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Résumé en français de la thèse

Mon travail se concentre sur une notion de dynamique des groupes topologiques
qui spécialise la notion de moyennabilité, appelée unique ergodicité, et qui
se définit comme suit :

Définition 1. Un groupe G est dit uniquement ergodique si tout G-flot G y
X minimal est le support d’une unique mesure invariante.

Ci-dessus, un flot est une action continue d’un groupe topologique sur un
espace compact. Un flot est dit minimal lorsque l’orbite de chaque point est
dense. De manière équivalente, un flot est minimal lorsqu’il n’admet pas de
sous-flot propre. On peut facilement prouver, à l’aide du Lemme de Zorn,
que tout flot admet un sous-flot minimal.

Il est à noter que la notion d’unique ergodicité se réfère généralement
à une action plutôt qu’à un groupe. Une action est uniquement ergodique
lorsqu’elle n’admet qu’une mesure invariante.

Pour des exemples de groupes uniquement ergodiques, on peut tout
d’abord se tourner vers les groupes compacts : en utilisant l’unicité la mesure
de Haar, on peut facilement montrer que tous les groupes compacts sont
uniquement ergodiques. En revanche, lorsqu’on s’intéresse aux groupes
polonais localement compacts mais non-compacts, la situation change rad-
icalement :

Théorème 1. [JZ2] Les groupes polonais localement compacts non-compacts
ne sont jamais uniquement ergodiques.

Ce théorème est un des principaux résultats du Chapitre 6. Trouver des
groupes uniquement ergodiques intéressants nécessite donc de se tourner
vers des groupes plus gros, c’est-à-dire non-localement compacts. Le pre-
mier exemple d’un tel groupe est dû à Glasner et Weiss en 2002, il s’agit de
S∞, le groupe de permutations des entiers, muni de la topologie de conver-
gence simple. C’est ensuite en 2012 qu’Angel, Kechris et Lyons montrent que
plusieurs sous-groupes fermés de S∞ possèdent également cette propriété.
Leur méthode, qui est essentiellement de nature combinatoire, s’appuie large-
ment sur le fait que les sous-groupes fermés de S∞ peuvent être réalisés en
tant que groupes d’automorphismes de certaines structures dénombrables
dites homogènes, où tout isomorphisme entre sous-structures finies peut être
étendu en un automorphisme global.
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L’approche d’Angel, Kechris et Lyons repose également sur l’étude d’un
flot particulier : le flot minimal universel d’un groupe. Ellis a montré en
1966 que tout groupe topologique G admet un unique flot minimal universel
M(G), c’est-à-dire un flot minimal qui se surjecte de manière G-équivariante
sur tout autre flot minimal.

Angel, Kechris et Lyons ont démontré une caractérisation utile de l’unique
ergodicité:

Théorème 2. [AKL] Un groupe G est uniquement ergodique ssi G y M(G)
n’a qu’une seule mesure invariante.

Ce théorème est aussi la base de mes travaux : à l’aide d’une description
efficace du flot minimal universel, on peut obtenir des résultats d’unique
ergodicité. Le premier exemple d’un tel résultat se trouve dans le chapitre 3 :

Théorème 3 ([JZ2]). Soit H, K, G des groupes polonais tels que

1→ H → G π−→ K → 1

est une suite exacte.
Si M(H) et M(K) sont métrisables, alors M(G) l’est aussi. Si de plus H et

K sont uniquement ergodiques, G l’est aussi.

Le chapitre 4 quant à lui s’intéresse aux mesures invariantes de certaines
actions de groupes d’automorphismes de structures homogènes. On y mon-
tre en particulier le résultat suivant:

Théorème 4 ([JT]). Soit F une structure homogène ℵ0-catégorique, éliminant
faiblement les imaginaires, sans algébricité et transitive. L’une des deux con-
clusions suivantes est vraie:

1) F admet un ordre définissable.

2) Aut(F)y LO(F) est uniquement ergodique.

Ce théorème a plusieurs implications intéressantes, il permet entre autres
de retrouver de nombreux résultats d’unique ergodicité de groupes (et en
donne de nouveaux). Il permet aussi de montrer que certains groupes ne sont
pas moyennables, ou encore de faire apparaître des propriétés combinatoires
dans certains cas.

Enfin les chapitres 2 et 5 s’intéressent chacun à l’étude de l’unique ergod-
icité de groupes d’automorphismes de structures bien particulières.

Le chapitre 2 s’intéresse au 2-graphe, un hypergraphe aux propriétés com-
binatoires particulières, qui rendent le flot minimal universel de son groupe
d’automorphismes singulier parmi les flots minimaux universels connus. Je
présente dans ce chapitre la méthode combinatoire d’Angel, Kechris et Lyons
pour prouver l’unique ergodicité. Le lecteur trouvera une autre preuve, celle-
ci dynamique, à la fin du chapitre 4.

Enfin le chapitre 5 traite l’unique ergodicité du groupe d’automorphismes
du graphe semigénérique. Il s’agit du premier de mes résultats de thèse et
repose sur une étude dynamique et combinatoire du graphe semigénérique,
pour laquelle la méthode d’Angel, Kechris et Lyons ne s’applique pas, et où
il a donc fallu développer une stratégie nouvelle.
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CHAPTER 1

Introduction - A love story of combinatorics and dynamics

1.1 Dynamics of groups

The work presented in this thesis is at the intersection of dynamics, probabil-
ity and model theory. It focuses on a specialization of the notion of amenabil-
ity for topological groups: unique ergodicity. This notion was introduced by
Angel, Kechris and Lyons in [AKL], though the notion of a uniquely ergodic
action has been around for much longer.

A topological group is a group together with a topology such that the
product and inverse operations are continuous. If the topology is separable
and completely metrizable, then the group is said to be Polish.

An action of a group G on a set X is a map a : G× X → X such that

a(h, a(g, x)) = a(hg, x).

An action of a topological group G on a topological space X is continuous
if the map G×X → X is. Generally, we will not explicitly write a but instead
G y X to mean that there is an action. Moreover, we write g · x instead of
a(g, x).

A G-map is a map φ : X → Y where G y X and G y Y, and such that for
all x ∈ X, g ∈ G,

φ(g · x) = g · φ(x).

A G-flow is a continuous action of a topological group G on a compact
space. An invariant measure on a flow G y X is a Borel measure µ on X
such that for all g ∈ G and A ⊂ X measurable, µ(g · A) = µ(A). Given a
group G, we talk about G-flows, G-invariance, etc. . . to refer to actions of G.

From this point on, unless specified otherwise, all the measures will be
assumed to be Borel probability measures.

