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Age of networks

• Our lives are surrounded by networks.
• Social networks
• Technological networks
• Knowledge and information networks
• Biological networks

Online social networks and social media

Internet Map

Airline Networks
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Networks as Graphs
• Entities – set of vertices

• Pairwise relations among vertices
– set of edges

• Can add directions, weights,. . .

• Graphs model networks
• Social networks: friendship,

collaboration, phone-call
networks

• Technological networks: the
internet, power grids,
transportation networks

• Information networks: the World
Wide Web, blog networks

• Biological networks: gene
co-expression networks, brain
network

Daniel Spielman:
“Graph theory is

the new Calculus”

Human Brain
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Empirical properties of real-world networks

Diverse collections of graphs arising from different phenomena

Are there any typical patterns?

• Static networks

1 heavy tailed degree sequences
2 triangles
3 small-worlds
4 communities

• Time-evolving networks

1 densification
2 shrinking diameters

• The Web graph

1 bow-tie structure
2 bipartite cliques

C.E. Tsourakakis Mathematical Techniques for Modeling and Analyzing Large Graphs 5 / 64



Heavy tails

What do the proteins in our bodies, the Internet, a
cool collection of atoms and sexual networks have in
common? One man thinks he has the answer and it
is going to transform the way we view the world.

Scientist 2002

Albert-László Barabási
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Degree distribution

• Ck = number of vertices with degree k

• problem : find the probability distribution that fits best
the observed data
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Power-law degree distribution

• Ck = number of vertices with degree k , then

Ck = ck−γ

with γ > 1, or

ln Ck = ln c − γ ln k

• plotting ln Ck versus ln k gives a straight line with
slope −γ

• heavy-tail distribution : there is a non-negligible fraction
of nodes that has very high degree (hubs)
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Heavy tails, triangles

Triangle

• triangle distribution in flickr

• figure shows the count of nodes with k triangles vs. k in
log-log scale

• again, heavy tails emerge [Tsourakakis, 2008]
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Clustering coefficients

• a proposed measure to capture local clustering is the
graph transitivity

T (G ) =
3× number of triangles in the network

number of connected triples of vertices

• captures “transitivity of clustering”

if u is connected to v and v is connected to w , it is also likely
that u is connected to w

C.E. Tsourakakis Mathematical Techniques for Modeling and Analyzing Large Graphs 10 / 64



Clustering coefficients

• alternative, related definitions

• local clustering coefficient

Ci =
Number of triangles connected to vertex i

Number of triples centered at vertex i

• global clustering coefficient

C (G ) =
1

n

∑
i

Ci
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Problems

• the world is full with networks

• what do we do with them?
• understand their structure (e.g., paths and connectivity,

cut structure)
• understand processes (e.g., random walks, information

cascades, epidemics)
• study their evolution and dynamics
• create realistic models
• create algorithms that make use of the network structure
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Problems

Algorithms need to scale to large graphs.

• We need to handle datasets with billions of vertices and
edges

• Facebook: ∼ 1 billion users with avg degree 130

• Twitter: ≥ 1.5 billion social relations

• Google: web graph more than a trillion edges (2011)

• We need algorithms for dynamic graph datasets

• real-time story identification using twitter posts

• election trends, twitter as election barometer
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Problems: A Billion $ example

Larry Page and Sergey Brin asked...

how to rank Web pages using the network structure?

Pagerank algorithm
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Models and Empirical Studies

Random graphs

• Erdős-Rényi

• Preferential Attachment

• Random Apollonian networks

Empirical Studies

• Triangle counting
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Random graphs

• a random graph is a set of graphs together with a
probability distribution on that set

• example

1 2

3

1

2

32

3

1

Probability 1
3

Probability 1
3

Probability 1
3

a random graph on {1, 2, 3} with 2 edges with the
uniform distribution
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Random graphs

• Erdős-Rényi (or Gilbert-Erdős-Rényi ) random graph
model

Paul Erdős Alfréd Rényi
1913 – 1996 1921 – 1970
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Random graphs

• the G (n, p) model:

• n : the number of vertices

• 0 ≤ p ≤ 1 : probability

• for each pair (u, v), independently generate the edge
(u, v) with probability p

• G (n, p) a family of graphs, in which a graph with m

edges appears with probability pm(1− p)(
n
2)−m.

