of vertices that were already assigned per cluster.

The former corresponds to a set-intersection query and can be efficiently implemented
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by standard methods, e.g. using data structures such as minwise hashing [349]. The lat-

ter is a simple count tracking problem. Further optimizations could be made by trading

accuracy for reduction of communication overhead by updating of the local views at a

smaller rate than the rate of vertex arrival.



Chapter 9

PEGASUS: A System for

Large-Scale Graph Processing

9.1 Introduction

In this Chapter we describe PeGaSus, an open source Peta Graph Mining library which

performs typical graph mining tasks such as computing the diameter of a graph, com-

puting the radius of each node, finding the connected components, (see also Chapter 7),

and computing the importance score of nodes. The main idea behind PeGaSus is to

capitalize on matrix-vector multiplication as a main primitive for the software engineer.

Inspired by the work of [387] which showed that triangles can be estimated by few

matrix-vector multiplications, PeGaSus introduces a set of different operators which

solve a variety of graph mining tasks together with an optimized implementation of

matrix-vector multiplications in MapReduce. PeGaSus is a solid engineering effort

which allows us to manipulate large-scale graphs. Since the introduction of PeGaSus,

other large-scale graph processing systems have been introduced, among them Google’s

Pregel [295], Linkedin’s Giraph [3] and GraphLab [291]. It is worth mentioning that

Giraph uses several algorithms and ideas from PeGaSus, including the connected com-

ponents algorithm. Also, PeGaSus has been included in Hadoop for Windows Azure

[1].

Outline: This Chapter is organized as follows: Section 9.2 presents the proposed

method. Section 9.3 presents Hadoop implementations and Section 9.4 timings. Sec-

tion 9.5 shows findings of PeGaSus in several real-world networks.

179
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9.2 Proposed Method

Consider the following assignment v′ ← M × v where M ∈ Rm×n, v ∈ Rn. The i-th

coordinate of v′ is v′i =
∑n

j=1 mi,jvj , i = 1, . . . ,m. Typically in our applications, M is

the adjacency matrix represetation of a graph and therefore we are going to assume in

the following that m = n, unless otherwise noticed.

There are three types of operations in the previous formula:

1. combine2: multiply mi,j and vj .

2. combineAll: sum n multiplication results for node i.

3. assign: overwrite the previous value of vi with the new result to make v′i.

We introduce an abstraction of the basic matrix-vector multiplication, called Generalized

Iterative Matrix-Vector multiplication. The corresponding programming primitive is the

GIM-V primitive on which PeGaSus is based. The ‘Iterative’ in GIM-V denotes that we

apply the ×G operation until a convergence criterion is met. Specifically, let us define

the operator ×G as follows:

v′ = M ×G v

where v′i = assign(vi,combineAlli({xj | j = 1..n, and xj =combine2(mi,j , vj)})).

The functions combine2(), combineAll(), and assign() have the following interpre-

tation, generalizing the product, sum and assignment of the traditional matrix-vector

multiplication:

1. combine2(mi,j , vj) : combine mi,j and vj .

2. combineAlli(x1, ..., xn) : combine all the results from combine2() for node i.

3. assign(vi, vnew) : decide how to update vi with vnew.

In the following sections we show how different choices of combine2(), combineAlli()

and assign() allow us to solve several important graph mining tasks. Before that,

we want to highlight the strong connection of GIM-V with SQL. When combineAlli()

and assign() can be implemented by user defined functions, the operator ×G can be

expressed concisely in terms of SQL. This viewpoint is important when we implement

GIM-V in large-scale parallel processing platforms, including Hadoop, if they can be cus-

tomized to support several SQL primitives including JOIN and GROUP BY. Suppose we
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SELECT E.sid, combineAllE.sid(combine2(E.val,V.val))
FROM E, V
WHERE E.did=V.id
GROUP BY E.sid

Table 9.1: GIM-V in terms of SQL.

have an edge table E(sid, did, val) and a vector table V(id, val), corresponding

to a matrix and a vector, respectively. Then, ×G corresponds to the SQL statement in

Table 9.1. We assume that we have (built-in or user-defined) functions, combineAlli()

and combine2(), and we also assume that the resulting table/vector will be fed into the

assign() function (omitted, for clarity).

In the following sections we show how we can customize GIM-V, to handle important

graph mining operations including PageRank, Random Walk with Restart, diameter

estimation, and connected components.

9.2.1 GIM-V and PageRank

Our first warm-up application of GIM-V is PageRank, a famous algorithm that was used

by Google to calculate relative importance of web pages [89]. The PageRank vector p

of n web pages satisfies the following eigenvector equation:

p = (cET + (1− c)U)p

where c is a damping factor (usually set to 0.85), E is the row-normalized adjacency

matrix (source, destination), and U is a matrix with all elements set to 1/n.

To calculate the eigenvector p we can use the power method, which multiplies an initial

vector with the matrix, several times. We initialize the current PageRank vector pcur

and set all its elements to 1/n. Then the next PageRank pnext is calculated by pnext =

(cET + (1− c)U)pcur. We continue to perform the multiplication until p converges.

PageRank is a direct application of GIM-V, i.e., pnext = M ×G pcur. Matrix M is ET ,

i.e., the column-normalized version of the adjacency matrix. The three operations are

defined as follows:

1. combine2(mi,j , vj) = c×mi,j × vj

2. combineAlli(x1, ..., xn) = (1−c)
n +

∑n
j=1 xj

3. assign(vi, vnew) = vnew
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9.2.2 GIM-V and Random Walk with Restart

Random Walk with Restart (RWR) is closely related to Personalized pagerank, a popular

algorithm to measure the relative proximity of vertices with respect to a given vertex

[328]. In RWR, the proximity vector rk of vertex k satisfies the equation:

rk = cMrk + (1− c)ek

where ek is the k-th unit vector in Rn, c is a restart probability parameter which is

typically set to 0.85 [328] and M is as in Section 9.2.1. In GIM-V, RWR is formulated

by rnext
k = M ×G rcur

k where the three operations are defined as follows:

1. combine2(mi,j , vj) = c×mi,j × vj

2. combineAlli(x1, ..., xn) = (1 − c)δik +
∑n

j=1 xj , where δik is the Kronecker delta,

equal to 1 if i = k and 0 otherwise

3. assign(vi, vnew) = vnew

9.2.3 GIM-V and Diameter Estimation

In Chapter 7 we discussed Hadi, an algorithm that estimates the diameter and radius

distribution of a large-scale graph. Hadi can be presented within the framework of

PeGaSus, since the number of neighbors reachable from vertex i within h hops is

encoded in a probabilistic bitstring bh
i which is updated as follows [168]:

bh+1
i = bh

i BITWISE-OR {bh
k | (i, k) ∈ E}

In GIM-V, the bitstring update of Hadi is represented by

bh+1 = M ×G bh

where M is the adjacency matrix, bh+1 is a vector of length n which is updated by

bh+1
i =assign(bh

i ,combineAlli({xj | j = 1..n, and xj =combine2(mi,j , b
h
j )})),

and the three PeGaSus operations are defined as follows:

1. combine2(mi,j , vj) = mi,j × vj .

2. combineAlli(x1, ..., xn) = BITWISE-OR{xj | j = 1..n}

3. assign(vi, vnew) = BITWISE-OR(vi, vnew).

The ×G operation is run iteratively until the bitstring of each vertex remains the same.
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9.2.4 GIM-V and Connected Components

We propose Hcc, a new algorithm for finding connected components in large graphs.

The main idea is as follows: for each vertex i in the graph, we maintain a component

identification number (id) ch
i which is the minimum vertex id within h hops from i.

Initially, ch
i of vertex i is set to i, i.e., c0

i = i. In each iteration, each vertex sends its

current ch
i to its neighbors. Then ch+1

i is set to the minimum value among its current

component id and the received component ids from its neighbors. The crucial observation

is that this communication between neighbors can be formulated in GIM-V as follows:

ch+1 = M ×G ch

where M is the adjacency matrix, ch+1 is a vector of length n which is updated by

ch+1
i =assign(ch

i ,combineAlli({xj | j = 1..n, and xj =combine2(mi,j , c
h
j )})), and the

three PeGaSus operations are defined as follows:

1. combine2(mi,j , vj) = mi,j × vj .

2. combineAlli(x1, ..., xn) = min{xj | j = 1..n}.

3. assign(vi, vnew) = min(vi, vnew).

By repeating this process, component ids of nodes in a component are set to the minimum

node id of the component. We iteratively do the multiplication until component ids

converge. The upper bound of the number of iterations in Hcc is d, where d is the

diameter of the graph. We notice that because of the small-world phenomenon, see

Section 7.1, the diameter of real graphs is small, and therefore in practice Hcc completes

after a small number of iterations. For a recent work with better practical performance,

see [359].

9.3 Hadoop Implementation

Given the main goal of the PeGaSus project is to provide an efficient system to the

user/programmer, we discuss different Hadoop implementation approaches, starting

out with a naive implementation and progressing to faster methods for GIM-V. The

proposed versions are evaluated in Section 9.4.
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Algorithm 10 GIM-V BASE Stage 1.

Input: Matrix M = {(idsrc, (iddst,mval))}, Vector V = {(id, vval)}
Output: Partial vector V ′ = {(idsrc, combine2(mval, vval)}
1: Stage1-Map(Key k, Value v):
2: if (k, v) is of type V then
3: Output(k, v); // (k: id, v: vval)
4: else if (k, v) is of type M then
5: (iddst,mval)← v;
6: Output(iddst, (k, mval)); // (k: idsrc)
7: end if
8:

9: Stage1-Reduce(Key k, Value v[1..m]):
10: saved kv ←[ ];
11: saved v ←[ ];
12: for v ∈ v[1..m] do
13: if (k, v) is of type V then
14: saved v ← v;
15: Output(k, (“self”, saved v));
16: else if (k, v) is of type M then
17: Add v to saved kv; // (v: (idsrc,mval))
18: end if
19: end for
20: for (id′src,mval′) ∈ saved kv do
21: Output(id′src, (“others”,combine2(mval′, saved v)));
22: end for

9.3.1 GIM-V BASE: Naive Multiplication

GIM-V BASE is a two-stage algorithm whose pseudo code is in Algorithm 10 and 11.

The inputs are an edge file and a vector file. Each line of the edge file has the form

(idsrc, iddst,mval) which corresponds to a non-zero entry in the djacency matrix. Simi-

larly, each line of the vector file has the form (id, vval) which corresponds to an element

in vector v. Stage1 performs the combine2operation by combining columns of matrix

(iddst of M) with rows of the vector (id of V ). The output of Stage1 are (key, value)

pairs where the key is the source vertex id of the matrix (idsrc of M) and the value is

the partially combined result (combine2(mval, vval)). This output of Stage1 becomes

the input of Stage2. Stage2 combines all partial results from Stage1 and updates the

vector. The combineAlli() and assign() operations are done in line 15 of Stage2, where

the “self” and “others” tags in line 15 and line 21 of Stage1 are needed by Stage2 to

distinguish cases appropriately. We note that in Algorithm 10 and 11, Output(k, v)

means to output data with the key k and the value v.
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Algorithm 11 GIM-V BASE Stage 2.

Input: Partial vector V ′ = {(idsrc, vval′)}
Output: Result Vector V = {(idsrc, vval)}
1: Stage2-Map(Key k, Value v):
2: Output(k, v);
3:

4: Stage2-Reduce(Key k, Value v[1..m]):
5: others v ←[ ];
6: self v ←[ ];
7: for v ∈ v[1..m] do
8: (tag, v′)← v;
9: if tag = “same” then

10: self v ← v′;
11: else if tag = “others” then
12: Add v′ to others v;
13: end if
14: end for
15: Output(k,assign(self v,combineAllk(others v)));

9.3.2 GIM-V BL: Block Multiplication

GIM-V BL is a fast algorithm for GIM-V which is based on block multiplication. The

main idea is to group elements of the input matrix into blocks/submatrices of size b

by b. Also, we group elements of input vectors into blocks of length b. In practice,

grouping means we place all elements of a group into one line of input file. Each

block contains only non-zero elements of the matrix/vector. The format of a ma-

trix block with k nonzero elements is (rowblock, colblock, rowelem1 , colelem1 ,mvalelem1 , ...,

rowelemk
, colelemk

,mvalelemk
). Similarly, the format of a vector block with k nonzero

elements is (idblock, idelem1 , vvalelem1 , ..., idelemk
, vvalelemk

). Only blocks with at least

one nonzero elements are saved to disk. This block encoding forces nearby edges in the

adjacency matrix to be closely located; it is different from Hadoop’s default behav-

ior which does not guarantee co-locating them. After grouping, GIM-V is performed on

blocks, not on individual elements. GIM-V BL is illustrated in Figure 9.1.

In Section 9.4, we observe that GIM-V BL is at least 5 times faster than GIM-V BASE.

There are two main reasons for this speed-up.

• Sorting Time Block encoding decreases the number of items to be sorted in the

shuffling stage of Hadoop. We observe that one of the main efficiency bottlenecks

in Hadoop is its shuffling stage where network transfer, sorting, and disk I/O take

place.

• Compression The size of the data decreases significantly by converting edges and

vectors to block format. The reason is that in GIM-V BASE we need 2 × 4 = 8
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Figure 9.1: GIM-V BL using 2 x 2 blocks. Bi,j represents a matrix block, and vi

represents a vector block. The matrix and vector are joined block-wise, not element-
wise.

Figure 9.2: Clustered vs. non-clustered adjacency matrices for two isomorphic
graphs. The edges are grouped into 2 by 2 blocks. The left graph uses only 3 blocks

while the right graph uses 9 blocks.

bytes to save each (srcid, dstid) pair. However in GIM-V BL we can specify each

block using a block row id and a block column id with two 4-byte Integers, and

refer to elements inside the block using 2× log b bits. This is possible because we

can use log b bits to refer to a row or column inside a block. By this block method

we decrease the edge file size. For instance, using block encoding we are able to

decrease the size of the YahooWeb graph more than 50%.

9.3.3 GIM-V CL: Clustered Edges

We use co-clustering heuristics, see [332] as a preprocessing step to obtain a better

clustering of the edge set. Figure 9.2 illustrates the concept. The preprocessing step

needs to be performed only once. If the number of iterations required for the execution

of an algorithm is large, then it is beneficial to perform this preprocessing step. Notice

that we have two variants of GIM-V: GIM-V CL and GIM-V BL-CL, which are GIM-V BASE

and GIM-V BL with clustered edges respectively.
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Figure 9.3: Propagation of component id(=1) when block width is 4. Each element
in the adjacency matrix of (a) represents a 4 by 4 block; each column in (b) and (c)
represents the vector after each iteration. GIM-V DL finishes in 4 iterations while GIM-V

BL requires 8 iterations.