Let G be a topological group. A G-flow is said to be minimal if every orbit
is dense. This is equivalent to saying that the flow admits no proper subflow,
i.e. a closed subset invariant by the action. Using Zorn’s Lemma, one can
prove that any G-flow admits a minimal subflow.
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In studying actions of groups, a natural class of groups that are well-
behaved appears: amenable groups.

Definition 1.1.1. A topological group G is said to be amenable if every G-flow
admits an invariant measure.

Examples of amenable groups include the group of permutations of N

equiped with the pointwise convergence topology, that we denote by S∞, but
also Zn for all n ∈ N. All compact groups are also amenable. We will see
more complicated examples later in this chapter. As an historical side note,
this notion was introduced by Von Neumann, under a different name in [VN],
with a very different characterization. His definition applies to finitely gener-
ated groups whereas the above definition has the benefit of being applicable
to all topological groups.

A very important specialization of this notion is extreme amenability.

Definition 1.1.2. A topological group G is said to be extremely amenable if
every G-flow admits a fixed point.

Another characterization would be that all minimal G-flows of an ex-
tremely amenable group G are trivial, that is, reduced to a singleton. More-
over, extremely amenable groups are indeed amenable, since the Dirac mass
at a fixed point is an invariant measure. Later in this section we will see
a very powerful way to prove the extreme amenability of some groups by
connecting it to combinatorial properties.

Another strengthening of amenability and the key notion in this thesis is
unique ergodicity.

Definition 1.1.3. A Polish group G is said to be uniquely ergodic if every
minimal G-flow admits a unique G-invariant measure.

The expression uniquely ergodic usually refers to an action. An action
is uniquely ergodic if it admits a unique invariant measure. This name is
particularly well-chosen because of the following definition and theorem.

Definition 1.1.4. Let G be a Polish group acting continuously on a compact
space X. A G-invariant measure ν is said to be G-ergodic if for all A ⊂ X
measurable such that

∀g ∈ G, ν(A4g · A) = 0,

we have ν(A) ∈ {0, 1}.

We can now state the following (see [P3] Proposition 12.4):

Theorem 1.1.5. Let G be a Polish group acting continuously on a compact space X.
Let PG(X) denote the convex compact space of G-invariant measures on X. Then the
extreme points of PG(X) are the G-ergodic invariant measures.

This implies in particular that if an action has a unique invariant measure,
it is necessarily ergodic.

Since the above defined notions require to work with all minimal flows in
some sense, the following object can be very helpful when trying to under-
stand them.

A famous theorem of Ellis [E2] states that any topological group G admits
a unique universal minimal flow (UMF) that we denote by M(G). This means
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that for any minimal G-flow X there is a surjective G-map from M(G) to X.
A proof of this theorem can be found in Chapter 3, Section 3.2.

It is easy to check that a characterization of amenability can now be stated
as G is amenable iff G y M(G) admits an invariant measure. Similarily, G is
extremely amenable iff M(G) is reduced to a singleton.

The characterization for unique ergodicity is not quite as easy to prove,
however in [AKL] Theorem 8.1, the authors prove:

Proposition 1.1.6. A Polish group G is uniquely ergodic iff G y M(G) admits a
unique invariant measure.

This characterization, however, leaves one big gap: can we describe the
UMF of a group? In the next few paragraphs, we will try to answer this
question as precisely as we can.

Let us first take a step back and observe that a compact group is its own
UMF when considering the action of the group on itself via left-multiplication.
Moreover, by existence of the Haar measure ([H1]), they are always amenable.
By uniqueness of the Haar measure, they are always uniquely ergodic.

If we look at locally compact non-compact Polish groups, their UMFs are
never metrizable (see [KPT] Appendix 2). Some are amenable (Z for instance)
while some are not (free groups for instance). As for unique ergodicity, Andy
Zucker and I proved:

Theorem 1.1.7. Locally compact non-compact Polish group are never uniquely er-
godic.

This result is one of the main theorems of Chapter 6.
The main object of study in this thesis is therefore a class of non-locally

compact groups coming from model theory, whose UMFs are metrizable and
can be used to study amenability and unique ergodicity.

We are going to construct flows using closed subgroups of G. If G∗ is
a closed subgroup of G, then the space G/G∗ has a natural uniformity and
therefore admits a completion.

The uniformity of G/G∗ is defined by entourages of the form UV where
V ⊂ G is a neighbourhood of the identity and

UV = {(gG∗, vgG∗) : v ∈ V}.

This is compatible with the topology given by the quotient metric:

dG/G∗(hG∗, h′G∗) = inf
g∗∈G∗

dG(hg∗, h′),

where dG is a right-invariant metric on G, which exists because G is Polish.
Therefore, we can complete G/G∗ and we denote by Ĝ/G∗ its completion.
Note that G/G∗ is dense in Ĝ/G∗. For more details on completion of uniform
spaces, see [AFP, Section 12]. If G∗ a closed subgroup of G, it is called
coprecompact if Ĝ/G∗ is compact.

1.2 Towards computing UMFs - The Kechris-Pestov-
Todorcevic correspondence

In 2005, Kechris, Pestov and Todorcevic found a way to connect extreme
amenability to a combinatorial property called the Ramsey Property. This
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was an outstanding development in the understanding of universal minimal
flows. The aim of this section is to describe how this correspondence is used
in dynamics. We will need some background in model theory.

A relational countable language L is a countable collection of symbols
(relations), to each of which is associated a positive natural number, that we
call its arity. A structure M in a language L is a domain, that we denote
by Dom(M), and an interpretation of the symbols in L, i.e. to each relation
R ∈ L of arity r is associated a subset of Dom(M)r, that corresponds to the
elements verifying the relation. For a structure M and R a symbol of arity r
in its language, we write RM(x1, . . . , xr) to mean that (x1, . . . , xr) verifies R in
M. For a given structure, we call its signature the language it is expressed in.
Usually, our countable structure will be assumed to have domain N. Equality
is always assumed to be in the language and to be interpreted as the usual
identification. We will not write equality when we describe a language.

Remark that if L = (Ri)i∈I for some I, a L-structure M can be interpreted
as an element m of ∏i∈I{0, 1}Nri where ri is the arity of Ri. The identification
goes as follows:

∀x1, . . . , xri ∈N, RM
i (x1, . . . , xri ) ⇔ mi(x1, . . . , xri ) = 1.

This identification gives us a natural topology for the space of L-structures,
as a subspace of a compact space.