Equivalently, Pr [G ] ∝
(

p
1−p

)m

.

• the G (n, m) model: exactly m random edges. Not
identical, but related.
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Preferential attachment

R. Albert L. Barabási B. Bollobás O. Riordan

growth model:

• at time n, vertex n is added to the graph

• one edge is attached to the new vertex

• the other vertex is selected at random with probability
proportional to its degree

• obtain a sequence of graphs {G (n)
1 }.
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Preferential attachment — generalizations

Barabási-Albert/Bollobás-Riordan preferential attachment
generates graph with power law slope equal to 3. Various
generalizations exist

• Rather than adding a single edge, we add m edges
[Bollobás and Riordan, 2003].

• Tune the power law slope [Buckley and Osthus, 2004].

• Increase clustering coefficients
[Holme and Kim, 2002, Saramäki and Kaski, 2004]

• Fitness values, . . . .
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Random Apollonian networks
Are there power-law planar graphs? Yes,
[Andrade Jr et al., 2005]!

snapshots of a random Apollonian network (RAN) at:
(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 100

• at time t + 1 we choose a face F uniformly at random
among the faces of Gt

• let (i , j , k) be the vertices of F

• we add a new vertex inside F and we connect it to i , j , k
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Random Apollonian networks

• Barabási-Albert/Bollobás-Riordan preferential attachment
results in an expander graph.

• Real world networks typically have small separators,
[Fortunato, 2010].

• Planar graphs have small separators [Planar Separator
Theorem, [Lipton and Tarjan, 1979]].

• Also, planar graphs model a wide variety of real world
networks including power grids, water distribution and
road networks.
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Random Apollonian networks

Theorem ([Frieze and Tsourakakis, 2013])

Let Zk(t) denote the number of vertices of degree k at time t,
k ≥ 3. For any t ≥ 1 and any k ≥ 3 there exists a constant
bk

a depending on k such that

|E [Zk(t)]− bkt| ≤ K , where K = 3.6.

Furthermore, for t sufficiently large and any λ > 0

Pr [|Zk(t)− E [Zk(t)] | ≥ λ] ≤ e−
λ2

72t

ab3 = 2
5 , b4 = 1

5 , b5 = 4
35 and for k ≥ 6 bk = 24

k(k+1)(k+2) .
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Random Apollonian networks

Corollary
For all possible degrees k

Pr
[
|Zk(t)− E [Zk(t)] | ≥ 10

√
t log t

]
= o(1).

Theorem ([Frieze and Tsourakakis, 2013])

The diameter d(Gt) of Gt satisfies asymptotically whp a

Pr [d(Gt) > 7.1 log t]→ 0

aAn event At holds with high probability (whp ) if lim
t→+∞

Pr [At ] = 1.
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Random Apollonian networks

key idea: establish a bijection with random ternary trees
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Random Apollonian networks
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Random Apollonian networks
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Random Apollonian networks
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Random Apollonian networks

Theorem ([Frieze and Tsourakakis, 2013])

Let ∆1 ≥ ∆2 ≥ . . . ≥ ∆k be the k highest degrees of the RAN
Gt at time t where k is a fixed positive integer. Also, let f (t)
be a function such that f (t)→ +∞ as t → +∞. Then whp

t1/2

f (t)
≤ ∆i ≤ t1/2f (t)

Theorem ([Frieze and Tsourakakis, 2013])

Let k be a fixed positive integer. Also, let λ1 ≥ λ2 ≥ . . . ≥ λk

be the largest k eigenvalues of the adjacency matrix of Gt .
Then whp λi = (1± o(1))

√
∆i .
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Triangle counting

Numerous applications involve triangle counting, see
[Tsourakakis, 2013] and references therein.

• Exponential random graphs generalize Erdős-Rényi
random graphs, e.g., Pr [G ] ∝ xm

1 x t
2 , where t is the

number of triangles, x1, x2 > 0 positive parameters.