9.3.4 GIM-V DI: Diagonal Block Iteration

Reducing the number of iterations required for executing an algorithm in MapReduce

mitigates the computational cost a lot, since the main bottleneck of GIM-V is its shuffling

and disk I/O steps. In Hcc, it is possible to decrease the number of iterations when

the graph has long chains. The main idea is to multiply diagonal matrix blocks and

corresponding vector blocks as much as possible in one iteration. This is illustrated in

Figure 9.3.

9.3.5 GIM-V NR: Node Renumbering

In HCC, the minimum vertex id is propagated to the other parts of the graph within at

most d steps, where d is the diameter of the graph. If the vertex with the minimum id

(which we call ‘minimum node’) is located at the center of the graph, then the number of

iterations is small, close to d/2. However, if it is located at the boundary of the network,
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Algorithm 12 Renumbering the minimum node

Input: Edge E = {(idsrc, iddst)},
current minimum vertex id minidcur,
new minimum vertex id minidnew

Output: Renumbered Edge V = {(id′src, id
′
dst)}

1: Renumber–Map(key k, value v):
2: src← k;
3: dst← v;
4: if src = minidcur then
5: src← minidnew;
6: else if src = minidnew then
7: src← minidcur;
8: end if
9: if dst = minidcur then

10: dst← minidnew;
11: else if dst = minidnew then
12: dst← minidcur;
13: end if
14: Output(src, dst);

then the number of iteration can be close to d. Therefore, if we preprocess the edges so

that the minimum vertex id is swapped to the center vertex id, the number of iterations

and the total running time of HCC would decrease.

Finding the center vertex with the minimum radius could be done with the Hadi algo-

rithm. However, the algorithm is expensive for the pre-processing step of HCC. There-

fore, we instead propose the following heuristic for finding the center node: we choose

the center vertex by sampling from the high-degree vertices. This heuristic is based on

the fact that vertices with large degree have small radii [238].

After finding a center node, we need to renumber the edge file to swap the current

minimum vertex id with the center vertex id. The MapReduce algorithm for this

renumbering is shown in Algorithm 12. Since the renumbering requires only filtering, it

can be done with a Map-only job.

9.3.6 Analysis

Finally, we analyze the time and space complexity of GIM-V. It is not hard to observe

that one iteration of GIM-V takes O(n+m
M log n+m

M ) time, where M stands for the number

of machines. Assuming uniformity, mappers and reducers of Stage1 and Stage2 receive

O(n+m
M ) records per machine. The running time is dominated by the sorting time for

n+m
M records. GIM-V requires O(V + E) space.
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Name Vertices Edges Description
YahooWeb 1,413 M 6,636 M WWW pages in 2002
LinkedIn 7.5 M 58 M person-person in 2006

4.4 M 27 M person-person in 2005
1.6 M 6.8 M person-person in 2004
85 K 230 K person-person in 2003

Wikipedia 3.5 M 42 M doc-doc in 2007/02
3 M 35 M doc-doc in 2006/09

1.6 M 18.5 M doc-doc in 2005/11
Kronecker 177 K 1,977 M synthetic

120 K 1,145 M synthetic
59 K 282 M synthetic
19 K 40 M synthetic

WWW-Barabasi 325 K 1,497 K WWW pages in nd.edu
DBLP 471 K 112 K document-document
flickr 404 K 2.1 M person-person

Epinions 75 K 508 K who trusts whom

Table 9.2: Order and size of networks.

9.4 Scalability

We perform experiments to answer the following questions:

• How does GIM-V scale up?

• Which of the proposed optimizations (block multiplication, clustered edges, and

diagonal block iteration, vertex renumbering) gives the highest performance gains?

The graphs we use in our experiments are shown in Table 9.2. We run PeGaSus in

M45 Hadoop cluster by Yahoo! and our own cluster composed of 9 machines. M45 is

one of the top 50 supercomputers in the world with the total 1.5 Pb storage and 3.5 Tb

memory. For the performance and scalability experiments, we used synthetic Kronecker

graphs [279] since we can generate them with any size, and they are one of the most

realistic graphs among synthetic graphs.

9.4.1 Results

We first show how the performance of our method changes as we add more machines.

Figure 9.4 shows the running time and performance of GIM-V for PageRank with Kro-

necker graph of 282 million edges, and size 32 blocks if necessary.
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(a) Running time vs. Machines (b) Performance vs. Machines

(c) Running time vs. Edges

Figure 9.4: Scalability and Performance of GIM-V. (a) Running time decreases
quickly as more machines are added. (b) The performance(=1/running time) of ’BL-
CL’ wins more than 5x (for n=3 machines) over the ’BASE’. (c) Every version of GIM-V

shows linear scalability.

In Figure 9.4 (a), for all of the methods the running time decreases as we add more

machines. Note that clustered edges(GIM-V CL) didn’t help performance unless it is

combined with block encoding. When it is combined, however, it showed the best

performance (GIM-V BL-CL).

In Figure 9.4 (b), we see that the relative performance of each method compared to

GIM-V BASE method decreases as number of machines increases. With 3 machines

(minimum number of machines which Hadoop ‘distributed mode’ supports), the fastest

method(GIM-V BL-CL) ran 5.27 times faster than GIM-V BASE. With 90 machines,

GIM-V BL-CL ran 2.93 times faster than GIM-V BASE. This is expected since there are

fixed component(JVM load time, disk I/O, network communication) which can not be

optimized even if we add more machines.

Next we show how the performance of our methods changes as the input size grows.

Figure 9.4 (c) shows the running time of GIM-V with different number of edges under 10

machines. As we can see, all of the methods scales linearly with the number of edges.
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Figure 9.5: Comparison of GIM-V DI and GIM-V BL-CL for Hcc. GIM-V DI finishes
in 6 iterations while GIM-V BL-CL finishes in 18 iterations due to long chains.

Next, we compare the performance of GIM-V DI and GIM-V BL-CL for Hcc in graphs

with long chains. For this experiment we made a new graph whose diameter is 17, by

adding a length 15 chain to the 282 million Kronecker graph which has diameter 2. As

we see in Figure 9.5, GIM-V DI finished in 6 iteration while GIM-V BL-CL finished in 18

iteration. The running time of both methods for the first 6 iterations are nearly same.

Therefore, the diagonal block iteration method decreases the number of iterations while

not affecting the running time of each iteration much.

Finally, we compare the number of iterations with/without renumbering. Figure 9.6

shows the degree distribution of LinkedIn. Without renumbering, the minimum vertex

has degree 1, which is not surprising since about 46 % of the vertices have degree 1

due to the power-law behavior of the degree distribution. We show the number of

iterations after changing the minimum vertex to each of the top 5 highest-degree vertices

in Figure 9.7. We see that the renumbering decreased the number of iterations to 81 %

of the original. Similar results are observed for the Wikipedia graph in Figure 9.8 and

9.9. The original minimum vertex has degree 1, and the number of iterations decreased

to 83 % of the original after renumbering.

9.5 Pegasus at Work

In this section we evaluate PeGaSus on real-world networks.
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Figure 9.6: Degree distribution of LinkedIn. Notice that the original minimum
vertex has degree 1, which is highly probable given the power-law behavior of the
degree distribution. After the renumbering, the minimum vertex is replaced with a

highest-degree node.

Figure 9.7: Number of iterations vs. the minimum vertex of LinkedIn, for connected
components. Di represents the vertex with i-th largest degree. Notice that the number

of iterations decreased by 19 % after renumbering.

9.5.1 Connected Components of Real Networks

Figure 9.10 shows the evolution of connected components of LinkedIn and Wikipedia

graphs. Figure 9.11 shows the distribution of connected components in the YahooWeb

graph. We make the following set of observations.

Power Laws in Connected Components Distributions We observe a power law

relation between the count and size of small connected components in Figure 9.10(a),(b)

and Figure 9.11. This reflects that the connected components in real networks are formed

by preferential attachment processes.
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Figure 9.8: Degree distribution of Wikipedia. Notice that the original minimum
vertex has degree 1, as in LinkedIn. After the renumbering, the minimum vertex is

replaced with a highest-degree node.

Figure 9.9: Number of iterations vs. the minimum vertex of Wikipedia, for connected
components. Di represents the vertex with i-th largest degree. Notice that the number

of iterations decreased by 17 % after renumbering.

Absorbed Connected Components and Dunbar’s number The size of the giant

component keeps growing while the second and third largest connected components do

not grow beyond size 100, until they are absorbed from the giant component. This does

not surprise us, since had we had two giant components it is not unlikely that some new

vertex becomes connected to both.

“Anomalous” Connected Components In Figure 9.11, we see two spikes. In the first

spike at size 300, more than half of the components have exactly the same structure and

were made from a domain selling company where each component represents a domain

to be sold. The spike happened because the company replicated sites using the same

template, and injected the disconnected components into WWW network. In the second
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(a) Connected Components of LinkedIn

(b) Connected Components of Wikipedia

Figure 9.10: The evolution of connected components. (a) The giant connected
component grows for each year. However, the second largest connected component do
not grow above Dunbar’s number(≈ 150) and the slope of the size distribution remains
constant after the gelling point at year 2003. As in LinkedIn, notice the growth of giant

connected component and the constant slope of the size distribution.
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Figure 9.11: Connected Components of YahooWeb. Notice the two anomalous spikes
which are far from the constant-slope line. Most of them are domain selling or porn

sites which are replicated from templates.

spike at size 1101, more than 80 % of the components are porn sites disconnected from

the giant connected component. In general, by By looking carefully the distribution plot

of connected components, we were able to detect interesting communities with special

purposes which are disconnected from the rest of the Internet.

9.5.2 PageRank scores of Real Networks

We analyze the PageRank scores of real graphs, using PeGaSus. Figure 9.12 and 9.13

show the distribution of the PageRank scores for the Web graphs, and Figure 9.14 shows

the evolution of PageRank scores for the LinkedIn and Wikipedia graphs. We observe

power-law relations between the PageRank score and the number of vertices with such

PageRank. The top 3 highest PageRank sites for the year 2002 are www.careerbank.com,

access.adobe.com, and top100.rambler.ru. As expected, they have huge in-degrees

(from ≈70K to ≈70M).

9.5.3 Diameter of Real Networks

We analyze the diameter and radius of real networks with PeGaSus. Figure 9.15 shows

the radius plot of real networks. We have following observations:

Small Diameter: For all the graphs in Figure 9.15, the average diameter is less than

6.09, verifying the six degrees of separation theory.
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Figure 9.12: PageRank distribution of YahooWeb. The distribution follows a power
law with an exponent 2.30.

Figure 9.13: PageRank distribution of WWW-Barabasi. The distribution follows a
power law with an exponent 2.25.

Small Changes in the Diameter over Time: For the LinkedIn graph, the average

diameter remains in the range of 5.28 and 6.09 for all snapshots. For the Wikipedia

graph, the average diameter remains in the range of 4.76 and 4.99 for all snapshots.

Also, we do not observe a monotone pattern in the growth.

Bimodal Structure of Radius Plot For every plot, we observe a bimodal shape which

reflects the structure of these real graphs. The graphs have one giant connected com-

ponent where majority of vertices belongs to, and many smaller connected components

whose size follows a power law. Therefore, the first mode is at radius zero which comes

from single-vertex components; the second mode (e.g., at radius 6 in Epinion) comes

from the giant connected component.
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(a) PageRanks of LinkedIn

(b) PageRanks of Wikipedia

Figure 9.14: The evolution of PageRanks.(a) The distributions of PageRanks follows
a power-law. However, the exponent at year 2003, which is around the gelling point, is
much different from year 2004, which are after the gelling point. The exponent increases
after the gelling point and becomes stable. Also notice the maximum PageRank after
the gelling point is about 10 times larger than that before the gelling point due to the
emergence of the giant connected component. (b) Again, the distributions of PageRanks
follows a power-law. Since the gelling point is before year 2005, the three plots show

similar characteristics: the maximum PageRanks and the slopes are similar.
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Figure 9.15: Radius of real graphs. X axis: radius in linear scale. Y axis: number
of vertices in log scale. (Row 1) LinkedIn from 2003 to 2006. (Row 2) Wikipedia from
2005 to 2007. (Row 3) DBLP, flickr, Epinion. Notice that all the radius plots have
the bimodal structure due to many smaller connected components(first mode) and the

giant connected component(second mode).
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Chapter 10

Approximation Algorithms for

Speeding up Dynamic

Programming and Denoising

aCGH data

10.1 Problem & Formulation

Our approach to the aCGH denoising problem, see Section 1.2.1, is based on the well-

established observation that near-by probes tend to have the same DNA copy number.

We formulate the problem of denoising aCGH data as the problem of approximating a

signal P with another signal F consisting of a few piecewise constant segments. Specif-

ically, let P = (P1, P2, . . . , Pn) ∈ Rn be the input signal -in our setting the sequence of

the noisy aCGH measurements- and let C be a constant. Our goal is to find a function

F : [n]→ R which optimizes the following objective function:

min
F

n∑
i=1

(Pi − Fi)2 + C × (|{i : Fi 6= Fi+1}|+ 1). (10.1)

The best known exact algorithm for solving the optimization problem defined by Equa-

tion 10.1 runs in O(n2) time but as our results suggest this running time is likely not to be

tight. It is worth noting that existing techniques for speeding up dynamic programming

[148, 149, 423] do not apply to our problem.

The main algorithmic contributions of this Chapter are two approximation algorithms

for solving this recurrence. The first algorithm approximates the objective within an

200
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additive error ε which we can make as small as we wish and its key idea is the reduc-

tion of the problem to halfspace range queries, a well studied computational geometric

problem [14]. The second algorithm carefully decomposes the problem into a “small”

(logarithmic) number of subproblems which satisfy the quadrangle inequality (Monge

property).

The remainder of this Chapter is organized as follows: Section 10.2 presents the vanilla

dynamic programming algorithm which runs in O(n2). Section 10.3 analyzes properties

of the recurrence which will be exploited in Sections 10.4 and 10.5 where we describe

the additive and multiplicative approximation algorithms respectively. In Section 10.6

we validate our model by performing an extensive biological analysis of the findings of

our segmentation.

10.2 O(n2) Dynamic Programming Algorithm

In order to solve the optimization problem defined by Equation 10.1, we define the key

quantity OPTi given by the following recurrence:

OPT0 = 0

OPTi = min
0≤j≤i−1

[OPTj + w(i, j)] + C, for i > 0

where w(i, j) =
i∑

k=j+1

(
Pk −

∑i
m=j+1 Pm

i− j

)2

.

