21-111 Calculus I - Fall 2004

Review 3

November 12, 2004

1. A cylindrical can without top but with a bottom is made from $300 \pi i n^{2}$ of sheet metal. No sheet metal will be wasted. What is the greatest Volume of such a can? [Hint: Volume of a can=Area of circle * height of can]
2. A baseball team plays in a stadium that holds 55000 spectators. With ticket prizes at $\$ 10$, the average attendance had been 27000 . When ticket prizes were lowered to $\$ 8$, the average attendance rise to 33000 .
(a) Find the demand function assuming that it is linear.
(b) How should ticket prizes be set to maximize revenue?
3. A manufacturer has been selling 1000 television sets a week at $\$ 450$ each. A market survey indicates that for each rebate of $\$ 10$ offered to the buyer, the number of sets sold will increase by 100 per week.
(a) Find the demand function.
(b) How large a rebate should the company offer to maximize its revenue?
(c) If the weekly cost function is $C(x)=68,000+150 x$, how should the manufacturer set the size of the rebate in order to maximize profit?
4. A supermarket manager estimates that a total of 800 cases of soup will be sold at a steady rate during the coming year and it costs $\$ 4$ to store a case for a year. The average number of cases stored is $\frac{1}{2} x$ where x is the number cases per order placed. The cost per order will be $\$ 100$. What is the optimal reorder quantity that minimizes cost?
5. Differentiate the following functions:
(a) $f(x)=\left(x^{2}+3 x-1\right)^{3}\left(x^{3}-1\right)^{\frac{1}{2}}$
(b) $g(x)=\frac{3 x^{2}-x^{\frac{3}{2}}}{3 x^{2}-1}$
(c) $h(x)=\frac{\sqrt[3]{x^{4}-3 x^{2}}}{\sqrt{x-1}}$
6. Find two functions $g(x)$ and $h(x)$ such that the functions $f(x)$ below are $f(x)=g(h(x))$ and differentiate $f(x)$ using the chain rule:
(a) $f(x)=\sqrt{\frac{z-1}{z+1}}$
(b) $f(x)=\left(x^{2}+3 x-4\right)^{\frac{3}{4}}$
7. Differentiate $f(x)=(1+4 x)^{5}\left(3+x-x^{2}\right)^{8}$
8. Use implicit differentiation to find the slope of the equation $y^{4}+x^{2} y^{2}+x^{4}=y+1$.
9. What is the slope of the equation $x^{2}+2 x y-y^{2}+x=2$ at the point $(1,2)$?
10. A baseball diamond is a square with 90 ft sides. A batter hits the ball and runs toward first base with a speed of $24 \mathrm{ft} / \mathrm{s}$. [Hint: Think of the baseball diamond as a square with corners A, B, C and D. After hitting the ball, the runner runs from point A to point B (first base)]
(a) At what rate is his distance from second base (point C) decreasing when he is halfway to first base? [Hint: Draw a picture and then use Pythagoras theorem and related rates for both parts of the problem.]
(b) At what rate is his distance from third base (point D) pdflatexincreasing at the same moment?
11. A plane is flying horizontally at an altitude of 1 mile and at a speed of $500 \mathrm{mi} / \mathrm{h}$. Find the rate at which the distance of the plane to the radar station is increasing when it is 2 miles away from the station.
12. Write each of the functions as $e^{k x}$:
(a) $\left(\sqrt[3]{e^{-x} e^{5 x}}\right)^{3}$
(b) $\frac{e^{-\frac{1}{2}} e^{4 x}}{e^{2 x} e^{-\frac{3}{4}}}$
13. Differentiate the following functions:
(a) $e^{3 x^{2}-5 x+2}$
(b) $\left(1+2 x^{3}\right) e^{3 x}$
(c) $\sqrt{e^{-\frac{1}{2} x}+3 x^{4}}$