• Clustering coefficients and transitivity of a graph

• Uncovering hidden thematic structure in the Web

• Spam detection

• Link recommendation

• Motif detection in biological networks

• Structural balance and status theory

• Microscopic evolution of networks

• Many more!
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Triangle sparsifiers

[Tsourakakis et al., 2011]

• Start with graph G ([n], E )

• Use sparsification parameter p

• Pick a random subset E ′ of edges such that the events
{e ∈ E ′}, for all e ∈ E are independent and the
probability of each is equal to p.

• t ′ ← count triangles on the graph G ′([n], E ′)

• Return T ← t′

p3

How small can p be?
Suppose G is an undirected graph with n vertices, m edges
and t triangles. Let also ∆ denote the size of the largest
collection of triangles with a common edge.
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Triangle sparsifiers

Theorem ([Tsourakakis et al., 2011])

Suppose that γ > 0 is a constant and

pt

∆
≥ log6+γ n, if p2∆ ≥ 1, (1)

and
p3t ≥ log6+γ n, if p2∆ < 1. (2)

for n ≥ n0 sufficiently large. Then

Pr [|T − E [T ] | ≥ εE [T ]] ≤ n−K

for any constants K , ε > 0 and all large enough n (depending
on K, ε and n0).
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Triangle sparsifiers

• Complexity Analysis: The expected running time of edge
sampling is O(pm). If we count in G ′ using a standard
listing triangle algorithm the expected running time is
O(pm + p2

∑
i d

2
i ).

• Expected Speedup is p−2.

• Example: For a graph G with t ≥ n3/2 and ∆ ∼ n , we
get p = n−1/2 implying O(n) expected speedup.

• In practice: Strongly concentrated estimates with an avg.
∼ 10 000× speedup (p = 0.01).
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Colorful triangle counting

Can we tighten the analysis and get a smaller p?
No! We need a different algorithm.
The following algorithm achieves optimal performance under
no further assumptions on the graph. Let the number of colors
be N = 1/p.
[Pagh and Tsourakakis, 2012]

• Let f : V → [N] have uniformly random values

• E ′ ← {{u, v} ∈ E | f (u) = f (v)}
• T ← number of triangles in the graph (V , E ′)

• return T/p2
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Colorful triangle counting

Theorem ([Pagh and Tsourakakis, 2012])

If p ≥ max (∆ log n
t

,
√

log n
t

), then T ∼ E [T ] with probability

1− o(1).

(a) (b)

Figure: Conditions of the Theorem are tight. In order to hope for
concentration p has to be greater than (a) ∆

t and (b) t−1/2.
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Counting triangles using matrix-vector

multiplications [Tsourakakis, 2008]

The number of triangles ti that vertex i participates in, can be
computed from the spectrum of the adjacency matrix

ti =
P

j λ3
j u

2
j,i

2
, and the total number of triangles just from the

eigenvalues t = 1
6

∑n
i=1 λ3

i .
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Discussion
• Both [Tsourakakis et al., 2011] and

[Pagh and Tsourakakis, 2012] are amenable to distributed
implementations (e.g., MapReduce).

• Also, have been adapted to the streaming models.

• A system built which can handle big graph data based on
the primitive “matrix-vector” multiplication in
MapReduce [Kang and Tsourakakis et al., 2009]

Open Source Software World Challenge, Silver Award and
officially included in Hadoop for Windows Azure for

Microsoft’s big data plans
http://www.cs.cmu.edu/∼pegasus/
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Balanced graph partitioning

• Graph has to be distributed across a cluster of machines

G = (V, E)

Sunday, August 4, 13

• graph partitioning is a way to split the graph vertices in
multiple machines

• graph partitioning objectives guarantee low
communication overhead among different machines

• additionally balanced partitioning is desirable

• each partition contains ≈ n/k vertices, where n, k are the
total number of vertices and machines respectively
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Off-line k-way graph partitioning

problem: minimize number of edges cut, subject to cluster
sizes being at most νn/k (bi-criteria approximations)

• ν = 2: Krauthgamer, Naor and Schwartz
[Krauthgamer et al., 2009] provide O(

√
log k log n)

approximation ratio based on the work of
Arora-Rao-Vazirani for the sparsest-cut problem (k = 2)
[Arora et al., 2009]

• ν = 1 + ε: Andreev and Räcke [Andreev and Räcke, 2006]
combine recursive partitioning and dynamic programming
to obtain O(ε−2 log1.5 n) approximation ratio.