A substructure of a given structure A is a structure whose domain is
included in Dom(A) and the relations are the relations induced by restriction.
An embedding from a structure A into a structure B in the same language L

is a map f from Dom(A) to Dom(B) such that for any R ∈ L with arity r and
x1, . . . , xr ∈ Dom(A), we have RA(x1, . . . , xr)⇔ RB( f (x1), . . . , f (xr)). If there
is such an f , it needs to be injective. If there is such a map that is bijective,
we say that A and B are isomorphic. If it is a bijection and A = B, we call it
an automorphism of A.

A class F of finite structures is a Fraïssé class if it contains structures of
arbitrarily large (finite) cardinality and satisfies the following:

i) (Hereditary Property) If A ∈ F and B is a substructure of A, then B ∈ F.

ii) (Joint Embedding Property) If A, B ∈ F then there exists C ∈ F such
that A and B can be embedded in C.

iii) (Amalgamation Property) If A, B, C ∈ F and f : A → B, g : A → C
are embeddings, then there exists D ∈ F and h : B → D, l : C → D
embeddings such that h ◦ f = l ◦ g.

A Fraïssé class F admits a Fraïssé limit which is a countable structure
whose age, i.e. the set of its finite substructures up to isomorphism, is F.
Fraïssé limits are homogeneous, i.e. any isomorphism between two finite sub-
structures of the structure can be extended to an automorphism of the struc-
ture. The Fraïssé limit of a Fraïssé class is unique up to isomorphism. For
more details on Fraïssé classes see [H2].

We now give a list of examples of Fraïssé classes and their limits that will
be touched upon in the rest of the thesis.

Examples. 1) In the empty language, we have the class of finite sets. Its limit is
just a countable set, we denote it by N. Its automorphism group is denoted by
S∞.
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2) In the language {E} of arity 2, we have the class of finite graphs where E is
interpreted as the edge relation. The limit, that we denote by R, is known as
the random graph. This is because if we take a countable number of vertices
and put an edge between two vertices with probability 1/2 independently for
each pair of vertices, we almost surely obtain a structure isomorphic to R.

3) In the language {≤}, we have the class of finite linear orderings. Its limit is
the only countable dense ordering without endpoints, an ordering isomorphic
to (Q,≤). Its automorphism group is usually written Aut(Q).

4) In the language {≤} we have the class of finite partial orderings, and its limit
is known as the generic poset.

5) In the language {dq}q∈Q where all the relations are of arity 2, we have the class
of finite metric spaces where dq(x, y) is interpreted as x and y are at distance
q. The limit of this class is known as the rational Uryshon space.

6) In the language {→}, we have the class of finite tournaments. Its limit is
called the generic tournament.

Two more examples of Fraïssé limits, the 2-graph and the semigeneric
directed graph, are described in Chapter 2 and 5 respectively.

It is also important to note that automorphism groups of Fraïssé limits
correspond exactly to closed subgroups of S∞ (see [KPT] Section 2 and [H2]
Theorem 4.1.4), the permutation group of N. This is especially important
because it means that any action of S∞ on a space induces an action of Aut(F)
for all Fraïssé limits F. Similarly, an S∞-invariant measure on a space is also
a Aut(F)-invariant measure on the same space. Note that neither ergodicity
nor minimality of an action necessarily pass to the action of a subgroup.

The rest of this section is dedicated to the study of Aut(F)-flows and how
to compute the UMF of some groups.

1.2.1 Flows and expansions

Consider two languages L ⊂ L∗ and A a L∗-structure. By A|L, we mean the
L-structure that has domain Dom(A) and such that for all R ∈ L of arity r
and a1, . . . , ar ∈ Dom(A)r, we have

RA|L(a1, . . . , ar)⇔ RA(a1, . . . , ar).

Let us take F and F∗ two Fraïssé limits corresponding to the Fraïssé
classes F and F∗ respectively. We denote by L and L∗ the signatures of F

and F∗ and assume that L ⊂ L∗. We say that F∗ is an expansion of F if
F∗|L := {A|L : A ∈ F∗} is exactly F. For a given stucture A ∈ F, we write
F∗(A) for all B ∈ F∗ such that B|L = A.

If we write L∗ = L ∪ {Ri}i∈I for some set I and G = Aut(F), then we
have F∗ = (F, (R∗i ))i∈I and an action G y G · (R∗i )i∈I , where the closure is
taken in ∏i∈I{0, 1}Nri where ri is the arity of Ri.

Remark that, if we write G∗ = Aut(F∗), which is the same as saying that
G∗ ≤ G and G∗ stabilizes (R∗i )i∈I , then not only G∗ is a closed subgroup of
G, but we can also identify G/G∗ with G · (R∗i )i∈I . Indeed, we can consider
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the continuous map

G/G∗ → G · (R∗i )i∈I

gG∗ 7→ g · (R∗i )i∈I .

If G∗ is coprecompact, i.e. Ĝ/G∗ is compact, then the uniformities of the
two spaces G/G∗ and G · (R∗i )i∈I coincide and we can identify Ĝ/G∗ and
G · (R∗i )i∈I . In this case we say that F∗ is a precompact expansion of F. There
is a combinatorial characterization for precompactness: F∗ is a precompact
expansion of F if for all A ∈ F there are finitely many A′ ∈ F∗ such that
A′|L = A. See [N] for more details on this identification.

Let us take A ⊂ F finite and A∗ ∈ F∗(A), then we define

UA,A∗ = {E ∈ G · (R∗i )i∈I : E|A ' A∗}.
This family of sets, where A ranges over finite substructures of F and A∗

ranges over F∗(A), is a clopen basis for the topology of the space G · (R∗i )i∈I .
This will allow us to work with a large class of flows that we further

characterize in the rest of this section.

1.2.2 Universality of a flow

Consider F a Fraïssé class. For A, B ∈ F we call (B
A) the space of embeddings

of A into B. We say that F has the Ramsey property if for all A, B ∈ F and
k ∈N, there exists C ∈ F such that (C

A) and for any map γ : (C
A)→ {1, . . . , k},

there is B0 a substructure of C isomorphic to B such that the restriction map
of γ to (B0

A ) is constant.

Theorem 1.2.1. [KPT] Let F be a Fraïssé limit. Aut(F) is extremely amenable iff
Age(F) has the Ramsey property.

The following proposition allows us to connect extreme amenability and
universality.

Proposition 1.2.2 ([N]). Let G be a Polish group that admits an extremely amenable
coprecompact subgroup G∗. The flow Ĝ/G∗ is universal, in the sense that there is a
G-map φ̂ from Ĝ/G∗ to any G-flow. Moreover, if the flow is minimal, then φ̂ is also
surjective.