The above recurrence has a straightforward interpretation: OPTi is equal to the mini-

mum cost of fitting a set of piecewise constant segments from point P1 to Pi given that

index j is a breakpoint. The cost of fitting the segment from j + 1 to i is C. The

weight function w() is the minimum squared error for fitting a constant segment on

points {Pj+1, . . . , Pi}, which is obtained for the constant segment with value
Pi

m=j+1 Pm

i−j ,

i.e., the average of the points in the segment. This recursion directly implies a simple

dynamic programming algorithm. We call this algorithm CGHtrimmer and the pseu-

docode is shown in Algorithm 13. The main computational bottleneck of CGHtrimmer

is the computation of the auxiliary matrix M , an upper diagonal matrix for which mij

is the minimum squared error of fitting a segment from points {Pi, . . . , Pj}. To avoid a

naive algorithm that would simply find the average of those points and then compute

the squared error, resulting in O(n3) time, we use Claim 6.
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Algorithm 13 CGHTRIMMER algorithm

Input: Signal P = (P1, . . . , Pn), Regularization parameter C
Output: Optimal Segmentation with respect to our objective (see Equation 10.1)

{ *Compute an n× n matrix M , where Mji =
∑i

k=j

(
Pk −

Pi
m=j Pm

i−j+1

)2

.

A is an auxiliary matrix of averages, i.e., Aji =
Pi

k=j Pk

i−j+1 .*}
Initialize matrix A ∈ Rn×n, Aij = 0, i 6= j and Aii = Pi.
for i = 1 to n do

for j = i + 1 to n do
Ai,j ← j−i

j−i+1Ai,j−1 + 1
j−i+1Pj

end for
end for
for i = 1 to n do

for j = i + 1 to n do
Mi,j ←Mi,j−1 + j−i

j−i+1(Pj −Ai,j−1)2

end for
end for
{ * Solve the Recurrence.*}
for i = 1 to n do

OPTi ← min0≤j≤i−1 OPTj + Mj+1,i + C
BREAKi ← arg min1≤j≤i OPTj−1 + Mj,i + C

end for

Claim 6. Let α(j) and m(j) be the average and the minimum squared error of fitting a

constant segment to points {P1, . . . , Pj} respectively. Then,

α(j) =
j − 1

j
α(j−1) +

1
j
Pj , (10.2)

m(j) = m(j−1) +
j − 1

j
(Pj − α(j−1))

2. (10.3)

The interested reader can find a proof of Claim 6 in [256]. Equations 10.2 and 10.3

provide us a way to compute means and least squared errors online. Algorithm 13 first

computes matrices A and M using Equations 10.2, 10.3 and then iterates (last for loop)

to solve the recurrence by finding the optimal breakpoint for each index i. The total

running time is O(n2) (matrices A and M matrices have O(n2) entries and each requires

O(1) time to compute). Obviously, Algorithm 13 uses O(n2) units of space.
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10.3 Analysis of The Transition Function

In the following, let Si =
∑i

j=1 Pj . The transition function for the dynamic programming

for i > 0 can be rewritten as:

OPTi = min
j<i

OPTj +
i∑

m=j+1

P 2
m −

(Si − Sj)2

i− j
+ C. (10.4)

The transition can be viewed as a weight function w(j, i) that takes the two indices j

and i as parameters such that:

w(j, i) =
i∑

m=j+1

P 2
m −

(Si − Sj)2

i− j
+ C (10.5)

Note that the weight function does not have the Monge property, as demonstrated by

the vector P = (P1, . . . , P2k+1) = (1, 2, 0, 2, 0, 2, 0, . . . 2, 0, 1). When C = 1, the optimal

choices of j for i = 1, . . . , 2k are j = i− 1, i.e., we fit one segment per point. However,

once we add in P2k+1 = 1 the optimal solution changes to fitting all points on a single

segment. Therefore, preferring a transition to j1 over one to j2 at some index i does not

allow us to discard j2 from future considerations. This is one of the main difficulties in

applying techniques based on the increasing order of optimal choices of j, such as the

method of Eppstein, Galil and Giancarlo [148] or the method of Larmore and Schieber

[268], to reduce the complexity of the O(n2) algorithm we described in Section 10.2.

We start by defining DPi for i = 0, 1, .., n, the solution to a simpler optimization problem.

Definition 10.1. Let DPi, i = 0, 1, .., n, satisfy the following recurrence

DPi =

{
minj<i DPj − (Si−Sj)

2

i−j + C if i > 0

0 if i = 0
(10.6)

The following observation stated as Lemma 10.2 plays a key role in Section 10.4.

Lemma 10.2. For all i, OPTi can be written in terms of DPi as

OPTi = DPi +
i∑

m=1

P 2
m.

Proof. We use strong induction on i. For i = 0 the result trivially holds. Let the result

hold for all j < i. Then,
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DPi = min
j<i

DPj −
(Si − Sj)2

i− j
+ C

= min
j<i

OPTj −
(Si − Sj)2

i− j
+

i∑
m=j+1

P 2
m −

i∑
m=1

P 2
m + C

= OPTi −
i∑

m=1

P 2
m

Hence, OPTi = DPi +
∑i

m=1 P 2
m for all i.

Observe that the second order moments involved in the expression of OPTi are absent

from DPi. Let w̃(j, i) be the shifted weight function, i.e., w̃(j, i) = − (Si−Sj)
2

i−j + C.

Clearly, w(j, i) = w̃(j, i) +
∑j

m=i P
2
m.

10.4 Additive Approximation using Halfspace Queries

In this Section, we present a novel algorithm which runs in Õ(n
4
3+δ log (U

ε )) time and

approximates the optimal objective value within additive ε error. We derive the algo-

rithm gradually in the following and upon presenting the necessary theory we provide

the pseudocode (see Algorithm 2) at the end of this Section. Our proposed method

uses the results of [15] as stated in Corollary 2.12 to obtain a fast algorithm for the

additive approximation variant of the problem. Specifically, the algorithm initializes a

4-dimensional halfspace query data structure. The algorithm then uses binary searches

to compute an accurate estimate of the value DPi for i = 1, . . . , n. As errors are intro-

duced at each term, we use D̃Pi to denote the approximate value of DPi calculated by

the binary search, and D̄Pi to be the optimum value of the transition function computed

by examining the approximate values D̃Pj for all j < i. Formally,

D̄P i = min
j<i

D̃P j −
(Si − Sj)2

i− j︸ ︷︷ ︸
w̃(j,i)

+ C.

Since the binary search incurs a small additive error at each step, it remains to show

that these errors accumulate in a controlled way. Theorem 10.3 states that a small error

at each step suffices to give an overall good approximation. We show inductively that
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Figure 10.1: Answering whether or not D̄P i ≤ x + C reduces to answering whether
the point set {(j, ˜DPj , 2Sj , S

2
j + ˜DPjj) ∈ R4, j < i} has a non-empty intersection with

the halfspace γ = {y ∈ R4 : aiy ≤ bi} where ai and bi are a 4-dimensional constant
vector and a constant which depend on i respectively. This type of queries can be

solved efficiently, see [15].

if D̃P i approximates D̄P i within ε/n, then D̃P i is within iε/n additive error from the

optimal value DPi for all i.

Theorem 10.3. Let D̃P i be the approximation of our algorithm to DPi. Then, the

following inequality holds:

|DPi − D̃P i| ≤
εi

n
(10.7)

Proof. We use induction on the number of points. Using the same notation as above,

let D̄P i = minj<i D̃P j − w(j, i) + C. By construction the following inequality holds:

|D̄P i − D̃P i| ≤
ε

n
∀i = 1, . . . , n (10.8)

When i = 1 it is clear that |DP1− D̃P 1| ≤ ε
n . Our inductive hypothesis is the following:

|DPj − D̃P j | ≤
jε

n
∀j < i (10.9)

It suffices to show that the following inequality holds:

|DPi − D̄P i| ≤
(i− 1)ε

n
(10.10)

since then by the triangular inequality we obtain:

iε

n
≥ |DPi − D̄P i|+ |D̄P i − D̃P i| ≥ |DPi − D̃P i|.

Let j∗, j̄ be the optimum breakpoints for DPi and D̄P i respectively, j∗, j̄ ≤ i− 1.
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DPi = DPj∗ + w̃(j∗, i) + C

≤ DPj̄ + w̃(j̄, i) + C

≤ D̃P j̄ + w̃(j̄, i) + C +
j̄ε

n
(by 10.9)

= D̄P i +
j̄ε

n

≤ D̄P i +
(i− 1)ε

n

Similarly we obtain:

D̄P i = D̃P j̄ + w̃(j̄, i) + C

≤ D̃P j∗ + w̃(j∗, i) + C

≤ DPj∗ + w̃(j∗, i) + C +
j∗ε

n
(by 10.9)

= DPi +
j∗ε

n

≤ DPi +
(i− 1)ε

n

Combining the above two inequalities, we obtain 10.10.

By substituting i = n in Theorem 10.3 we obtain the following corollary which proves

that D̃Pn is within ε of DPn.

Corollary 10.4. Let D̃Pn be the approximation of our algorithm to DPn. Then,

|DPn − D̃Pn| ≤ ε. (10.11)

To use the analysis above in order to come up with an efficient algorithm we need to

answer two questions: (a) How many binary search queries do we need in order to obtain

the desired approximation? (b) How can we answer each such query efficiently? The

answer to (a) is simple: as it can easily be seen, the value of the objective function is

upper bounded by U2n, where U = max {
√

C, |P1|, . . . , |Pn|}. Therefore, O(log(U2n
ε/n )) =

Õ(log (U
ε )) iterations of binary search at each index i are sufficient to obtain the desired

approximation. We reduce the answer to (b) to a well studied computational geometric

problem. Specifically, fix an index i, where 1 ≤ i ≤ n, and consider the general form

of the binary search query D̄P i ≤ x + C, where x + C is the value on which we query.
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Note that we use the expression x + C for convenience, i.e., so that the constant C will

be simplified from both sides of the query. This query translates itself to the following

decision problem, see also Figure 10.1. Does there exist an index j, such that j < i and

the following inequality holds:

x ≥ D̃Pj −
(Si − Sj)2

i− j
⇒ xi + S2

i ≥ (x, i, Si,−1)(j, D̃Pj , 2Sj , S
2
j + jD̃Pj)T ?

Hence, the binary search query has been reduced to answering a halfspace query. Specif-

ically, the decision problem for any index i becomes whether the intersection of the point

set POINTSi = {(j, D̃Pj , 2Sj , S
2
j + D̃Pjj) ∈ R4, j < i} with a hyperplane is empty. By

Corollary 2.12 [15], for a point set of size n, this can be done in Õ(n
1
3+δ) per query and

O(n
1
3 log n) amortized time per insertion of a point. Hence, the optimal value of DPi

can be found within an additive constant of ε/n using the binary search in Õ(n
1
3 log (U

ε ))

time.

Therefore, we can proceed from index 1 to n, find the approximately optimal value of

OPTi and insert a point corresponding to it into the query structure. We obtain an

algorithm which runs in Õ(n
4
3+δ log (U

ε )) time, where δ is an arbitrarily small positive

constant. The pseudocode is given in Algorithm 14.

Algorithm 14 Approximation within additive ε using 4D halfspace queries
Initialize 4D halfspace query structure Q
for i = 1 to n do

low ← 0
high← nU2

while high− low > ε/n do
m← (low + high)/2
{ *This halfspace emptiness query is efficiently supported by Q.* }
flag ← (∃j such that xi + S2

i ≥ (x, i, Si,−1)(j, D̃Pj , 2Sj , S
2
j + jD̃Pj)T )

if flag then
high← m

else
low ← m

end if
end while
D̃P i ← (low + high)/2
{*Point insertions are efficiently supported by Q.*}
Insert point (i, D̃P i, 2Si, S

2
i + D̃P ii) in Q

end for
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Table 10.1: Summary of proof of Lemma 10.5.
w′(i1, i4) + w′(i2, i3) w′(i1, i3) + w′(i2, i4)

(S1, S1) 1 1
(S2, S2) 2 2
(S3, S3) 1 1
(S1, S2) 1 1
(S1, S3) 1 0
(S2, S3) 1 1

10.5 Multiscale Monge Decomposition

In this Section we present an algorithm which runs in O(n log n/ε) time to approximate

the optimal shifted objective value within a multiplicative factor of (1+ε). Our algorithm

is based on a new technique, which we consider of indepenent interest. Let w′(j, i) =∑i
m=j+1(i− j)P 2

m − (Si − Sj)2. We can rewrite the weight function w as a function of

w′, namely as w(j, i) = w′(j, i)/(i− j) + C. The interested reader can easily check that

we can express w′(j, i) as a sum of non-negative terms, i.e.,

w′(j, i) =
∑

j+1≤m1<m2≤i

(Pm1 − Pm2)2.

Recall from Section 10.2 that the weight function w is not Monge. The next lemma

shows that the weight function w′ is a Monge function.

Lemma 10.5. The weight function w′(j, i) is Monge (concave), i.e., for any i1 < i2 <

i3 < i4, the following holds:

w′(i1, i4) + w′(i2, i3) ≥ w′(i1, i3) + w′(i2, i4).

Proof. Since each term in the summation is non-negative, it suffices to show that any

pair of indices, (m1,m2) is summed as many times on the left hand side as on the right

hand side. If i2+1 ≤ m1 < m2 ≤ i3, each term is counted twice on each side. Otherwise,

each term is counted once on the left hand side since i1 + 1 ≤ m1 < m2 ≤ i4 and at

most once on the right hand side since [i1 + 1, i3] ∩ [i2 + 1, i4] = [i2 + 1, i3].

The proof of Lemma 10.5 is summarized in Table 10.1. Specifically, let Sj be the set of

indices {ij + 1, . . . , ij+1}, j = 1, 2, 3. Also, let (Sj , Sk) denote the set of indices (m1,m2)

which appear in the summation such that m1 ∈ Sj ,m2 ∈ Sk. The two last columns of

Table 10.1 correspond to the left- and right-hand side of the Monge inequality (as in

Lemma 10.5) and contain the counts of appearances of each term.
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Our approach is based on the following observations:

1. Consider the weighted directed acyclic graph (DAG) on the vertex set V = {0, . . . , n}
with edge set E = {(j, i) : j < i} and weight function w : E → R, i.e., edge (j, i)

has weight w(j, i). Solving the aCGH denoising problem reduces to finding a short-

est path from vertex 0 to vertex n. If we perturb the edge weights within a factor

of (1 + ε), as long as the weight of each edge is positive, then the optimal shortest

path distance is also perturbed within a factor of at most (1 + ε).