Practice: METIS algorithm [Karypis and Kumar, 1998], not
well understood but performs well.
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Streaming k-way graph partitioning

• input is a data stream

• graph is ordered
• arbitrarily
• breadth-first search
• depth-first search

• generate an approximately balanced graph partitioning

graph stream
partitioner

⇥(n/k)
each partition
holds     
vertices

Monday, August 5, 13
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Graph representations

• incidence stream

• at time t, a vertex arrives with its neighbors

• adjacency stream

• at time t, an edge arrives
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Partitioning strategies

• hashing: place a new vertex to a cluster/machine chosen
uniformly at random

• neighbors heuristic: place a new vertex to the
cluster/machine with the maximum number of neighbors

• non-neighbors heuristic: place a new vertex to the
cluster/machine with the minimum number of
non-neighbors
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fennel algorithm [Tsourakakis et al., 2014]

The standard formulation hits the ARV barrier

minimize P=(S1,...,Sk ) |∂ e(P)|

subject to |Si | ≤ ν
n

k
, for all 1 ≤ i ≤ k

• We relax the hard cardinality constraints

minimize P=(S1,...,Sk ) |∂ E (P)|+ cIN(P)

where cIN(P) =
∑

i s(|Si |), so that objective self-balances
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fennel algorithm

• for S ⊆ V , f (S) = e[S ]− α|S |γ, with γ ≥ 1 (related to
optimal quasicliques [Tsourakakis et al., 2013])

• given partition P = (S1, . . . , Sk) of V in k parts define

g(P) = f (S1) + . . . + f (Sk)

• the goal: maximize g(P) over all possible k-partitions

• notice:
g(P) =

∑
i

e[Si ]︸ ︷︷ ︸
m−number of

edges cut

− α
∑

i

|Si |γ︸ ︷︷ ︸
minimized for

balanced partition!
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fennel algorithm — greedy scheme

graph stream
partitioner

⇥(n/k)
each partition
holds     
vertices

Monday, August 5, 13

• send v to the partition / machine that maximizes

f (Si ∪{v})− f (Si)

= e[Si ∪ {v}]− α(|Si |+ 1)γ − (e[Si ]− α|Si |γ)
= dSi

(v)− αO(|Si |γ−1)

• fast, amenable to streaming and distributed setting
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fennel algorithm
Theorem

• For γ = 2 there exists an approximation algorithm that
achieves an approximation factor log(k)/k

• random partitioning gives approximation factor 1/k

• no dependence on n

mainly because of relaxing the hard cardinality constraints

• γ = 2 gives non-neighbors heuristic

• γ = 1 gives neighbors heuristic

• interpolate between the two heuristics, e.g., γ = 1.5

• The algorithm can recover the true partitions under
various random graph models in sublinear time
[Tsourakakis, 2014] using higher length random walks.
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fennel algorithm — results
Twitter graph with approximately 1.5 billion edges, γ = 1.5

λ =
#{edges cut}

m
ρ = max

1≤i≤k

|Si |
n/k

Fennel Best competitor Hash Partition METIS
k λ ρ λ ρ λ ρ λ ρ
2 6.8% 1.1 34.3% 1.04 50% 1 11.98% 1.02
4 29% 1.1 55.0% 1.07 75% 1 24.39% 1.03
8 48% 1.1 66.4% 1.10 87.5% 1 35.96% 1.03

Table: Fraction of edges cut λ and the normalized maximum load
ρ for Fennel, the best competitor and hash partitioning of vertices
for the Twitter graph. Fennel and best competitor require around
40 minutes, METIS more than 81

2 hours.
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Rainbow connection

• Suppose we wish to route messages in a cellular network
G , between any two vertices in a pipeline, and require that
each link on the route between the vertices (namely, each
edge on the path) is assigned a distinct channel (e.g., a
distinct frequency). The minimum number of distinct
channels we need to use is the rainbow connectivity of G .
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Rainbow connection

• An edge colored graph G is rainbow edge connected iff
any two vertices are connected by a path whose edges
have distinct colors. The rainbow connectivity rc(G ) of a
connected graph G is the smallest number of colors that
are needed in order to make G rainbow edge connected.