Proof. Let G y X be a G-flow. Choose x ∈ X a point fixed by G∗ (which
exists by extreme amenability) and consider the map

φ : G/G∗ → X
gG∗ 7→ g · x.

This map is well-defined because x is fixed by G∗ and g · x only depends
on the class of g when taking the quotient. φ is also a uniformly continuous
G-map because the action is continuous on a compact and G/G∗ is precom-
pact.

Since G/G∗ is dense in Ĝ/G∗, we can continuously extend φ to Ĝ/G∗ and
we call φ̂ the map thus obtained.

Finally, if G y X is minimal, then the G-orbit of x is dense. Moreover,
the G-orbit of x is equal to the image of φ. Therefore the image of φ is dense,
therefore the image of φ̂ is X.
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1.2.3 Minimality of a flow

Let us first look at an important G-flow when G is the automorphism group
of a Fraïssé limit. Given a structure A we denote by LO(A) the space of
linear orderings of the domain of A. If we take F a Fraïssé limit and G its
automorphism group, then G y LO(F). This action can be described as
follows: for all a, b ∈ F, g ∈ G and <∈ LO(F),

a(g· <)b⇔ g−1a < g−1b.

The minimality of G y LO(F) was first characterised by Kechris, Pestov
and Todorcevic in [KPT] as being equivalent to F having the ordering prop-
erty, i.e. for every A ∈ F, there exists B ∈ F such that for any two linear
orders < and <′ on A and B respectively, there is an embedding of (A,<)
into (B,<′).

More generally, we want to talk about the expansion property. We say that
F has the expansion property with respect to F∗ if for all A ∈ F there is a
B ∈ F such that for all A′ ∈ F∗ and B′ ∈ F∗ such that A′|L = A and B′|L = B,
A′ embeds into B′.

Proposition 1.2.3 ([P2]). The flow G y G · (R∗i )i∈I is minimal iff Age(F) has the
expansion property with respect to Age(F∗).

For more details, see [N].

1.2.4 The Kechris-Pestov-Todorcevic correspondence

We can now combine all the above theorems to have a sufficient condition to
compute the UMF of an automorphism group. This was actually proven to be
the only possible setup where the universal minimal flow of G is metrizable.

Theorem 1.2.4 ([MNT],[BMT],[Z1]). Let G be a Polish group. G has metrizable
UMF iff there exists G∗ ≤ G extremely amenable such that

M(G) = Ĝ/G∗.

This theorem translates in terms of Fraïssé limits.

Theorem 1.2.5. Let F be a Fraïssé limit. Aut(F) has metrizable UMF iff F admits
a precompact expansion F∗ = (F, (R∗i )i∈I) such that F∗ has the Ramsey property
and Age(F) has the expansion property with respect to Age(F∗). In this case,

M(Aut(F)) = Aut(F)y Aut(F) · (R∗i )i∈I .

To conclude this subsection, let us present the UMF associated to some
automorphism groups.

Fraïssé class UMF of Aut(F)
Finite sets (no relation) Linear orderings

Finite graphs Linear orderings
Finite metric spaces with Convex linear

distances 0, 1 and 3 orderings
Finite partial orderings Linear orderings extending

the generic poset
Finite directed graphs Linear orderings

We will see in chapters 2 and 5 two examples of more complex UMFs for
the 2-graph and the semigeneric directed graph respectively.
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1.3 Unique ergodicity

Now that we have set up our framework, we can start the study of some
uniquely ergodic groups.

A famous unique ergodicity result is due to Angel, Kechris and Lyons
and if one denotes by R the Rado graph (the Fraïssé limit of finite graphs) it
states:

Theorem 1.3.1. [AKL] Aut(R) is uniquely ergodic.

In the same paper, they ask the following question which guided my
work:

Question 1.3.2. Let G be an amenable Polish group with metrizable universal min-
imal flow. Is G uniquely ergodic?

Angel, Kechris and Lyons also provide a proof of unique ergodicity for
the Fraïssé limit of graphs, Kn-free graphs for n ∈ N, metric spaces and
r-uniform hypergraphs.

In [PS], using methods from [AKL], Pawliuk and Sokić extended the cat-
alogue of uniquely ergodic automorphism groups with the automorphism
groups of homogeneous directed graphs, which were all classified by Cher-
lin (see [C2]), leaving as an open question only the case of the semigeneric
directed graph. This case is dealt with in Chapter 5 of this thesis.

We quickly explain the general ideas behind their proof here. A similar
proof can be found in Chapter 2.

Rather that proving directly unique ergodicity, they prove that some Fraïssé
classes have the Quantitative Ordering Property and show that this is equiv-
alent to unique ergodicity of the automorphism group of the Fraïssé limit.

Definition 1.3.3. Let F be a Fraïssé class. We say that F has the Quantitative
Ordering Property if for all A ∈ F and ε > 0 there is B ∈ F in which A
embeds and E ⊂ Emb(A, B) such that for any <A∈ LO(A) and <B∈ LO(B)
we have ∣∣∣∣ |Emb((A,<A), (B,<B)) ∩ E|

|E| − 1
|LO(A)|

∣∣∣∣ ≤ ε.

The proof of Quantitative Ordering Property for finite graphs by Angel,
Kechris and Lyons relies on taking a random graph G similar to the random
graph but on finitely many edges and using the McDiarmid inequality (see
[M2]) to prove that with high probability it verifies the conditions of Quanti-
tative Ordering Property for a given graph H.

1.3.1 Amenability of automorphism groups

We will need to define measures on various spaces. Fortunately, we have a
very powerful tool for that: Carathéodory’s extension Theorem. We state it
as it is stated in [K1] where it is Theorem A1.1. A field A in a set S is a family
of subsets of S stable by finite intersection and complementation and that
contains S. A measure on A is a finitely additive function µ : A→ [0, 1], such
that µ(S) = 1 and if (Ai)i∈N is a decreasing family with empty intersection,
then µ(An)→n 0.

Theorem 1.3.4 (Carathéodory’s extension). Any measure on a field A can be
extended to a unique measure on the σ-field generated by A.
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Let us see how we use this theorem in our context.
Let F and F∗ = (F, (R∗i )i∈I) be two Fraïssé limits such that F∗ is an

expansion of F with the expansion property. We denote by G and G∗ the
respective automorphism groups of F and F∗. We give a criterion to define a
measure on G · (R∗i )i∈I . We denote by F and F∗ the respective ages of F and
F∗. Recall that we have a clopen basis for G · (R∗i )i∈I given by,

UA,A∗ = {E ∈ G · (R∗i )i∈I : E|A ' A∗},

for A ⊂ F finite and A∗ ∈ F∗(A).
We denote by U the family UA,A∗ where A and A∗ vary over the finite sub-

structures of F and F∗(A). Remark that the σ-field generated by this family
is the Borel σ-field on Ĝ/G∗. To use Theorem 1.3.4, we would also need to
know that this family is stable under intersection, unfortunately this is not
the case. However, the intersection of two sets in U is actually a disjoint union
of sets in U. Therefore if we consider U′ the collection of finite intersections
of elements of U, by Theorem 1.3.4, a measure on U extends to a measure on
the Borel sets of Ĝ/G∗. Therefore, if a measure on U extends to a measure on
U′, then it extends to the Borel σ-field on Ĝ/G∗. We use this to get:

Theorem 1.3.5. The following conditions are sufficient for a measure µ : U→ [0, 1]
to be extendable to a unique measure:

1) For all A ∈ F, ∑A∗∈F∗(A) µ(UA,A∗) = 1.

2) For all A, A∗ and B whose domain has one more point than A, we have

µ(UA,A∗) = ∑
{B∗ : A∗=B∗|A}

µ(UB,B∗).

Note that the condition for decreasing families with empty intersection is
always satisfied because of Cantor’s intersection theorem.

This theorem means in particular that a measure on Ĝ/G∗ is entirely
determined by its values on the family of clopen sets generating the topology.

Corollary 1.3.6. Using the same notations as above, if we now assume that the
number of expansions in F∗ of a given A ∈ F only depends on the size of A, then
the action G y Ĝ/G∗ admits an invariant measure defined as:

µ(UA,A∗) =
1

|F∗(A)| .

This result is Theorem 4.1 in [PS].

1.4 Summary of the chapters

The chapters of this thesis are independent and can be read in any order. For
the sake of clarity and independence, some notions may be defined several
times in different chapters. Except for Chapter 2, all chapters follow closely
submitted or accepted papers.

11



1.4.1 Getting started on an example: the 2-graph

This is a short chapter that aims at presenting in more details the ideas
present in [AKL] and [PS]. The main idea is to present a Fraïssé class whose
automorphism group has an interesting UMF. We present the work of [EHKN]
who considered this example for the first time. We show that the automor-
phism group of this structure is uniquely ergodic, using the method from
[AKL]

Note that this connects to Chapter 4, where the last subsection is devoted
to proving unique ergodicity of the automorphism group of this structure
using tools from this chapter.

1.4.2 Structure of M(G) and unique ergodicity for group ex-
tensions

Let G be a Polish group, and suppose H ⊆ G is a closed, normal subgroup.
Setting K = G/H, we have that K is also a Polish group, and the quotient
map π : G → K is a continuous, open homomorphism. In this setting, we say
that G is an extension of H by K. This is the same as saying that

1→ H → G π−→ K → 1

is a short exact sequence. In this setting, there is a natural G-map from M(G)
to M(K) because M(K) is a minimal G-flow. With Andy Zucker, we proved
that:

Theorem 1.4.1. [JZ2] If M(H) and M(K) are metrizable, then so is M(G). Fur-
thermore, letting π : M(G) → M(K) be the natural map, we have that π−1({y})
is a minimal H-flow for every y ∈ M(K). Moreover, if both H and K are uniquely
ergodic, then G is also uniquely ergodic.

This result was already known for semidirect products due to Pawliuk
and Sokic in [PS].

1.4.3 Unique ergodicity of the action on the space of linear
orderings

The results in this chapter take a different approach to unique ergodicity.
Rather than looking at the universal minimal flow of a given group, we look
at specific actions and study their possible invariant probability measures.

For a homogeneous structure F there are two Aut(F)-flows we study.

1) Aut(F)y [0, 1]F by permuting the coordinates.
This flow always admits some invariant probability measures of the
form νF for some probability measure ν on [0, 1].

2) If we denote by LO(F) for the space of linear orderings of F, there is an
action of Aut(F) on LO(F) , defined as

a(g· <)b⇔ g−1a < g−1b.

This flow always admits an invariant measure µ called the uniform
measure that is such that for all pairwise different a1, . . . , an ∈ F, we
have

µ(a1 < . . . < an) =
1
n!

.
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The aim of this chapter is to present a class of structures for which the
above invariant measures are the only ones for these flows.

We define here the model-theoretic assumptions that we will need to ex-
press the theorems. The definitions here are given from a permutation group
perspective and may require some work to prove that they are equivalent
their original formulation. Let F be a Fraïssé limit, we say that:

1) F has no algebraicity if for any tuple a ∈ F, for any x /∈ a, Ga · x is
infinite, where Ga denotes the stabilizer of a for the action Aut(F)y F.

2) F is ℵ0-categorical if for all n ∈N, G y Fn has finitely many orbits.

3) F has weak elimination of imaginaries if for every proper, open sub-
group V < Aut(F), there exists k and a tuple ā ∈ Mk such that Ga ≤ V
and [V : Gā] < ∞.

4) F is said to be transitive if for any a, b ∈ F, there is g ∈ Aut(F) such
that g(a) = b.

Theorem 1.4.2, which I used in the proof of Theorem 1.4.3, first appeared
in [T2].

Theorem 1.4.2. [JT] Let F be an ℵ0-categorical, transitive structure with no al-
gebraicity that admits weak elimination of imaginaries. Let Z be a standard Borel
space and consider the natural action Aut(F) y ZF. Then the only invariant, er-
godic probability measures on ZF are product measures of the form λF, where λ is a
probability measure on Z.

Theorem 1.4.3. [JT] Let F be a transitive, ℵ0-categorical structure with no alge-
braicity that admits weak elimination of imaginaries. Consider the action Aut(F)y
LO(F). Then exactly one of the following holds:

1. The action Aut(F)y LO(F) has a fixed point (i.e., there is a definable linear
order on F);

2. The action Aut(F)y LO(F) is uniquely ergodic.

One motivation for this result is that in many cases, LO(F) is the universal
minimal flow of the group. I hope that this will lead to a better understanding
for the more general Question 1.3.2.

Many previously known examples of uniquely ergodic groups fall under
the scope of this theorem. Moreover, we get some interesting consequences,
for instance the following non-amenability result.

Corollary 1.4.4. Suppose that F satisfies the assumptions of Theorem 1.4.3 and let
G = Aut(F). If the action G y LO(F) is not minimal and has no fixed points,
then G is not amenable.

Finally, a new subsection is present in this thesis and not in the associated
paper: the proof that the automorphism group of the 2-graph is uniquely
ergodic using a dynamical proof. This connects to Chapter 2.
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1.4.4 The case of the semigeneric directed graph

Using a classification of homogeneous directed graphs by Cherlin ([C2]) and
methods from [AKL], Pawliuk and Sokić were able to prove in [PS] that the
answer to Question 1.3.2 was positive for all automorphism groups of ho-
mogeneous directed graphs, except for one case where their method did not
apply: the semigeneric directed graph. One of my first pieces of work con-
sisted in filling that gap.

Theorem 1.4.5. [J] The automorphism group of the semigeneric directed graph is
uniquely ergodic.

The proof relies on the ergodic decomposition theorem, allowing one to
show that any invariant probability measure satisfies certain independence
properties. It is interesting to remark that I was not able to describe precisely
how generally this proof applies. However, it certainly applies to more than
just the semigeneric graph and the hope would be to use this proof in com-
bination with results from chapter 4 to prove more general unique ergodicity
results.

1.4.5 A minimal model-universal flow for locally compact Pol-
ish groups

The universal minimal flow is a minimal flow which maps onto any other
minimal flow; by understanding the properties of this one object, we can
better understand the collection of all minimal flows. With Andy Zucker, we
proved that when G is a locally compact Polish group, there exists another
minimal flow which is universal in a different sense, in that it contains a copy
of any probability measure-preserving free action. Similarly, this "universal
minimal model" can help shed light on the dynamical properties of a given
locally compact group.

By a G-system, we mean a Borel G-action on a standard Lebesgue space
(X, µ) which preserves µ. We say that a G-system (X, µ) is free if the set

Free(X) := {x ∈ X : ∀g ∈ (G \ {1G}) gx 6= x}

has measure 1 (remark that this set is Borel because G is locally compact). We
say that a G-flow Y is model-universal if for every free G-system (X, µ), there
is ν a G-invariant probability measure on Y with (X, µ) ∼= (Y, ν).

This work is a generalisation of a work of Weiss in [W], who proved that
all countable discrete groups admit a minimal model-universal flow.

Theorem 1.4.6. [JZ1] Let G be a locally compact, non-compact Polish group. Then
there exists a minimal model-universal flow for G.

As a corollary, we get:

Theorem 1.4.7. [JZ1] Let G be a locally compact non-compact Polish group. Then
there is a minimal G-flow with multiple invariant probability measures. In particular,
G is not uniquely ergodic.

This result was suggested in [AKL] (see p. 2063).
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CHAPTER 2

Getting started on an example: the 2-graph

This is based on joint work with Gianluca Basso. I thank Jan Hubička for
presenting this example to me.

2.1 Definitions

A k-uniform hypergraph M for some k ∈ N∗ is a structure whose signature
is a k-ary relation R so that for all x1, . . . , xk ∈ M and σ ∈ Sk we have:

RM(x1, . . . , xn)⇔ RM(xσ(1), . . . , xσ(k))

and
¬RM(x1, x1, x2, . . . , xk−1).

For example, graphs are 2-hypergraphs.
Consider the class H of even hypergraphs1, i.e. the class of finite 3-hypergraphs

such that the number of hyperedges on any 4 vertices is even. It is a Fraïssé
class (see [EHKN]). We denote by H the Fraïssé limit of H. This limit is called
the 2-graph. We write RH for the hyperedge relation in H.

There is a map from graphs to even hypergraphs by the following oper-
ation: from a graph, one obtains an even hypergraph with the same domain
by putting an hyperedge between 3 vertices iff there is an even number of
edges between those vertices in the original graph. One can check that this
always gives an even hypergraph. For a graph A, we call reduct of A the
even hypergraph thus obtained, and we denote it by redH(A).

For a given even hypergraph H, a graph on the same vertex set as H
whose reduct is isomorphic to H is called a graphing of H.

An important remark is that a graphing of an even hypergraph H is en-
tirely determined by the edge relations between one point a ∈ H and all the
other points in H. Indeed, if we want to know if there is an edge between
two points x and x′, we have the following possibilities:

1This is also called a 2-graph. In the spirit of clarity we chose this renaming.
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1) There is an hyperedge (a, x, x′) in H. In this case, there is an edge
between x and x′ iff there is an odd number of edges between a and
{x, x′}.

2) There is no hyperedge (a, x, x′) in H. In this case, there is an edge
between x and x′ iff there is an even number of edges between a and
{x, x′}.

We remark in particular that there are 2n−1 graphings of a given even
hypergraph on n vertices.

Take G and G′ two finite graphs with the same vertex set D. We denote
by E the edge relation for graphs. We say that G′ is in the switching class
of G if there is A ⊂ D such that for all x, y ∈ A, EG(x, y) ⇐⇒ EG′(x, y);
for all x, y /∈ A, EG(x, y) ⇐⇒ EG′(x, y); and for all x ∈ A and y /∈ A,
EG(x, y) ⇐⇒ ¬EG′(x, y). Remark that by symmetry of the edge relation,
this is the same as saying or all x /∈ A and y ∈ A, EG(x, y) ⇐⇒ ¬EG′(x, y).
In this context, we call G′ the switching of G by A.

Remark that the reduct of a graph G is isomorphic to the reduct of another
graph G′ iff G′ is isomorphic to a graph in the switching class of G, indeed
this operation will not change the parity of the number of edges in a triplet
of vertices. In particular, the class of graphings of a given even hypergraph
can be recovered by all the switchings of any of its graphings. One way to
see this is simply to observe that there are exactly 2n−1 different switchings
of a graph on n vertices, which corresponds to the number of graphings of
the reduct of this graph.

The UMF of Aut(H) was computed by Evans, Hubička, Konečný and
Nešetřil in [EHKN]. It is G y LO(H)×Gr(H), where LO(H) is the space
of linear orderings of H and Gr(H) the space of graphings of H. Let us take
(<, E) ∈ LO(H)×Gr(H), g ∈ G, then for all a, b ∈H, we have

a(g· <)b⇔ g−1(a) < g−1(b)

and
g · E(a, b)⇔ E(g−1(a), g−1(b)).

It will be useful to consider H∗ the Fraïssé class of graphed ordered even
hypergraphs. We call H∗ its Fraïssé limit. Recall that for 1 ∈ H, H∗(A) des-
ignates the class of structures in H∗ such that the induced even hypergraph
is isomorphic to A.

Using Corollary 1.3.6, we get that Aut(H) is amenable, because for a
given hypergraphs on n vertices, there are n!2n−1 ordered graphings of it.

2.2 Unique ergodicity

In the rest of the chapter, G = Aut(H). We give two proofs of the fact that G
is uniquely ergodic. The first one follows closely the original paper of Angel
Kechris and Lyons, even though it requires some adjustements, using among
other things ideas from [PS]. Another proof of this result can be found in the
last subsection of Chapter 4

Definition 2.2.1. Let F and F∗ be two Fraïssé classes such that F∗ is an ex-
pansion of F with the expansion property. We say that F has the Quantitative
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Expansion Property relative to F∗ if for all A ∈ F, there is a number ρ(A) ≥ 0
such that for all ε > 0 there is B ∈ F in which A embeds such that for any
A∗ ∈ F∗(A) and B∗ ∈ F∗(B) we have∣∣∣∣ |Emb(A∗, B∗)|

|Emb(A, B)| − ρ(A)

∣∣∣∣ ≤ ε.

The following Theorem is taken from [AKL]. We give the proof for conve-
nience of the reader.

Theorem 2.2.2. Let F and F∗ be two Fraïssé classes such F∗ an expansion of F
with the expansion property. We also assume that F has the Quantitative Expansion
Property with respect to F∗. We write F and F∗ for the limits of F and F∗ =

(F, (Ri)i∈I). If we assume that Aut(F) y Aut(F) · (Ri)i∈I admits an invariant
measure, then Aut(F)y Aut(F) · (Ri)i∈I is uniquely ergodic.

In particular this theorem can be used to prove unique ergodicity of
Aut(F) when F∗ is a Ramsey precompact expansion of F with the Quan-
titative Expansion Property.

Proof. Take ν an Aut(F)-invariant measure on Aut(F) · (Ri)i∈I . We want to
show that ν(UA,A∗) = ρ(A) for all A ∈ F and A∗ ∈ F∗(A). Let us fix A
and ε > 0 and take B as in definition 2.2.1. We also fix A∗ ∈ F∗(A) and
set B∗ ∈ F∗(B) a random variable β∗ν where β is the restriction map from
Aut(F) · (Ri)i∈I to B.

We take φ a uniform random embedding of A in B. We look at the event
C="φ is an embedding of A∗ in B∗". Let us fix a embedding ψ of A in B. Since
B∗ has distribution β∗ν, we have P(C|φ = ψ) = ν(UA,A∗), therefore P(C) =
ν(UA,A∗). However, by the definition of QEP, we have |P(C)− ρ(A∗)| ≤ ε,
therefore we have the result.

Let us now prove that H has the Quantitative Expansion Property. We
will use McDiarmid’s inequality from [M3].

Theorem 2.2.3. Let n ∈ N, Z = (Z1, . . . , Zn) be a family of iid random variable
on {0, 1} and f : {0, 1}n → R such that there is a family (ai)i≤n ∈ Rn that verifies
| f (z)− f (z′)| ≤ ai whenever z(k) = z′(k) for k 6= i and z(i) = 1− z′(i). Then,
for all L > 0, we have

P(| f (Z)−E( f (Z))| ≥ L) ≤ 2 exp

(
− 2L

∑n
i=1 a2

i

)
.

Proposition 2.2.4. H has the Quantitative Expansion Property with respect to H∗.

Proof. Let us fix A ∈ H with k vertices. The aim of the proof is to construct a
B ∈ H on n ≥ k vertices such that for any A∗ ∈ H∗(A) and B∗ ∈ H∗(B), we
have: ∣∣∣∣ |Emb(A∗, B∗)|

|Emb(A, B)| −
1

k!2k−1

∣∣∣∣ ≤ C

√
log(n)

n

where C is a constant depending only on k. This is enough to prove the

Quantitative Expansion Property, because for n large enough, C
√

log(n)
n is

arbitrarily small.
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We take G a uniform random graph on a vertex set V of size n, i.e for
any two vertices of V, we put an edge between them with probability 1/2,
independently for each pair of vertices. We will prove that with non-zero
probability, the reduct of G is as required. In particular, we will prove the
property using switchings of G to describe the graphings of the reduct of G.

Let N(A,G) denote the number of embeddings of A in redH(G). We

remark that E := E[N(A,G)] = 2k−1n(n − 1)...(n − k + 1)2−
k(k−1)

2 . Indeed,
fix an embedding ϕ of the domain of A in V and B a graphing of A. The

probability that ϕ is an embedding of B in G is 2−
k(k−1)

2 . There are n(n −
1)...(n− k + 1) possible ϕ and 2k−1 possible B. By summing over ϕ and B we
have the result.

We define

f (A,G) =
N(A,G)

E
which is a function of (n

2) iid variables, each indicating the absence or pres-
ence of an edge in G. Adding or removing an edge to G changes N(A,G) by
at most k(k − 1)(n(n − 1)...(n − k + 3)). Indeed, this counts every possible
embedding using this specific pair of vertices. Therefore f satisfies the con-
ditions of Theorem 2.2.3 with a1 = c1n−2, where c1 (as well as all the cj we
will define in the rest of the proof) is a positive constant depending only on
k. We therefore have, for any D > 0,

P(| f (A,G)− 1| ≥ D) ≤ 2 exp

(
− 2D2

(n
2)c

2
1n−4

)
≤ exp

(
−c2D2n2

)
.

Let us now set A∗ = (A,<A, EA) ∈ H∗(A). We fix <V , U ⊂ V. We define
G∗ as the random structure in H∗ where the even hypergraph structure is the
reduct of G, the ordering is <V and the graphing is the switching of G by U.
We define N∗(A∗,G∗) to be the number of embeddings of A∗ in G∗. Remark
that E(N∗(A∗,G∗)) = E

k!2k−1 . We define

f ∗(A∗,G∗) =
N∗(A∗,G∗)

E
.

Here, adding or removing an edge to G changes N∗(A∗,G∗) by at most
(k

2)(
n−2
k−2) ≤ (k

2)n
k−2. So as before, we have

P

(
| f ∗(A∗,G∗)− 1

k!2k−1 | ≥ D
)
≤ 2 exp

(
− 2D2

(n
2)c3n−4

)
≤ exp

(
−c4D2n2

)
.

Summing over all possible <A, EA, <V and U ⊂ V, we have that except
with probability c5n!2n−1 exp(−D2c6n2), we have simultaneously

| f (A,G)− 1| < D

and
| f ∗(A∗,G∗)− 1

k!2k−1 | < D

for all expansions of A and G. Remark that the we only count 2n−1 possibili-
ties for U ⊂ V, because U and V\U give the same switching.
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We choose D = c7

√
log(n)

n with c7 chosen so that c5n!2n−1 exp(−c6D2n2) <

1 for all n ≥ 1. This implies that there exists a (deterministic) graph B̃ sat-
isfying all the above inequalities simutaneously. If we denote by B ∈ H its
reduct, then we have ∣∣∣∣ |Emb(A, B)|

E
− 1
∣∣∣∣ < D

and ∣∣∣∣ |Emb(A∗, B∗)|
E

− 1
k!2k−1

∣∣∣∣ < D,

for all A∗ ∈ H∗(A) and B∗ ∈ H∗(B).
The required inequality then follows with ρ(A) = 1

k!2k−1 . Indeed, for all
A∗ ∈ H∗(A) and B∗ ∈ H∗(B):

∣∣∣∣ |Emb(A∗, B∗)|
|Emb(A, B)| −

1
k!2k−1

∣∣∣∣ ≤ ∣∣∣∣ |Emb(A∗, B∗)|
|Emb(A, B)| −

|Emb(A∗, B∗)|
E

∣∣∣∣
+

∣∣∣∣ |Emb(A∗, B∗)|
E

− 1
k!2k−1

∣∣∣∣
≤
∣∣∣∣ |Emb(A∗, B∗)|
|Emb(A, B)| −

|Emb(A∗, B∗)|
E

∣∣∣∣+ D

≤|Emb(A∗, B∗)|
|Emb(A, B)| ·

∣∣∣∣ |Emb(A, B)|
E

− 1
∣∣∣∣+ D

≤2D

=2c7

√
log(n)

n
.
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CHAPTER 3

Stability by extension

This is joint work with Andy Zucker, it follows closely [JZ2].
In this chapter, the actions are on the right.

3.1 Introduction

Let G be a Polish group, and suppose H ⊆ G is a closed, normal subgroup.
Setting K = G/H, we have that K is also a Polish group, and the quotient
map π : G → K is a continuous, open homomorphism. In this setting, we say
that G is an extension of K by H. This is the same as saying that

1→ H → G π−→ K → 1

is a short exact sequence. Examples of group extensions include group prod-
ucts, semidirect products but also more complicated ones as we illustrate in
section 5.

Our aim in this chapter is to describe M(G) using information about
M(H) and M(K). In particular, knowing that M(H) and M(K) have nice
properties, we would like to show that M(G) also shares these properties.
The first theorem shows that metrizability of the universal minimal flow is
preserved under group extension and also elaborates on the interaction be-
tween M(G) and M(K). Notice that M(K) is a minimal G-flow under the
action x · g := x · π(g), so there is a G-map from M(G) to M(K). We also
denote this G-map by π for reasons to be explained in Section 3.2.

Theorem 3.1.1. Let 1 → H → G π−→ K → 1 be a short exact sequence of Polish
groups. If M(H) and M(K) are metrizable, then so is M(G). Furthermore, letting
π : M(G) → M(K) be the canonical map, we have that π−1({y}) is a minimal
H-flow for every y ∈ M(K).

Using this description of M(G), we are also able to prove that when the
universal minimal flows are metrizable, then unique ergodicity is stable un-
der group extension.
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Theorem 3.1.2. With H, G, and K as in Theorem 3.1.1, then if both H and K are
uniquely ergodic, then G is also uniquely ergodic.

We briefly discuss the organization of the chapter. Section 3.2 gives back-
ground on the Samuel compactification of a topological group and the uni-
versal minimal flow. Section 3.3 proves the main technical lemma regarding
the almost periodic points of a G-flow. Section 3.4 proves the two main theo-
rems. Section 3.5 provides examples of Polish group extensions. Section 3.6
provides a more combinatorial proof of part of Theorem 3.1.1 by using the
connections between topological dynamics and Ramsey theory. Finally, Sec-
tion 3.7 collects some open questions inspired by our work.

Aknowledgements: The authors thank Lionel Nguyen Van Thé and Todor
Tsankov for their advice and comments during the writing of this paper.

3.2 Background

For this section, let G be any topological group. A G-ambit is a pair (X, x0)
with X a G-flow and x0 ∈ X a distinguished point with dense orbit. If (Y, y0)
is another ambit, we say that φ : X → Y is a map of ambits if φ is a G-map and
φ(x0) = y0. Notice that there is at most one map of ambits from (X, x0) to
(Y, y0). One can in fact construct the greatest ambit, denoted (S(G), 1G), which
is an ambit admitting a map of ambits onto any other ambit and is unique up
to isomorphism. The orbit 1G · G is homeomorphic to (and identified with)
G, and S(G) is often called the Samuel compactification of G. As an example,
when G is a discrete group, then S(G) ∼= βG, the space of ultrafilters on
G. In general, S(G) has the following universal property: if X is a compact
space and f : G → X is left-uniformly continuous, then f can be continuously
extended to S(G). For two different constructions of S(G), see [KPT] or [Z3].

The universal property of S(G) allows us to give S(G) the structure of
a compact left-topological semigroup, a compact space S endowed with a semi-
group structure so that for each s ∈ S, the map λs : S→ S given by λs(t) = st
is continuous. Fix p ∈ S(G). Then (p · G, p) is an ambit, so there is a unique
map of ambits λp : (S(G), 1G) → (p · G, p). Now given p, q ∈ S(G), we de-
clare that p · q = λp(q). Associativity follows because λp ◦ λq and λpq are
both G-maps sending 1G to pq, hence they must be equal.

More generally, let X be a G-flow. Given x ∈ X, then (x · G, x) is an ambit,
so there is a unique map of ambits λx : S(G)→ X. Given p ∈ S(G), we often
write x · p := λx(p). Notice that if p, q ∈ S(G), then x(pq) = (xp)q, so the
semigroup S(G) acts on X in a manner which extends the G-action.

For a more detailed account of the theory of compact left-topological
semigroups, Chapters 1 and 2 of [HS1] are a great reference (but note the
left-right switch between that reference and the presentation here). We will
need the following facts, all of which can be found there. Fix a compact
left-topological semigroup S.

1. Every compact left-topological semigroup S contains an idempotent, an
element u ∈ S with u · u = u.

2. A right ideal is any I ⊆ S for which I · s ⊆ I for every s ∈ S. Notice that
if p ∈ I, then p · S ⊆ I is a closed right ideal. It follows that every right
ideal contains a minimal right ideal which must be closed.
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3. If I ⊆ S is a minimal right ideal, then I is a compact left-topological
semigroup in its own right, so contains an idempotent. If u ∈ I is an
idempotent, then uI = I, so up = p for every p ∈ I.

4. If I ⊆ S is a minimal right ideal and p ∈ I, then S · p is a minimal left
ideal, and pS ∩ Sp = Ip, which is a group. If u ∈ Ip is the identity of
this group, then Ip = Iu. So for every p ