21-111 Calculus I - Fall 2004

Review 1

September 20, 2004

- 1. Simplify the following leaving no complex fractions and negative exponents. Also simplify the radicals as far as possible.
 - (a) $\frac{x^{\frac{4}{3}}y^{\frac{2}{3}}}{(xy)^{\frac{1}{3}}}$ Solution: $xy^{\frac{1}{3}}$ (b) $\frac{\frac{y}{x} - \frac{x}{y}}{\frac{xy}{x+y}} - \frac{\frac{x-y}{x}}{\frac{y}{x+y}}$ Solution: $-(x^2 - y^2)\left(\frac{x+y+xy}{(xy)^2}\right)$ (c) $\frac{\frac{x}{y} + \frac{y}{xy}}{\frac{xy-x}{x} + \frac{x}{y}}$ Solution: $\frac{x^2+y}{xy^2-xy+x^2}$ (d) $\left(\frac{x^{-2}y}{16x^2y^2z^{-2}}\right)^{-\frac{3}{2}}$ Solution: $\frac{64x^6y^{\frac{3}{2}}}{z^3}$
- 2. Solve the following equations for x
 - (a) $\sqrt{x} 9 = 0$ Solution: x = 81
 - (b) $x 3\sqrt{x} + 2 = 0$ Solution: x = 1 and x = 4
 - (c) Changed slightly: $4x^2 + 16x + 3 = 0$ Solution: $x = -2 \pm \frac{1}{2}\sqrt{13}$
 - (d) $xyz 2 = z^2 + a$ Solution: $\frac{z^2 + a 2}{yz}$
 - (e) Slightly changed: $3x^3 x^2 6x + 2 = 0$ Solution: $x = \pm \sqrt{2}$ and $x = \frac{1}{3}$

(f)
$$\frac{1}{x-1} + \frac{1}{x+1} = \frac{3}{x^2-1}$$
 Solution: $x = \frac{3}{2}$

- (c) x-1 x+1 x^2-1 (g) $2x^3+3x^2-3x-2=0$ Solution: x=1, x=-2 or $x=-\frac{1}{2}$
 - 1

3. Let $f(x) = \frac{1}{1+x}$ for $x \neq -1$ and let $g(x) = \frac{3x}{1+x^2}$ for x > 1. Find the functions h(x) and their domains:

(a)
$$h(x) = f(x) + g(x)$$
Solution: $h(x) = \frac{4x^2 + 3x + 1}{(1+x)(1+x^2)}$ for $x > 1$

- (b) $h(x) = \frac{f(x)}{g(x)}$ Solution:: $h(x) = \frac{1+x^2}{(3x+3x^2)}$ for x > 1
- (c) $f \circ g$ Solution: $h(x) = \frac{1+x^2}{1+x^2+3x}$ for x > 1 and $x \neq \frac{3+\sqrt{5}}{2}$
- (d) Slighly changed: g(f(x)) Solution: $h(x) = \frac{3+3x}{x^2+2x+2}$, but as we need f(x) > 1 (as domain of g is x > 1) we get -1 < x < 0 as the domain (Note that for all other values for x, f(x) < 1)
- 4. It costs a company \$ 70 to produce a product. The fixed costs of production are \$ 1000. The revenue of the company is $R(x) = x^2 750x + 1000$ for x items sold.
 - (a) Find the cost to produce x items. Find out how many items the company has to produce and sell to come out even.
 Solution:C(x) = 70x + 1000, Profit(x) = x² 820x = 0 for x = 0 and x = 820
 - (b) The company produces P(t) = 4t products per hour. Find the function representing the profit made by the company after producing for t hours. What is the initial cost and what time is needed to have no loss.

Solution: $Profit(P(t)) = 16t^2 - 3280t$ so there is no initial cost and the company needs to produce and sell for 205 hours.

5. Find the zeros of $f(x) = x^3 - x^2 - 3x + 3$ and $g(x) = \frac{|x^2 - 3|}{2x}$.

Solution: The zeros of f(x) are $x = \pm \sqrt{3}$ and x = 1 and the zeros of g(x) are $x = \pm \sqrt{3}$.

6. A family starts a college fund for their kids by putting \$ 10,000 into an account for three years running. The account has 4% interest per year compunded quarterly. How much does the family have after 18 years. [Hint: $(1.01)^{72} \approx 2.0471, (1.01)^{68} \approx 1.9672$, and $(1.01)^{64} \approx 1.8905$]

Solution:\$ 59,048