2. By Lemma 10.5 we obtain that the weight function is not Monge essentially because

of the i− j term in the denominator.

3. Our goal is to approximate w by a Monge function w′ such that c1w
′ ≤ w ≤ c2w

′

where c1, c2 should be known constants.

In the following we elaborate on the latter goal. Fix an index i and note that the

optimal breakpoint for that index is some index j ∈ {1, . . . , i− 1}. We will “bucketize”

the range of index j into m = O(log1+ε (i)) = O(log n/ε) buckets such that the k-th

bucket, k = 1, . . . ,m, is defined by the set of indices j which satisfy

lk = i− (1 + ε)k ≤ j ≤ i− (1 + ε)k−1 = rk.

This choice of bucketization is based on the first two observations which guide our

approach. Specifically, it is easy to check that (1+ ε)k−1 ≤ i− j ≤ (1+ ε)k. This results,

for any given i, to approximating i− j by a constant for each possible bucket, leading to

O(log n/ε) different Monge functions (one per bucket) while incurring a multiplicative

error of at most (1 + ε). However, there exists a subtle point, as also Figure 10.2

indicates. We need to make sure that each of the Monge functions is appropriatelly

defined so that when we consider the k-th Monge subproblem, the optimal breakpoint

jk should satisfy jk ∈ [lk, rk]. Having achieved that (see Lemma 6.2) we can solve

efficiently the recurrence. Specifically, OPTi is computed as follows:
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OPTi = min
j<i

[
OPTj +

w′(i, j)
i− j

]
+ C

= min
k

[
min

j∈[lk,rk]
OPTj +

w′(i, j)
i− j

]
+ C

≈ min
k

[
min

j∈[lk,rk]
OPTj +

w′(i, j)
(1 + ε)k−1

]
+ C

= min
k

[
min

j∈[lk,rk]
OPTj +

w′(i, j)
ck

]
+ C.

The following is one of the possible ways to define the m Monge weight functions. In

what follows, λ is a sufficiently large positive constant.

wk(j, i) =


2n−i+jλ i− j < ck = (1 + ε)k−1

2i−jλ i− j > (1 + ε)ck = (1 + ε)k

w′(j, i)/ck otherwise

(10.12)

Lemma 10.6. Given any vector P , it is possible to pick λ such that wk is Monge

for all k ≥ 1. That is, for any 4-tuple i1 < i2 < i3 < i4, wk(i1, i4) + wk(i2, i3) ≥
wk(i1, i3) + wk(i2, i4).

Proof. Since w′(j, i) =
∑

j+1≤m1<m2≤i(Pm1−Pm2)2 ≤ (2K)2n2 where K = max1≤i≤n |Pi|,
we can pick λ such that wk(j, i) ≥ w′(j, i). The rest of the proof is casework based on

the lengths of the intervals i3− i1, i4− i2, and how they compare with ck and (1 + ε)ck.

There are 12 such cases in total. We may assume i3 − i1 ≤ i4 − i2 without loss of

generality, leaving thus 6 cases to be considered.

If ck ≤ i3 − i1, i4 − i2 ≤ (1 + ε)ck, then:

wk(i1, i3) + wk(i2, i4) = (1/ck)(w′(i1, i3) + w′(i2, i4))

≤ (1/ck)(w′(i1, i4) + w′(i2, i3)) (by Lemma 10.5)

≤ wk(i1, i4) + wk(i2, i3).
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Figure 10.2: Solving the k-th Monge problem, k = 1, . . . ,m = O(log1+ε (i)), for a
fixed index i. The k-th interval is the set of indices {j : lk ≤ j ≤ rk, lk = i−(1+ε)k, rk =
i− (1 + ε)k−1}. Ideally, we wish to define a Monge function w′

k whose maximum inside
the k-th interval (red color) is smaller than the minimum outside that interval (green
color). This ensures that the optimal breakpoint for the k-th Monge subproblem lies

inside the red interval.

Consider the case i3− i1 < ck and i4− i2 ≤ (1+ε)ck. Then as i2 > i1, i3− i2 ≤ i3− i1−1

and we have:

wk(i2, i3) = 2n−i3+i2λ

≥ 2 · 2n−i3−i1λ

≥ wk(i1, i3) + wk(i2, i4)

The cases of ck ≤ i3 − i1 and ck(1 + ε) < i4 − i2 can be done similarly. Note that the

cases of i3 − i1, i4 − i2 < ck and (1 + ε)ck < i3 − i1, i4 − i2 are also covered by these.

The only case that remain is i3−i1 < ck and (1+ε)ck < i4−i2. Since i3−i2 < i3−i1 < ck,

we have:

wk(i2, i3) = 2n−i3+i2λ

> 2n−i4+i2λ

= wk(i2, i4)

Similarly wk(i1, i4) = 2i4−i1λ > 2i3−i1λ = wk(i1, i3). Adding them gives the desired

result.

The pseudocode is shown in Algorithm 15. The algorithm computes the OPT values

online based on the above analysis. In order to solve each Monge sub-problem our

method calls the routine of Theorem 2.13. For each index i, we compute OPTi by

taking the best value over queries to all k of the Monge query structures, then we

update all the structures with this value. Note that storing values of the form 2kλ using

only their exponent k suffices for comparison, so introducing wk(j, i) doesn’t result in
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any change in runtime. By Theorem 2.13, for each Qk, finding minj<i Qk.aj + wk(j, i)

over all i takes O(n) time. Hence, the total runtime is O(n log n/ε).

Algorithm 15 Approximation within a factor of ε using Monge function search

Maintain m = log n/ log (1 + ε) Monge function search data structures Q1, . . . , Qm

where Qk corresponds to the Monge function wk(j, i).
{*The weight function wk(j, i) is Monge. Specifically, wk(j, i) = C +

(∑i
m=j+1(i −

j)P 2
m −

(Si−Sj)
2

(1+ε)k

)
for all j which satisfy (1 + ε)k−1 ≤ i− j ≤ (1 + ε)k. *}

OPT0 ← 0 {* Recursion basis. *}
for k = 1 to m do

Qk.a0 ← 0
end for
{*Let a

(k)
j denote Qk.aj , i.e., the value aj of the k-th data structure Qk.*}

for i = 1 to n do
OPTi ←∞
for k = 1 to m do

localmink ← minj<i a
(k)
j + wk(j, i)

OPTi ← min{OPTi, localmink + C}
end for

end for
for k = 1 to m do

Qk.ai ← OPTi

end for

10.6 Validation of Our Model

In this Section we validate our model using the exact algorithm, see Section 10.2. In

Section 10.6.1 we describe the datasets and the experimental setup. In Section 10.6.2

we show the findings of our method together with a detailed biological analysis.

10.6.1 Experimental Setup and Datasets

Our code is implemented in MATLAB1. The experiments run in a 4GB RAM, 2.4GHz

Intel(R) Core(TM)2 Duo CPU, Windows Vista machine. Our methods were compared

to existing MATLAB implementations of the CBS algorithm, available via the Bioinfor-

matics toolbox, and the CGHseg algorithm [339], courteously provided to us by Franc

Picard. CGHseg was run using heteroscedastic model under the Lavielle criterion [271].

Additional tests using the homoscedastic model showed substantially worse performance
1Code available at URL http://www.math.cmu.edu/∼ctsourak/CGHTRIMMER.zip. Faster C code is

also available, but since the competitors were implemented in MATLAB, all the results in this Section
refer to our MATLAB implementation.

http://www.math.cmu.edu/~ctsourak/CGHTRIMMER.zip
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Table 10.2: Datasets, papers and the URLs where the datasets can be downloaded.
� and � denote which datasets are synthetic and real respectively.
Dataset Availability

� Lai et al. [263]
http://compbio.med.harvard.edu/

� Willenbrock et al. [415]
http://www.cbs.dtu.dk/∼hanni/aCGH/

� Coriell Cell lines [365]
http://www.nature.com/ng/journal/v29/n3/

� Berkeley Breast Cancer [313]
http://icbp.lbl.gov/breastcancer/

and are omitted here. All methods were compared using previously developed bench-

mark datasets, shown in Table 10.2. Follow-up analysis of detected regions was con-

ducted by manually searching for significant genes in the Genes-to-Systems Breast Can-

cer Database http://www.itb.cnr.it/breastcancer [404] and validating their posi-

tions with the UCSC Genome Browser http://genome.ucsc.edu/. The Atlas of Genet-

ics and Cytogenetics in Oncology and Haematology http://atlasgeneticsoncology.

org/ was also used to validate the significance of reported cancer-associated genes. It

is worth pointing out that since aCGH data are typically given in the log scale, we first

exponentiate the points, then fit the constant segment by taking the average of the expo-

nentiated values from the hypothesized segment, and then return to the log domain by

taking the logarithm of that constant value. Observe that one can fit a constant segment

by averaging the log values using Jensen’s inequality, but we favor an approach more

consistent with the prior work, which typically models the data assuming i.i.d. Gaussian

noise in the linear domain.

How to pick C? The performance of our algorithm depends on the value of the

parameter C, which determines how much each segment “costs.” Clearly, there is a

tradeoff between larger and smaller values: excessively large C will lead the algorithm

to output a single segment while excessively small C will result in each point being fit as

its own segment. We pick our parameter C using data published in [415]. The data was

generated by modeling real aCGH data, thus capturing their nature better than other

simplified synthetic data and also making them a good training dataset for our model.

We used this dataset to generate a Receiver Operating Characteristic (ROC) curve using

values for C ranging from 0 to 4 with increment 0.01 using one of the four datasets in [415]

(“above 20”). The resulting curve is shown in Figure 10.3. Then, we selected C = 0.2,

which achieves high precision/specificity (0.98) and high recall/sensitivity (0.91). All

subsequent results reported were obtained by setting C equal to 0.2.

http://compbio.med.harvard.edu/
http://www.cbs.dtu.dk/~hanni/aCGH/
http://www.nature.com/ng/journal/v29/n3/
http://icbp.lbl.gov/breastcancer/
http://www.itb.cnr.it/breastcancer
http://genome.ucsc.edu/
http://atlasgeneticsoncology.org/
http://atlasgeneticsoncology.org/
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Figure 10.3: ROC curve of CGHtrimmer as a function of C on data from [415].
The red arrow indicates the point (0.91 and 0.98 recall and precision respectively)

corresponding to C=0.2, the value used in all subsequent results.

(a) (b) (c)
CGHtrimmer CBS CGHseg

Figure 10.4: Performance of CGHtrimmer, CBS, and CGHseg on denoising syn-
thetic aCGH data from [263]. CGHtrimmer and CGHseg exhibit excellent precision
and recall whereas CBS misses two consecutive genomic positions with DNA copy

number equal to 3.

10.6.2 Experimental Results and Biological Analysis

We show the results on synthetic data in Section 10.6.2.1, on real data where the ground

truth is available to us in Section 10.6.2.2 and on breast cancer cell lines with no ground

truth in Section 10.6.2.3.

10.6.2.1 Synthetic Data

We use the synthetic data published in [263]. The data consist of five aberrations

of increasing widths of 2, 5, 10, 20 and 40 probes, respectively, with Gaussian noise

N(0,0.252). Figure 10.4 shows the performance of CGHtrimmer, CBS, and CGHseg.

Both CGHtrimmer and CGHseg correctly detect all aberrations, while CBS misses
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the first, smallest region. The running time for CGHtrimmer is 0.007 sec, compared

to 1.23 sec for CGHseg and 60 sec for CBS.

10.6.2.2 Coriell Cell Lines

The first real dataset we use to evaluate our method is the Coriell cell line BAC array

CGH data [365], which is widely considered a “gold standard” dataset. The dataset is

derived from 15 fibroblast cell lines using the normalized average of log2 fluorescence

relative to a diploid reference. To call gains or losses of inferred segments, we assign to

each segment the mean intensity of its probes and then apply a simple threshold test

to determine if the mean is abnormal. We follow [61] in favoring ±0.3 out of the wide

variety of thresholds that have been used [319].

Table 10.3 summarizes the performance of CGHtrimmer, CBS and CGHseg rela-

tive to previously annotated gains and losses in the Corielle dataset. The table shows

notably better performance for CGHtrimmer compared to either alternative method.

CGHtrimmer finds 22 of 23 expected segments with one false positive. CBS finds

20 of 23 expected segments with one false positive. CGHseg finds 22 of 23 expected

segments with seven false positives. CGHtrimmer thus achieves the same recall as

CGHseg while outperforming it in precision and the same precision as CBS while out-

performing it in recall. In cell line GM03563, CBS fails to detect a region of two points

which have undergone a loss along chromosome 9, in accordance with the results ob-

tained using the Lai et al. [263] synthetic data. In cell line GM03134, CGHseg makes

a false positive along chromosome 1 which both CGHtrimmer and CBS avoid. In cell

line GM01535, CGHseg makes a false positive along chromosome 8 and CBS misses the

aberration along chromosome 12. CGHtrimmer, however, performs ideally on this cell

line. In cell line GM02948, CGHtrimmer makes a false positive along chromosome 7,

finding a one-point segment in 7q21.3d at genomic position 97000 whose value is equal to

0.732726. All other methods also make false positive errors on this cell line. In GM7081,

all three methods fail to find an annotated aberration on chromosome 15. In addition,

CGHseg finds a false positive on chrosome 11.

CGHtrimmer also substantially outperforms the comparative methods in run time,

requiring 5.78 sec for the full data set versus 8.15 min for CGHseg (an 84.6-fold speedup)

and 47.7 min for CBS (a 495-fold speedup).
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Table 10.3: Results from applying CGHtrimmer, CBS, and CGHseg to 15 cell
lines. Rows with listed chromosome numbers (e.g., GM03563/3) corresponded to known
gains or losses and are annotated with a check mark if the expected gain or loss was
detected or a “No” if it was not. Additional rows list chromosomes on which segments
not annotated in the benchmark were detected; we presume these to be false positives.

Cell Line/Chromosome CGHtrimmer CBS CGHseg

GM03563/3 X X X
GM03563/9 X No X

GM03563/False - - -
GM00143/18 X X X

GM00143/False - - -
GM05296/10 X X X
GM05296/11 X X X

GM05296/False - - 4,8
GM07408/20 X X X

GM07408/False - - -
GM01750/9 X X X
GM01750/14 X X X

GM01750/False - - -
GM03134/8 X X X

GM03134/False - - 1
GM13330/1 X X X
GM13330/4 X X X

GM13330/False - - -
GM03576/2 X X X
GM03576/21 X X X

GM03576/False - - -
GM01535/5 X X X
GM01535/12 X No X

GM01535/False - - 8
GM07081/7 X X X
GM07081/15 No No No

GM07081/False - - 11
GM02948/13 X X X

GM02948/False 7 1 2
GM04435/16 X X X
GM04435/21 X X X

GM04435/False - - 8,17
GM10315/22 X X X

GM10315/False - - -
GM13031/17 X X X

GM13031/False - - -
GM01524/6 X X X

GM01524/False - - -
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10.6.2.3 Breast Cancer Cell Lines

To illustrate further the performance of CGHtrimmer and compare it to CBS and

CGHseg, we applied it to the Berkeley Breast Cancer cell line database [313]. The

dataset consists of 53 breast cancer cell lines that capture most of the recurrent genomic

and transcriptional characteristics of 145 primary breast cancer cases. We do not have

an accepted “answer key” for this data set, but it provides a more extensive basis for

detailed comparison of differences in performance of the methods on common data sets,

as well as an opportunity for novel discovery. While we have applied the methods to

all chromosomes in all cell lines, space limitations prevent us from presenting the full

results here. The interested reader can reproduce all the results including the ones not

presented here2. We therefore arbitrarily selected three of the 53 cell lines and selected

three chromosomes per cell line that we believed would best illustrate the comparative

performance of the methods. The Genes-to-Systems Breast Cancer Database 3 [404] was

used to identify known breast cancer markers in regions predicted to be gained or lost

by at least one of the methods. We used the UCSC Genome Browser 4 to verify the

placement of genes.

We note that CGHtrimmer again had a substantial advantage in run time. For the

full data set, CGHtrimmer required 22.76 sec, compared to 23.3 min for CGHseg (a

61.5-fold increase), and 4.95 hrs for CBS (a 783-fold increase).

Cell Line BT474: Figure 10.5 shows the performance of each method on the BT474

cell line. The three methods report different results for chromosome 1, as shown in

Figures 10.5(a,b,c), with all three detecting amplification in the q-arm but differing in

the detail of resolution. CGHtrimmer is the only method that detects region 1q31.2-

1q31.3 as aberrant. This region hosts gene NEK7, a candidate oncogene [250] and

gene KIF14, a predictor of grade and outcome in breast cancer [126]. CGHtrimmer

and CBS annotate the region 1q23.3-1q24.3 as amplified. This region hosts several

genes previously implicated in breast cancer [404], such as CREG1 (1q24), POU2F1

(1q22-23), RCSD1 (1q22-q24), and BLZF1 (1q24). Finally, CGHtrimmer alone reports

independent amplification of the gene CHRM3, a marker of metastasis in breast cancer

patients [404].

For chromosome 5 (Figures 10.5(d,e,f)), the behavior of the three methods is almost iden-

tical. All methods report amplification of a region known to contain many breast cancer

markers, including MRPL36 (5p33), ADAMTS16 (5p15.32), POLS (5p15.31), ADCY2
2http://www.math.cmu.edu/∼ctsourak/DPaCGHsupp.html
3http://www.itb.cnr.it/breastcancer
4http://genome.ucsc.edu/

http://www.math.cmu.edu/~ctsourak/DPaCGHsupp.html
http://www.itb.cnr.it/breastcancer
http://genome.ucsc.edu/
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

CGHtrimmer CBS CGHseg

Figure 10.5: Visualization of the segmentation output of CGHtrimmer, CBS, and
CGHseg for the cell line BT474 on chromosomes 1 (a,b,c), 5 (d,e,f), and 17 (g,h,i).
(a,d,g) CGHtrimmer output. (b,e,h) CBS output. (c,f,i) CGHseg output. Segments

exceeding the ± 0.3 threshold [61] are highlighted.

(5p15.31), CCT5 (5p15.2), TAS2R1 (5p15.31), ROPN1L (5p15.2), DAP (5p15.2), ANKH

(5p15.2), FBXL7 (5p15.1), BASP1 (5p15.1), CDH18 (5p14.3), CDH12 (5p14.3), CDH10

(5p14.2 - 5p14.1), CDH9 (5p14.1) PDZD2 (5p13.3), GOLPH3 (5p13.3), MTMR12 (5p13.3),

ADAMTS12 (5p13.3 - 5p13.2), SLC45A2 (5p13.2), TARS (5p13.3), RAD1 (5p13.2),

AGXT2 (5p13.2), SKP2 (5p13.2), NIPBL (5p13.2), NUP155 (5p13.2), KRT18P31 (5p13.2),

LIFR (5p13.1) and GDNF (5p13.2) [404]. The only difference in the assignments is that

CBS fits one more probe to this amplified segment.

Finally, for chromosome 17 (Figures 10.5(g,h,i)), like chromosome 1, all methods detect

amplification but CGHtrimmer predicts a finer breakdown of the amplified region

into independently amplified segments. All three methods detect amplification of a

region which includes the major breast cancer biomarkers HER2 (17q21.1) and BRCA1

(17q21) as also the additional markers MSI2 (17q23.2) and TRIM37 (17q23.2) [404].

While the more discontiguous picture produced by CGHtrimmer may appear to be a

less parsimonious explanation of the data, a complex combination of fine-scale gains and

losses in 17q is in fact well supported by the literature [323].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

CGHtrimmer CBS CGHseg

Figure 10.6: Visualization of the segmentation output of CGHtrimmer, CBS, and
CGHseg for the cell line HS578T on chromosomes 3 (a,b,c), 11 (d,e,f), and 17 (g,h,i).
(a,d,g) CGHtrimmer output. (b,e,h) CBS output. (c,f,i) CGHseg output. Segments

exceeding the ± 0.3 threshold [61] are highlighted.

Cell Line HS578T: Figure 10.6 compares the methods on cell line HS578T for chro-

mosomes 3, 11 and 17. Chromosome 3 (Figures 10.6(a,b,c)) shows identical prediction

of an amplification of 3q24-3qter for all three methods. This region includes the key

breast cancer markers PIK3CA (3q26.32) [273], and additional breast-cancer-associated

genes TIG1 (3q25.32), MME (3q25.2), TNFSF10 (3q26), MUC4 (3q29), TFRC (3q29),

DLG1 (3q29) [404]. CGHtrimmer and CGHseg also make identical predictions of

normal copy number in the p-arm, while CBS reports an additional loss between 3p21

and 3p14.3. We are unaware of any known gain or loss in this region associated with

breast cancer.

For chromosome 11 (Figures 10.6(d,e,f)), the methods again present an identical picture

of loss at the q-terminus (11q24.2-11qter) but detect amplifications of the p-arm at

different levels of resolution. CGHtrimmer and CBS detect gain in the region 11p15.5,

which is the site of the HRAS breast cancer metastasis marker [404]. In contrast to CBS,

CGHtrimmer detects an adjacent loss region. While we have no direct evidence this

loss is a true finding, the region of predicted loss does contain EIF3F (11p15.4), identified
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

CGHtrimmer CBS CGHseg

Figure 10.7: Visualization of the segmentation output of CGHtrimmer, CBS, and
CGHseg for the cell line T47D on chromosomes 1 (a,b,c), 11 (d,e,f), and 20 (g,h,i).
(a,d,g) CGHtrimmer output. (b,e,h) CBS output. (c,f,i) CGHseg output. Segments

exceeding the ± 0.3 threshold [61] are highlighted.

as a possible tumor suppressor whose expression is decreased in most pancreatic cancers

and melanomas [404]. Thus, we conjecture that EIF3F is a tumor suppressor in breast

cancer.

On chromosome 17 (Figures 10.6(g,h,i)), the three methods behave similarly, with all

three predicting amplification of the p-arm. CBS places one more marker in the ampli-

fied region causing it to cross the centromere while CGHseg breaks the amplified region

into three segments by predicting additional amplification at a single marker.

Cell Line T47D: Figure 10.7 compares the methods on chromosomes 1, 8, and 20 of

the cell line T47D. On chromosome 1 (Figure 10.7(a,b,c)), all three methods detect loss

of the p-arm and a predominant amplification of the q-arm. CBS infers a presumably

spurious extension of the p-arm loss across the centromere into the q-arm, while the

other methods do not. The main differences between the three methods appear on the

q-arm of chromosome 1. CGHtrimmer and CGHseg detect a small region of gain

proximal to the centromere at 1q21.1-1q21.2, followed by a short region of loss spanning
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Figure 10.8: Visualization of the segmentation output of CGHtrimmer, CBS, and
CGHsegfor the cell line MCF10A on chromosomes 1 (a,b,c), 8 (d,e,f), and 20 (g,h,i).
(a,d,g) CGHtrimmer output. (b,e,h) CBS output. (c,f,i) CGHseg output. Segments

exceeding the ± 0.3 threshold [61] are highlighted.

1q21.3-1q22. CBS merges these into a single longer region of normal copy number. The

existence of a small region of loss at this location in breast cancers is supported by prior

literature [112].

The three methods provide comparable segmentations of chromosome 11 (Figure 10.7(d,e,f)).

All predict loss near the p-terminus, a long segment of amplification stretching across

much of the p- and q-arms, and additional amplification near the q-terminus. CGHtrim-

mer, however, breaks this q-terminal amplification into several sub-segments at different

levels of amplification while CBS and CGHseg both fit a single segment to that region.

We have no empirical basis to determine which segmentation is correct here. CGHtrim-

mer does appear to provide a spurious break in the long amplified segment that is not

predicted by the others.

Finally, along chromosome 20 (Figure 10.7(g,h,i)), the output of the methods is similar,

with all three methods suggesting that the q-arm has an aberrant copy number, an

observation consistent with prior studies [213]. The only exception is again that CBS
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fits one point more than the other two methods along the first segment, causing a likely

spurious extension of the p-arm’s normal copy number into the q-arm.

Cell Line MCF10A Figure 10.8 shows the output of each of the three methods

on chromosomes 1, 8, and 20 of the cell line MCF10A. On this cell line, the methods

all yield similar predictions although from slightly different segmentations. All three

show nearly identical behavior on chromosome 1 (Figure 10.8(a,b,c)), with normal copy

number on the p-arm and at least two regions of independent amplification of the q-arm.

Specifically, the regions noted as gain regions host significant genes such as PDE4DIP a

gene associated with breast metastatic to bone (1q22), ECM1 (1q21.2), ARNT (1q21),

MLLT11 (1q21), S100A10 (1q21.3), S100A13 (1q21.3), TPM3 (1q25) which also plays

a role in breast cancer metastasis, SHC1 (1q21.3) and CKS1B (1q21.3). CBS provides

a slightly different segmentation of the q-arm near the centromere, suggesting that the

non-amplified region spans the centromere and that a region of lower amplification exists

near the centromere. On chromosome 8 (Figure 10.8(d,e,f)) the three algorithms lead to

identical copy number predictions after thresholding, although CBS inserts an additional

breakpoint at 8q21.3 and a short additional segment at 8q22.2 that do not correspond

to copy number changes. All three show significant amplification across chromosome 20

(Figure 10.8(g,h,i)), although in this case CGHseg distinguishes an additional segment

from 20q11.22-20q11.23 that is near the amplification threshold. It is worth mentioning

that chromosome 20 hosts significant breast cancer related genes such as CYP24 and

ZNF217.



Chapter 11

Robust Unmixing of Tumor

States in Array Comparative

Genomic Hybridization Data

11.1 Introduction

In Section 1.2.2 we discussed the importance of discovering tumor subtypes and we

mentioned that the recent work by [358] showed promising results. They were, however,

hampered by limitations of the hard geometric approach, particularly the sensitivity to

experimental error and outlier data points caused by the simplex fitting approach. An

example of simplex fitting in the plane is shown in Figure 11.1, illustrating why the strict

containment model used in [102, 146, 358] is extremely sensitive to noise in the data. In

the present Chapter we introduce a soft geometric unmixing model for tumor mixture

separation, which relaxes the requirement for strict containment using a fitting criterion

that is robust to noisy measurements. We develop a formalization of the problem and

derive an efficient gradient-based optimization method. It is worth mentioning that this

computational method has also been applied in the context of vertex similarity in social

networks [391].

The remainder of this Chapter is organized as follows: Section 11.2 presents our pro-

posed method and Section 11.3 we validate our method. In Section 11.4 we present a

biological analysis of our findings on an aCGH data set taken from [312] and show that

the method identifies state sets corresponding to known sub-types consistent with much

of the analysis performed by the authors.

223
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Figure 11.1: Left: The minimum area fit of a simplex containing the sample points
in the plane (shown in black) using the program in § 11.2.1.1. On noiseless data,
hard geometric unmixing recovers the locations of the fundamental components at the
vertices. Right: However, the containment simplex is highly sensitive to noise and
outliers in the data. A single outlier, circled above, radically changes the shape of the
containment simplex fit (light gray above). In turn, this changes the estimates of basis
distributions used to unmix the data. We mitigate this short coming by developing a
soft geometric unmixing model (see § 11.2.1.2) that is comparatively robust to noise.
The soft fit (shown dark gray) is geometrically very close to the generating sources as

seen on the left.

11.2 Approach

The data are assumed to be given as g genes sampled in s tumors or tumor sections.

The samples are collected in a matrix, M ∈ <g×s, in which each row corresponds to an

estimate of gene copy number across the sample population obtained with aCGH. The

data in M are processed as raw or baseline normalized raw input, rather than as log

ratios. The “unmixing” model, described below, asserts that each sample mi, a column

of M , be well approximated by a convex combination of a fixed set of C = [c0|...|ck] of

k + 1 unobserved basis distributions over the gene measurements. Further, the observed

measurements are assumed to be perturbed by additive noise in the log domain, i.e.:

mi = blogb(CFi)+η

where Fi is the vector of coefficients for the convex combination of the (k + 1) basis

distributions and η is additive zero mode i.i.d. noise.

11.2.1 Algorithms and Assumptions

Given the data model above, the inference procedure seeks to recover the k + 1 distri-

butions over gene-copy number or expression that “unmix” the data. The procedure

contains three primary stages:

1. Compute a reduced representation xi for each sample mi,
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2. Estimate the basis distributions Kmin in the reduced coordinates and the mixture

fractions F ,

3. Map the reduced coordinates Kmin back into the “gene space” recovering C.

The second step in the method is performed by optimizing the objective in § 11.2.1.1 or

the robust problem formulation in § 11.2.1.2.

Obtaining the reduced representation

We begin our calculations by projecting the data into a k dimension vector space (i.e.,

the intrinsic dimensionality of a (k + 1)−vertex simplex). We accomplish this using

principal components analysis (PCA) [335], which decomposes the input matrix M into

a set of orthogonal basis vectors of maximum variance and retain only the k components

of highest variance. PCA transforms the g×s measurement matrix M into a linear com-

bination XV + A, where V is a matrix of the principal components of M , X provides

a representation of each input sample as a linear combination of the components of V ,

and A is a k×s matrix in which each row contains s copies of the mean value of the cor-

responding row of M . The matrix X thus provides a reduced-dimension representation

of M , and becomes the input to the sample mixture identification method in Stage 2. V

and A are retained to allow us to later contruct estimated aCGH vectors corresponding

to the inferred mixture components in the original dimension g.

Assuming the generative model of the data above, PCA typically recovers a sensible

reduced representation, as low magnitude log additive noise induces “shot-noise” behav-

ior in the subspace containing the simplex with small perturbations in the orthogonal

complement subspace. An illustration of this stage of our algorithm can be found in

Figure 11.2.

Sample mixture identification

Stage 2 invokes either a hard geometric unmixing method that seeks the minimum vol-

ume simplex enclosing the input point set X (Program 11.1) or a soft geometric unmixing

method that fits a simplex to the points balancing the desire for a compact simplex with

that for containment of the input point set (Program 11.2). For this purpose, we place

a prior over simplices, preferring those with small volume that fit or enclose the point

set of X. This prior captures the intuition that the most plausible set of components

explaining a given data set are those that can explain as much as possible of the observed

data while leaving in the simplex as little empty volume, corresponding to mixtures that

could be but are not observed, as possible.
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PCA

Figure 11.2: An illustration of the reduced coordinates under the unmixing hypoth-
esis: points (show in gray) sampled from the 3−simplex embedded are <3 and then
perturbed by log-normal noise, producing points shown in black with sample corre-
spondence given the green arrows. Note that the dominant subspace remains in the
planar variation induced by the simplex, and a 2D reduced representation for simplex

fitting is thus sufficient.

Upon completion, Stage 2 obtains estimates of the vertex locations Kmin, representing

the inferred cell types from the aCGH data in reduced coordinates, and a set of mix-

ture fractions describing the amount of each observed tumor sample attributed to each

mixture component. The mixture fractions are encoded in a (k + 1) × s matrix F , in

which each column corresponds to the inferred mixture fractions of one observed tumor

sample and each row corresponds to the amount of a single component attributed to

all tumor samples. We define Fij to be the fraction of component i assigned to tumor

sample j and Fj to be vector of all mixture fractions assigned to a given tumor sample

j. To ensure that that the observations are modeled as convex combinations of the basis

vertices, we require that F1 = 1.

Cell type identification

The reduced coordinate components from Stage 2, Kmin, are projected up to a g×(k+1)

matrix C in which each column corresponds to one of the k +1 inferred components and

each row corresponds to the approximate copy number of a single gene in a component.

We perform this transformation using the matrices V and A produced by PCA in Stage

1 with the formula C = V T Kmin + A, augmenting the average to k + 1 columns.

Finally the complete inference procedure is summarized in the following pseudocode:

Given tumor sample matrix M , the desired number of mixture components k, and the

strength of the volume prior γ:

1. Factor the sample matrix M such that MT = XV + A

2. Produce the reduced k−dimensional representation by retaining the top k compo-

nents in X
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3. Minimize Program 11.1, obtaining an estimate of the simplex K0
min

4. Minimize Program 11.2 starting at K0
min, obtaining Kmin and F

5. Obtain the centers C in gene space as C = A + V T Kmin

11.2.1.1 Hard Geometric Unmixing

Hard geometric unmixing is equivalent to finding a minimum volume (k + 1)−simplex

containing a set of s points {X} in <k. A non-linear program for hard geometric un-

mixing can be written as follows:

min
K

: log vol(K) (11.1)

∀i : xi = KFi

∀Fi : F T
i 1 = 1, Fi � 0

where log vol measures the volume of simplex defined by the vertices K
.= [v0|...|vk] and

F � 0 requires that ∀ij . Fij ≥ 0. Collectively, the constraints ensure that each point be

expressed exactly as a unique convex combination of the vertices. Exact nonnegative

matrix factorization (NNMF), see [272], can be seen as a relaxation of hard geometric

unmixing. Exact NNMF retains the top two constraints while omitting the constraint

that the columns of F sum to unity – thus admitting all positive combinations rather

than the restriction to convex combinations as is the case for geometric unmixing.

Approximate and exponential-time exact minimizers are available for Program 11.1, in

our experiments we use the approach of [102], which sacrifices some measure of accuracy

for efficiency.

11.2.1.2 Soft Geometric Unmixing

Estimates of the target distributions, derived from the fundamental components (simplex

vertices), produced by hard geometric unmixing are sensitive to the wide-spectrum noise

and outliers characteristic of log-additive noise (i.e., multiplicative noise in the linear

domain). The robust formulation below tolerates noise in the sample measurements

mi and subsequently in the reduced representations xi, improving the stability of these

estimates. The sensitivity of hard geometric unmixing is illustrated in Figure 11.1. The

motivation for soft geometric unmixing is to provide some tolerance to experimental

error and outliers by relaxing the constraints in Program 11.1 allowing points to lie

outside the boundary of the simplex fit to the data. We extend Program 11.1 to provide
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a robust formulation as follows:

min
K

:
s∑

i=1

|xi −KFi|p + γ log vol(K) (11.2)

∀Fi : F T
i 1 = 1, Fi � 0

where the term |xi −KFi|p penalizes the imprecise fit of the simplex to the data and

γ establishes the strength of the minimum-volume prior. Optimization of Program 11.2

is seeded with an estimate produced from Program 11.1 and refined using MATLAB’s

fminsearch with analytical derivatives for the log vol term and an LP -step that deter-

mines mixtures components Fi and the distance to the boundary for each point outside

the simplex.

We observe that when taken as whole, Program 11.2 can be interpreted as the negative

log likelihood of a Bayesian model of signal formation. In the case of array CGH data, we

choose p = 1 (i.e., optimizing relative to an `1 norm), as we observe that the errors may

be induced by outliers and the `1 norm would provide a relatively modest penalty for

a few points far from the simplex. From the Bayesian perspective, this is equivalent to

relaxing the noise model to assume i.i.d. heavy-tailed additive noise. To mitigate some

of the more pernicious effects of log-normal noise, we also apply a total variation-like

smoother to aCGH data in our experiments. Additionally, the method can be readily

extended to weighted norms if an explicit outlier model is available.

11.2.1.3 Analysis & Efficiency

The hard geometric unmixing problem in § 11.2.1.1 is a non-convex objective in the

present parameterization, and was shown by [324] to be NP-hard when k + 1 ≥ log(s).

For the special case of minimum volume tetrahedra (k = 3), [427] demonstrated an exact

algorithm with time complexity Θ(s4) and a (1+ε) approximate method with complexity

O(s + 1/ε6). Below, we examine the present definition and show that Programs 11.1

and 11.2 have structural properties that may exploited to construct efficient gradient

based methods that seek local minima. Such gradient methods can be applied in lieu of

or after heuristic or approximate combinatorial methods for minimizing Program 11.1,

such as [102, 146] or the (1 + ε) method of [427] for simplexes in <3.

We begin by studying the volume penalization term as it appears in both procedures.

The volume of a convex body is well known (see [87]) to be a log concave function. In

the case of a simplex, analytic partial derivatives with respect to vertex position can

used to speed the estimation of the minimum volume configuration Kmin. The volume
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of a simplex, represented by the vertex matrix K = [v0|...|vk], can be calculated as:

vol(K) = ck · det
(
ΓT KKT Γ

)1/2
= ck · det Q (11.3)

where ck is the volume of the unit simplex defined on k+1 points and Γ is a fixed vertex-

edge incidence matrix such that ΓT K = [v1 − v0|...|vk − v0]. The matrix Q is an inner

product matrix over the vectors from the special vertex v0 to each of the remaining

k vertices. In the case where the simplex K is non-degenerate, these vectors form a

linearly independent set and Q is positive definite (PD). While the determinant is log

concave over PD matrices, our parameterization is linear over the matrices K, not Q.

Thus it is possible to generate a degenerate simplex when interpolating between two

non-degenerate simplexes K and K ′. For example, let K define a triangle with two

vertices on the y−axis and produce a new simplex K ′ by reflecting the triangle K across

the y−axis. The curve K(α) = αK + (1 − α)K ′ linearly interpolates between the two.

Clearly, when α = 1/2, all three vertices of K(α) are co-linear and thus the matrix Q is

not full rank and the determinant vanishes. However, in the case of small perturbations,

we can expect the simplexes to remain non-degenerate.

To derive the partial derivative, we begin by substituting the determinant formulation

into our volume penalization and arrive at the following calculation:

log vol(K) = log ck +
1
2

log detQ

∝ log
k∏

d=1

λd(Q) =
k∑

d=1

λd(Q)

therefore the gradient of log vol(K) is given by

∂ log vol(K)
∂Kij

=
k∑

d=1

∂

∂Kij
λd =

k∑
d=1

zT
d (ΓT EijE

T
ijΓ)zd

where the eigenvector zd satisfies the equality Qzd = λdzd and Eij is the indicator matrix

for the entry ij. To minimize the volume, we move the vertices along the paths specified

by the negative log gradient of the current simplex volume. The Hessian is derived by an

analogous computation, making Newton’s method for Program 11.1, with log barriers

over the equality and inequality constraints, a possible optimization strategy.

Soft geometric unmixing (Program 11.2 ) trades the equality constraints in Program 11.1

for a convex, but non-differentiable term, in the objective function
∑s

i=1 |xi −KFi|p for

p|1 ≤ p ≤ 2. Intuitively – points inside the simplex have no impact on the cost of the fit.

However, over the course of the optimization, as the shape of the simplex changes points

move from the interior to the exterior, at which time they incur a cost. To determine



Robust Unmixing of aCGH Data 230

this cost, we solve the nonnegative least squares problem for each mixture fraction Fi,

minF : (KFi−xi)T (KFi−xi). This step simultaneously solves for the mixture fraction,

and for exterior points, the distance to the simplex is determined. The simplex is then

shifted under a standard shrinkage method based on these distances.

11.3 Experimental Methods

We evaluated our methods using synthetic experiments, allowing us to assess two proper-

ties of robust unmixing 1) the fidelity with which endmembers (sub-types) are identified

and 2) the relative effect of noise on hard versus robust unmixing. We then evaluate the

robust method on a real world aCGH data set published by [312] in which ground truth

is not available, but for which we uncover much the structure reported by the authors.

11.3.1 Methods: Synthetic Experiments

To test the algorithms given in §11.2 we simulated data using a biologically plausible

model of ad-mixtures. Simulated data provides a quantitative means of evaluation as

ground truth is available for both the components C and the mixture fractions Fi asso-

ciated with each measurement in the synthetic design matrix M . The tests evaluate and

compare hard geometric unmixing §11.2.1.1 and soft geometric unmixing §11.2.1.2 in

the presence of varying levels of log-additive Gaussian noise and varying k. By applying

additive Gaussian noise in the log domain we simulate the heteroscedasticity character-

istic of CGH measurements (i.e. higher variance with larger magnitude measurements).

By varying k, the dimensionality of the simplex used to fit the data, we assess the al-

gorithmic sensitivity to this parameter as well as that to γ governing the strength of

the volume prior in Program 2. The sample generation process consists of three major

steps: 1) mixture fraction generation (determining the ratio of sub-types present in a

sample), 2) end-member (i.e. sub-type) generation and 3) the sample perturbation by

additive noise in the log-ratio domain.

11.3.1.1 Mixture Sampler

Samples over mixture fractions were generated in a manner analogous to Polya’s Urn

Process, in which previously sampled simplicial components (e.g., line segments, tri-

angles, tetrahedra) are more likely to be sampled again. This sampling mechanism

produces data distributions that are similar to those we see in low dimensional projec-

tions of aCGH data when compared against purely uniform samples over mixtures. An
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Figure 11.3: An example sample set generated for §11.3.1.2 shown in the “intrinsic
dimensions” of the model. Note that sample points cleave to the lower dimensional

substructure (edges) of the simplex.

example of a low dimensional sample set and the simplex that was used to generate the

points is shown in Figure 11.3.

To generate the mixture fractions Fi for the ith sample, the individual components in

Ctrue are sampled without replacement from a dynamic tree model. Each node in the

tree contains a dynamic distribution over the remaining components, each of which is

initialized to the uniform distribution. We then sample s mixtures by choosing an initial

component according to the root’s component distribution and proceed down the tree.

As a tree-node is reached, its component distribution is updated to reflect the frequency

with which its children are drawn. To generate the ith sample, the fractional values Fi

are initialized to zero. As sample generation proceeds, the currently selected component

Cj updates the mixture as Fij ∼ uniform[(1/2)f j
p , 1] where f j

p is the frequency of

j’s parent node. For the ith mixture, this process terminates when the condition 1 ≤∑k+1
j=1 Fij holds. Therefore, samples generated by long paths in the tree will tend to be

homogenous combinations of the components Ctrue, where as short paths will produce

lower dimensional substructures. At the end of the process, the matrix of fractions F

is re-normalized so that the mixtures associated with each sample sum to unity. This

defines a mixture F true
i for each sample – i.e. the convex combination over fundamental

components generating the sample point.

11.3.1.2 Geometric Sampling of End-members & Noise

To determine the location of the end-members we specify an extrinsic dimension (number

of genes) g, and an intrinsic dimension k (requiring k+1 components). We then simulate

k +1 components by constructing a g× (k +1) matrix Ctrue of fundamental components

in which each column is an end-member (i.e. sub-type) and each row is the copy number

of one hypothetical gene, sampled from the unit Gaussian distribution and rounded to
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Figure 11.4: Left: mean squared error for the component reconstruction compar-
ing Hard Geometric Unmixing (MVES: [102]) and Soft Geometric Unmixing (SGU)
introduced in §11.2.1.2 for the experiment described in §11.3.1.2 with variable γ. The
plot demonstrates that robust unmixing more accurately reconstructs the ground truth
centers relative to hard unmixing in the presence of noise. Right: mean squared error

for mixture reconstruction comparing MVES and SGU.

the nearest integer. Samples mi, corresponding to the columns of the data matrix M ,

are then given by:

mi = 2log2(CtrueF true
i )+ 1

2
ση (11.4)

where η ∼ normal(0, 1) and the mixture fractions F true
i were obtained as in §11.3.1.1.

11.3.1.3 Evaluation

We follow Schwartz and Shackney [358] in assessing the quality of the unmixing methods

by independently measuring the accuracy of inferring the components and the mixture

fractions. We first match inferred mixture components to true mixture components by

performing a maximum weighted bipartite matching of columns between Ctrue and the

inferred components Ce, weighted by negative Euclidean distance. We will now assume

that the estimates have been permuted according to this matching and continue. We

then assess the quality of the mixture component identification by the root mean square
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distance over all entries of all components between the matched columns of the two C

matrices:

error =
1

g(k + 1)

∣∣|Ctrue − Ce|
∣∣2
F

(11.5)

where ||A||F =
√∑

ij a2
ij denotes the Frobenius norm of the matrix A.

We similarly assess the quality of the mixture fractions by the root mean square distance

between F true and the inferred fractions F e over all genes and samples:

error =
1

g(k + 1)

∣∣|F true − F e|
∣∣2
F

. (11.6)

This process was performed for s = 100 and d = 10000 to approximate a realistic tumor

expression data set and evaluated for k = 3 to k = 7 and for σ = {0, 0.1, 0.2, ..., 1.0},
with ten repetitions per parameter.

11.4 Results

11.4.1 Results: Synthetic Data

The results for the synthetic experiment are summarized in Figure 11.4. The figure

shows the trends in MSE for hard geometric unmixing §11.2.1.1 and soft geometric

unmixing §11.2.1.2 on the synthetic data described above. As hard geometric unmixing

requires that each sample lie inside the fit simplex, as noise levels increase (larger σ), the

fit becomes increasingly inaccurate. Further, the method MVES deteriorates to some

degree as order k of the simplex increases. However, soft geometric unmixing degrades

more gracefully in the presence of noise if an estimate of the noise level is available

with ±0.1 in our current model. The trend of soft unmixing exhibiting lower error and

better scaling in k than hard unmixing holds for both components and mixture fractions,

although components exhibit a higher average degree of variability due to the scale of

the synthetic measurements when compared to the mixture fractions.

11.4.2 Array Comparative Gene Hybridization (aCGH) Data

We further illustrate the performance of our methods on a publicly available primary

Ductal Breast Cancer aCGH Dataset furnished with [312]. This dataset is of interest

in that each tumor sample has been sectored multiple times during biopsy which is

ideal for understanding the substructure of the tumor population. The data consists of

87 aCGH profiles from 14 tumors run on a high-density ROMA platform with 83055
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Figure 11.5: Empirical motivation for the `1 − `1−total variation functional for
smoothing CGH data. The left plot shows the histogram of values found in the CGH
data obtained from the [312] data set. The distribution is well fit by the high kurtosis
Laplacian distribution in lieu of a Gaussian. The right plot shows the distribution
of differences along the probe array values. As with the values distribution, these

frequencies exhibit high kurtosis.

Figure 11.6: The simplex fit to the CGH data samples from [312] ductal data set
in <3. The gray tetrahedron was return by the optimization of Program 11.1 and the

green tetrahedron was returned by the robust unmixing routine.

probes. Profiles are derived from 4-6 sectors per tumor, with samples for tumors 5-14

sub-partitioned by cell sorting according to total DNA content, and with healthy control

samples for tumors 6, 9, 12, and 13. For full details, the reader is referred to Navin et

al. [312]. The processed data consists of log10 ratios and which were exponentiated prior

to the PCA step (Stage 1) of the method.

11.4.2.1 Preprocessing

To mitigate the effects of sensor noise on the geometric inference problem we apply a total

variation (TV) functional to the raw log-domain data. The `1− `1−TV minimization is

equivalent to a penalized projection onto the over-complete Harr basis preserving a larger

degree of the signal variation when compared to discretization methods (e.g [205, 320])

that employ aggressive priors over the data distribution. The procedure seeks a smooth

instance x of the observed signal s by optimizing the following functional:

min
x

:
g∑

i=1

|xi − si|1 + λ

g−1∑
i=1

|xi − xi+1|1 (11.7)

The functional 11.7 is convex and can be solved readily using Newton’s method with

log-barrier functions ([87]). The solution x can be taken as the maximum likelihood

estimate of a Bayesian model of CGH data formation. That is, the above is the negative

log-likelihood of a simple Bayesian model of signal formation. The measurements x̂i are
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assumed to be perturbed by the i.i.d. Laplacian noise and the changes along the probe

array are assumed to be sparse. Recall that the Laplacian distribution is defined by

the probability density function Pr [x] = 1
z exp

(
−|x|

a

)
. In all experiments the strength

of the prior λ was set to λ = 10. The data fit this model well as illustrated in Figure

11.5. The dimension of the reduced representation k, fixing the number of fundamental

components, was determined using the eigengap heuristic during the PCA computa-

tion (Stage 1). This rule ceases computing additional principal components when the

difference in variances jumps above threshold.

11.4.2.2 Unmixing Analysis and Validation

The raw data was preprocessed as described above and a simplex was fit to the reduced

coordinate representation using the soft geometric unmixing method (see §11.2.1.2). A

three dimensional visualization of the resulting fit is shown for the [312] data set in Figure

11.6. To assess the performance with increasing dimensionality, we ran experiments for

polytope dimensionality k ranging from 3 to 9.Following the eigen-gap heuristic we chose

to analyze the results for k = 6. The γ value was picked according to the estimated

noise level in the aCGH dataset and scaled relative to the unit simplex volume (here,

γ = 100). The estimated 6 components/simplex vertices/pure cancer types are labeled

C1, C2, ..., C6.

Figure 11.7 shows mixture fraction assignments for the aCGH data for k = 6. While

there is typically a non-zero amount of each component in each sample due to imprecision

in assignments, the results nonetheless show distinct subsets of tumors favoring different

mixture compositions and with tumor cells clearly differentiated from healthy control

samples. The relative consistency within versus between tumors provides a secondary

validation that soft unmixing is effective at robustly assigning mixture fractions to tumor

samples despite noise inherent to the assay and that produced by subsampling cell

populations. It is also consistent with observations of Navin et al.

It is not possible to know with certainty the true cell components or mixture fractions

of the real data, but we can validate the biological plausibility of our results by ex-

amining known sites of amplification in the inferred components. We selected fourteen

benchmark loci frequently amplified in breast cancers through manual literature search.

Table 11.1 lists the chosen benchmarks and the components exhibiting at least 2-fold

amplification of each. Figure 11.8 visualizes the results, plotting relative amplification

of each component as a function of genomic coordinate and highlighting the locations of

the benchmark markers. Thirteen of the fourteen benchmark loci exhibit amplification

for a subset of the components, although often at minimal levels. The components also



Robust Unmixing of aCGH Data 236

show amplification of many other sites not in our benchmark set, but we cannot defini-

tively determine which are true sites of amplification and which are false positives. We

further tested for amplification of seven loci reported as amplified by Navin et al. [312]

specifically in the tumors examined here and found that six of the seven are specifically

amplified in one of our inferred components: PPP1R12A (C2), KRAS (C2), CDC6 (C2),

RARA (C2), EFNA5 (C2), PTPN1 (C3), and LPXN (not detected). Our method did

not infer a component corresponding to normal diploid cells as one might expect due

to stromal contamination. This failure may reflect a bias introduced by the dataset, in

which many samples were cell sorted to specifically select aneuploid cell fractions, or

could reflect an inherent bias of the method towards more distinct components, which

would tend to favor components with large amplifications.

We repeated these analyses for the hard unmixing with a higher amplification threshold

due to the noise levels in the centers. It detected amplification at 11 of the 14 loci,

with spurious inferences of deletion at four of the 11. For the seven sites reported in

Navin et al., hard unmixing identified five (failing to identify EFNA5 or LPXN) and

again made spurious inferences of deletions for three of these sites, an artifact the soft

unmixing eliminates. The results suggest that hard unmixing produces less precise fits

of simplexes to the true data.

We can also provide a secondary analysis based on Navin et al.’s central result that

the tumors can be partitioned into monogenomic (those appearing to show essentially

a single genotype) and polygenomic (those that appear to contain multiple tumor sub-

populations). We test for monogeniety in mixture fractions by finding the minimum

correlation coefficient between mixture fractions of consecutive tumor sectors (ignor-

ing normal controls) maximized over all permutations of the sectors. Those tumors

with correlations above the mean over all tumors (0.69) were considered monogenomic

and the remainder polygenomic. Navin et al. assign {1, 2, 6, 7, 9, 11} as monogenomic

and {3, 4, 5, 8, 10, 12, 13, 14} and polygenomic. Our tests classify {1, 2, 5, 6, 7, 8, 11} as

monogenomic and {3, 4, 10, 12, 13, 14} as polygenomic, disagreeing only in tumors 5 and

8. Our methods are thus effective at identifying true intratumor heterogeneity in almost

all cases without introducing spurious heterogeneity. By contrast, hard unmixing iden-

tifies only tumors 5 and 8 as polygenomic, generally obscuring true heterogeneity in the

tumors.

Our long-term goal in this work is not just to identify sub-types, but to describe the

evolutionary relationships among them. We have no empirical basis for validating any

such predictions at the moment but nonetheless consider the problem informally here for

illustrative purposes. To explore the question of possible ancestral relationships among

components, we manually examined the most pronounced regions of shared gain across
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Figure 11.7: Inferred mixture fractions for six-component soft geometric unmixing
applied to breast cancer aCGH data. Data is grouped by tumor, with multiple sectors
per tumor placed side-by-side. Columns are annotated below by sector or N for normal
control and above by cell sorting fraction (D for diploid, H for hypodiploid, A for

aneuploid, and A1/A2 for subsets of aneupoloid) where cell sorting was used.

Marker Locus Component
MUC1 1q21 C1,C4

PIK3CA 3q26.3 C3,C6
ESR1 6q25.1 C4
EGFR 7p12 C5
c-MYC 8q24 C1,C3,C5
PTEN 10p23 none
PGR 14q23.2 C6

CCND1 11q13 C4
BRCA2 13q12.3 C5
ESR2 14q23 C1

BRCA1, 17q21 C5,C6
ERBB2

STAT5A, 17q11.2 C5
STAT5B
GRB7 17q12 C6
CEA 19q13.2 C6

Table 11.1: Benchmark set of breast cancer markers selected for validation of real
data, annotated by gene name, genomic locus, and the set of components exhibiting

amplification at the given marker.

component. Figure 11.9 shows a condensed view of the six components highlighting

several regions of shared amplification between components. The left half of the im-

age shows components 3, 5, and 1, revealing a region of shared gain across all three

components at 9p21 (labeled B). Components 5 and 1 share an additional amplification

at 1q21 (labeled A). Components 1 and 5 have distinct but nearby amplifications on

chromosome 17, with component 1 exhibiting amplification at 17q12 (labeled D) and

component 5 at 17q21 (labeled C). We can interpret these images to suggest a possible

evolutionary scenario: component 3 initially acquires an amplification at 9p21 (the locus
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Figure 11.8: Copy numbers of inferred components versus genomic position. The
average of all input arrays (top) is shown for comparison, with the six components

below. Benchmarks loci are indicated by yellow vertical bars.

of the gene CDKN2B/p15INK4b), an unobserved descendent of component 3 acquires

secondary amplification at 1q21 (the locus of MUC1), and this descendent then diverges

into components 1 and 5 through acquisition of independent abnormalities at 17q12 (site

of PGAP3) or 17q21 (site of HER2). The right side of the figure similarly shows some

sharing of sites of amplification between components 2, 4, and 6, although the amplified

regions do not lead to so simple an evolutionary interpretation. The figure is consis-

tent with the notion that component 2 is ancestral to 4, with component 2 acquiring a

mutation at 5q21 (site of APC/MCC) and component 4 inheriting that mutation but

adding an additional one at 17q21. We would then infer that the amplification at the

HER2 locus arose independently in component 6, as well as in component 5. The fig-

ure thus suggests the possibility that the HER2-amplifying breast cancer sub-type may

arise from multiple distinct ancestral backgrounds in different tumors. While we cannot

evaluate the accuracy of these evolutionary scenarios, they provide an illustration of

how the output of this method is intended to be used to make inferences of evolutionary

pathways of tumor states.
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Figure 11.9: Plot of amplification per probe highlighting regions of shared ampli-
fication across components. The lower (blue) dots mark the location of the collected
cancer benchmarks set. Bars highlight specific markers of high shared amplification for
discussion in the text. Above: A: 1q21 (site of MUC1), B: 9p21 (site of CDKN2B), C:

7q21 (site of HER2), D: 17q12 (site of PGAP3), E: 5q21 (site of APC/MCC).



Chapter 12

Perfect Reconstruction of

Oncogenetic Trees

12.1 Introduction

In this Chapter we answer a fundamental question regarding oncogenetic trees, see

Section 1.2.3. Before we state the question, we introduce some notation first. Let

T = (V,E, r) be a rooted tree on V , i.e., every vertex has in-degree at most one and

there are no cycles, and let r ∈ V be the root of T . Given a finite family F = {A1, ...Aq}
of sets of vertices, i.e., Ai ⊆ V (T ) for i = 1, . . . , q, where each Ai is the vertex set of a

r-rooted sub-tree of T , what are the necessary and sufficient conditions, if any, which

allow us to uniquely reconstruct T? In this work we treat this natural combinatorial

question, namely:

“When can we reconstruct an oncogenetic tree T from a set family F?”

Despite the fact that in practice aCGH data tend to be noisy and consistent with more

than one oncogenetic trees, the question is nonetheless interesting and to the best of

our knowledge remains open so far [330, 350]. Theorem 12.1 provides the necessary and

sufficient conditions to uniquely reconstruct an oncogenetic tree. We write u ≺ v (u ⊀ v)

to denote that u is (not) a descendant of v in T .

Theorem 12.1. Let T be an oncogenetic tree and F = {A1, ...Aq} be a finite family

of sets of vertices, i.e., Ai ⊆ V (T ) for i = 1, . . . , q, where each Ai is the vertex set of

a r-rooted sub-tree of T The necessary and sufficient conditions to uniquely reconstruct

the tree T from the family F are the following:

240
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(a) Necessity of Condition 1 (b) Necessity of Condition 2

Figure 12.1: Illustration of necessity conditions of Theorem 12.1.

1. For any two distinct vertices x, y ∈ V (T ) such that (x, y) ∈ E(T ), there exists a

set Ai ∈ F such that x ∈ Ai and y /∈ Ai.

2. For any two distinct vertices x, y ∈ V (T ) such that y ⊀ x and x ⊀ y there exist

sets Ai, Aj ∈ F such that x ∈ Ai, y /∈ Ai and x /∈ Aj and y ∈ Aj.

In Section 12.2 we prove Theorem 12.1. It is worth noticing that our proof provides a

simple procedure for the reconstruction as well.

12.2 Proof of Theorem 12.1

In the following we call a tree T consistent with the family set F if all sets Ai ∈ F are

vertices of rooted sub-trees of T . Notice that when two or more trees are consistent with

the input dataset F , then we cannot uniquely reconstruct T .

Proof. First we prove the necessity of conditions 1,2 and then their sufficiency to recon-

struct T .

Necessity: For the sake of contradiction, assume that Condition 1 does not hold. There-

fore, there exists two vertices x, y ∈ V (T ) such that there exists no set A ∈ F that

contains one of them. Then, the two trees shown in Figure 12.1(a) are both consistent

with F . Therefore we cannot reconstruct T . Similarly, assume that Condition 2 does

not hold. Specifically assume that for all j such that x ∈ Aj , then y ∈ Aj too (for

the symmetric case the same argument holds). Then, both trees in Figure 12.1(b) are

consistent with F and therefore T is not reconstructable. The symmetric case follows

by the same argument.

Sufficiency: Let x ∈ V (T ) and Px be the vertex set of the unique path from the root r

to x, i.e., Px = {r, . . . , x}. Also, define Fx to be the intersection of all sets in the family
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F that contain vertex x, i.e., Fx =
⋂

Ai

Ai 3 x
. We prove that Fx = Px. Since by the

definition of an oncogenetic tree Px ⊆ Fx it suffices to show that Fx ⊆ Px. Assume for

the sake of contradiction that Fx * Px. Then, there exists a vertex v ∈ V (T ) such that

v ∈ Fx, v /∈ Px. We consider the following three cases.

• Case 1 (x ≺ v): Since by definition each set Ai ∈ F is the vertex set of a rooted

sub-tree of T , v ∈ Px by the definition of an oncogenetic tree.

• Case 2 (v ≺ x): Inductively by condition 1, there exists Ai ∈ F such that x ∈ Ai, v /∈
Ai. Therefore, v /∈ Fx.

• Case 3 (x ⊀ v, v ⊀ x): By condition 2, there exists Ai ∈ F such that x ∈ Ai and

v /∈ Ai. Hence, v /∈ Fx.

In all three cases above, we obtain a contradiction and therefore v ∈ Fx ⇒ v ∈ Px.

Therefore, Fx ⊆ Px and subsequently Fx = Px. Given this fact, it is easy to reconstruct

the tree T . We sketch the algorithm: compute for each x the set Fx which is the

unordered set of vertices of the unique path from r to x. The ordering of the vertices

which results in finding the path Px, i.e., (v0 = r → v1 → ..vk−1 → vk = x) is computed

using sets in F which contain vi but not vi+1, i = 0, .., k− 1. The existence of such sets

is guaranteed by condition 1.
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III Conclusion and Future Directions



Chapter 13

Conclusion

This Chapter concludes the dissertation by posing both specific open problems and

broader directions related to our work.

13.1 Open Problems

13.1.1 Rainbow Connectivity (Chapter 3)

We propose two open problems for future work.

Erdös-Rényi graphs: In Chapter 3 we give an aymptotically tight result on the rain-

bow connectivity of G = G(n, p) at the connectivity threshold. It is reasonable to conjec-

ture that this could be tightened. We conjecture that whp, rc(G) = max {Z1, diameter(G(n, p))}.

Random regular graphs: Our result on random regular graphs is not so tight. It is

still reasonable to believe that the above conjecture also holds in this case. (Of course

Z1 = 0 here).

13.1.2 Random Apollonian Graphs (Chapter 4)

We propose two open problems for future work.

Diameter: We conjecture that limt→+∞
d(Gt)
log t → c, where c is a constant. Finding c is

an interesting research problem.

Conductance: We conjecture that the conductance of a RAN is Θ
(

1√
t

)
whp. Fig-

ure 13.1 shows that φ(Gt) ≤ 1√
t
.

244
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Figure 13.1: By the pigeonhole principle, one of the three initial faces receives Θ(t)
vertices. Using Theorem 4.3 it is not hard to see that the encircled set of vertices S

has conductance φ(S) ≈
√

t
t = 1√

t
whp.

13.1.3 Triangle Counting (Chapter 5)

Figure 13.2: Weighted Graph

Certain open problems on triangle counting follow:

Weighted graphs: The sampling scheme presented in Section 5.2.1 can be adapted

to weighted graphs: multiply the weight of sampled edge by 1
p and count weighted

triangles. However this can be problematic as the graph shown in Figure 13.2 indicates.

Specifically, for a sufficiently large w, throwing out any weighted edge results in an

arbitrarily bad estimate of the count of triangles. Finding a better sampling scheme for

weighted graphs is left as a problem for future work.

Better sparsification: Finding an easy-to-compute quantity which gives us an optimal

way to sparsify the graph with respect to triangles is an interesting research problem.

Random projections and triangles: Can we provide some reasonable condition on

G that would guarantee (5.7)?

MapReduce: Our proposed methods are easily parallelizable and developing a MapRe-

duce implementation is a natural practical direction.

Streaming model : Besides MapReduce, the streaming model is particularly well

tailored for large data. Can we design better algorithms for triangle counting for the
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streaming model [96]? Can we estimate the average number of triangles over all vertices

with a given degree d?

13.1.4 Densest Subgraphs (Chapter 6)

Our work in Chapter 6 leaves several open problems.

Algorithm Design: Can we design approximation algorithms with better additive

guarantees or a multiplicative approximation algorithm without shifting the objective?

Can we characterize the worst-case behavior of LocalSearchOQC? Also designing

efficient randomized algorithms, e.g., [32] is an interesting research direction.

Bipartite graphs: A natural extension of our objective to a bipartite graph G(L∪R,E)

is the following. For a set A ⊆ L,B ⊆ R and a real parameter α, we define fα(A,B) =

e[A ∪ B] − α|A||B|. Maximizing fα is in general a hard problem. This can be easily

shown using a reduction similar to the one we used in Chapter 6 where we used a planted

clique in an Erdös-Rényi G(n, 1/2) graph and invoking the results of [165] on detecting

planted bipartite clique distributions. Understanding this objective and evaluating its

performance is an interesting direction.

13.1.5 Structure of the Web Graph (Chapter 7)

Studying the Web graph is an important problem in graph mining research, given its

prominence. Two problems related to our work follow.

Improving Hadi: How well do recent advances in moment estimation [234] perform in

practice? Can we use them to improve the performance of Hadi?

Analyzing the Web graph: Using our algorithmic tool Hadi we provided insights

into certain fundamental properties of the Web graph. Can we provide further insights

by studying other statistics, e.g., [398]? Can we use these structural properties to come

up with good models of the Web graph?

13.1.6 FENNEL: Streaming Graph Partitioning for Massive Scale Graphs

(Chapter 8)

How to interpolate? In Chapter 8 we showed that by selecting an exponent γ between

1 and 2 allows us to interpolate between the two heuristics most frequently used for

balanced graph partitioning. Can we find an easy-to-compute graph statistic, e.g., power

law exponent, that allows us to make a good selection for γ for a given graph?
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Random graphs with hidden partition: Assume that we have a dense graph with

k clusters where the probability of having an edge insider and between two distinct

clusters is p and q respectively, p > q = Θ(1). Can we predict how different heuristics

derived from our framework will perform?

More cost functions: It is interesting to test other choices of cost functions and tackle

the assymetric edge cost issue that occurs in standard data center architectures.

Communication cost: A future goal is to minimize further the communication cost

using minwise hashing [349].

13.1.7 PEGASUS: A System for Large-Scale Graph Processing (Chap-

ter 9)

Given that PeGaSus is much more an engineering rather than a theoretical contribution,

we provide a broad research direction, related to MapReduce, the framework on which

PeGaSus relies.

Understanding the limits of MapReduce: Afrati, Das Sarma, Salihoglu and Ull-

man [12] provide an interesting framework for studying MapReduce algorithms. Let

the replication rate of any MapReduce algorithm be the average number of reducers

each input is sent to. Understanding trade-offs between the replication rate and the

efficiency of MapReduce algorithms is an interesting research direction.

13.1.8 Approximation Algorithms for Speeding up Dynamic Program-

ming and Denoising aCGH data (Chapter 10)

In Chapter 10, we present a new formulation for the problem of denoising aCGH data.

Our formulation has already proved to be valuable in numerous settings [136].

Improving algorithmic performance: Our results strongly indicate that the O(n2)

algorithm, which is — to the best of our knowledge — the fastest exact algorithm, is

not tight. There is inherent structure in the optimization problem. Lemma 13.1 is such

an example.

Lemma 13.1. If |Pi1 − Pi2 | > 2
√

2C, then in the optimal solution of the dynamic

programming using L2 norm, i1 and i2 are in different segments.

Proof. The proof is by contradiction, see also Figure 13.3. Suppose the optimal solution

has a segment [i, j] where i ≤ i1 < i2 ≤ j, and its optimal x value is x∗. Then consider

splitting it into 5 intervals [i, i1 − 1], [i1, i1], [i1 + 1, i2 − 1], [i2, i2], [i2 + 1, r]. We let
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(a) One fitted segment (b) Five fitted segments

Figure 13.3: Lemma 13.1: if |Pi1 − Pi2 | > 2
√

2C then Segmentation (b) which
consists of five segments (two of which are single points) is superior to Segmentation

(a) which consists of a single segment.

x = x∗ be the fitted value to the three intervals not containing i1 and i2. Also, as

|Pi1 − Pi2 | > 2
√

2C, (Pi1 − x)2 + (Pi2 − x)2 > 2
√

2C
2

= 4C. So by letting x = Pi1 in

[i1, i1] and x = Pi2 in [i2, i2], the total decreases by more than 4C. This is more than

the added penalty of having 4 more segments, a contradiction with the optimality of the

segmentation.

Uncovering and taking advantage of the inherent structure in a principled way should

result in a faster exact algorithm. This is an interesting research direction which we

leave as future work.

More applications: Another research direction is to find more applications (e.g., his-

togram construction [204]) to which our methods are applicable.

aCGH Denoising: Our model does not perform well in very noisy data. Developing

novel machine learning techniques for detecting signal breakpoints is a practical research

direction.

13.1.9 Robust Unmixing of Tumor States in Array Comparative Ge-

nomic Hybridization Data (Chapter 11)

In Chapter 11 we introduce a geometric framework which provides a novel perspective

on detecting cancer subtypes. From a computational perspective, we aim to fit to a

cloud of points a minimum volume enclosing simplex.

Complex geometric shapes: Can we fit instead of a simplex, a simplicial complex?

13.1.10 Perfect Reconstruction of Oncogenetic Trees (Chapter 12)

We propose the following open problems on oncogenetic trees.

Enumerative properties of oncogenetic trees: How does one calculate the size of

the smallest family F that is uniquely consistent with a given tree T? Which trees are
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extremal in the aforementioned sense? A broad research direction is to obtain a deeper

understanding of tumorigenesis through the understanding of combinatorial properties

of oncogenetic trees.
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[9] Bernardo M Ábrego, Silvia Fernández-Merchant, Michael G Neubauer, and

William Watkins. Sum of squares of degrees in a graph. Journal of Inequalities in

Pure and Applied Mathematics, 10(3):1–34, 2009.

[10] Dimitris Achlioptas, 2010. Random Graphs and Large Networks, available at

http://www.youtube.com/watch?v=arDYNhP95JI.

[11] Dimitris Achlioptas and Frank McSherry. Fast computation of low rank matrix

approximations. In Proceedings of the thirty-third annual ACM symposium on

Theory of computing, pages 611–618. ACM, 2001.

[12] Foto N Afrati, Anish Das Sarma, Semih Salihoglu, and Jeffrey D Ullman. Vision

paper: Towards an understanding of the limits of map-reduce computation. arXiv

preprint arXiv:1204.1754, 2012.

250

http://www.zdnet.com/microsofts-big-data-plans-acknowledge-embrace-integrate-7000000846/
http://dx.doi.org/10.1126/science.1091403
http://dx.doi.org/10.1126/science.1091403
http://incubator.apache.org/giraph/
http://wiki.apache.org/hadoop/PoweredBy
http://snap.stanford.edu/
http://engineering.twitter.com/2011/08/storm-is-coming-more-details-and-plans.html
http://engineering.twitter.com/2011/08/storm-is-coming-more-details-and-plans.html
http://www.microsoft.com/en-us/news/features/2013/feb13/02-11BigData.aspx
http://www.microsoft.com/en-us/news/features/2013/feb13/02-11BigData.aspx
http://www.youtube.com/watch?v=arDYNhP95JI


Bibliography 251

[13] G. Agarwal and D. Kempe. Modularity-maximizing graph communities via math-

ematical programming. The European Physical Journal B-Condensed Matter and

Complex Systems, 66(3):409–418, 2008.

[14] P. K. Agarwal and J. Erickson. Geometric Range Searching and Its Relatives.

1999.

[15] P. K. Agarwal, D. Eppstein, and J. Matousek. Dynamic half-space reporting, ge-

ometric optimization, and minimum spanning trees. In Proceedings of the 33rd

Annual Symposium on Foundations of Computer Science, pages 80–89, Wash-

ington, DC, USA, 1992. IEEE Computer Society. ISBN 0-8186-2900-2. doi:

10.1109/SFCS.1992.267816. URL http://portal.acm.org/citation.cfm?id=

1398516.1398901.

[16] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applications

of a matrix searching algorithm. In Proceedings of the second annual symposium

on Computational geometry, SCG ’86, pages 285–292, New York, NY, USA, 1986.

ACM. ISBN 0-89791-194-6. doi: http://doi.acm.org/10.1145/10515.10546. URL

http://doi.acm.org/10.1145/10515.10546.

[17] A. Aggarwal, M. Hansen, and T. Leighton. Solving query-retrieval problems by

compacting voronoi diagrams. In Proceedings of the twenty-second annual ACM

symposium on Theory of computing, STOC ’90, pages 331–340, New York, NY,

USA, 1990. ACM. ISBN 0-89791-361-2. doi: http://doi.acm.org/10.1145/100216.

100260. URL http://doi.acm.org/10.1145/100216.100260.

[18] Rudolf Ahlswede and Gyula OH Katona. Graphs with maximal number of adjacent

pairs of edges. Acta Mathematica Hungarica, 32(1):97–120, 1978.

[19] William Aiello, Fan Chung, and Linyuan Lu. A random graph model for massive

graphs. In Proceedings of the thirty-second annual ACM symposium on Theory of

computing, pages 171–180. Acm, 2000.

[20] William Aiello, Fan Chung, and Linyuan Lu. A random graph model for power

law graphs. Experimental Mathematics, 10(1):53–66, 2001.
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[50] Albert-László Barabási and Réka Albert. Emergence of scaling in random net-

works. science, 286(5439):509–512, 1999.

[51] D. Barry and J.A. Hartigan. A bayesian analysis for change point problems.

Journal of the American Statistical Association, 88(421):309–319, 1993. ISSN

01621459. URL http://www.jstor.org/stable/2290726.
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