• rc(G ) ≤ n − 1

• rc(G ) = n − 1 iff G is a tree

• rc(G ) = 1 iff G is the complete graph Kn

• rc(G ) ≤ n 4 log n+3
δ

[Caro et al., 2008]
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Rainbow connection of sparse random graphs

Let

L =
log n

log log n
(3)

and let A ∼ B denote A = (1 + o(1))B as n→∞.

Theorem ([Frieze and Tsourakakis, 2012a,
Frieze and Tsourakakis, 2012b])

Let G = G (n, p), p = log n+ω
n

, ω →∞, ω = o(log n). Also, let
Z1 be the number of vertices of degree 1 in G. Then, with
high probability(whp)

rc(G ) ∼ max{Z1, L},
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Rainbow connection of sparse random graphs
Let a vertex be large if deg(x) ≥ log n/100 and small
otherwise.
(Very) High-level sketch of the proof
To prove that this works, we have to find, for each pair of
large vertices x , y , a large collection of edge disjoint paths
joining them.
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Rainbow connection of sparse random graphs

Top-down coloring, think of it as an evolutionary process. We
show that there are many “alive” pairs.
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Rainbow connection of sparse random graphs
Taking care of small vertices.
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Rainbow connection of sparse random graphs

Also results for random regular graphs. Random coloring does
not work now!

Theorem ([Dudek Frieze Tsourakakis, 2013,
Frieze and Tsourakakis, 2012b])

Let G = G (n, r) be a random r-regular graph where r ≥ 3 is a
fixed integer. Then, whp

rc(G ) =

{
O(log4 n) r = 3

O(log n) r ≥ 4.
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Few open problems

• Random Apollonian networks: Conductance φ(G ). We
conjecture φ(G ) = Θ( 1√

n
) whp .

• Triangle counting: Same problem in other computational
models (I/O efficient).

• Rainbow connectivity: Random 3-regular graphs case
remains open. We conjecture rc(G ) = log n in this case
as well.

For more related open problems, see Chapter 13 in
[Tsourakakis, 2013].
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Research directions
• Modeling: How can the Internet and the power grid, two

highly engineered networks, be represented by the same
graph model of a social network? Narrow down the class
of networks of interest!

• Implications: Assume that a good model is available. Can
we use the special properties of this model to come up
with efficient algorithms for important graph-structured
computations? Can the analysis of certain random
processes create value out of data?

• Scalability: Algorithms and systems that allow us to
large-scale networks.

• Reconstruction problems: A lot of interest in cancer
phylogenetics.

Research goal: Develop principled approaches that create
value out of data based on well-founded mathematical,
statistical and algorithmic tools.
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thank you!
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Saramäki, J. and Kaski, K. (2004).

Scale-free networks generated by random walkers.

Physica A: Statistical Mechanics and its Applications, 341:80–86.

Tsourakakis, C., Kolountzakis, M., and Miller, G. (2011).

Triangle sparsifiers.

Journal of Graph Algorithms and Applications, 15(6).

C.E. Tsourakakis Mathematical Techniques for Modeling and Analyzing Large Graphs 62 / 64



references VI

Tsourakakis, C. E. (2008).

Fast counting of triangles in large real networks without counting:
Algorithms and laws.

In ICDM.

Tsourakakis, C. E. (2013).

Mathematical and Algorithmic Analysis of Network and Biological
Data.

PhD thesis, Carnegie Mellon University.

Tsourakakis, C. E. (2014).

Egypt: Efficient graph partitioning for large distributed graphs.

C.E. Tsourakakis Mathematical Techniques for Modeling and Analyzing Large Graphs 63 / 64



references VII

Tsourakakis, C. E., Bonchi, F., Gionis, A., Gullo, F., and Tsiarli,
M. A. (2013).

Denser than the densest subgraph: Extracting optimal quasi-cliques
with quality guarantees.

KDD.

Tsourakakis, C. E., Gkantsidis, C., Radunovic, B., and Vojnovic, M.
(2014).

FENNEL: Streaming graph partitioning for massive scale graphs.

In WSDM.

C.E. Tsourakakis Mathematical Techniques for Modeling and Analyzing Large Graphs 64 / 64


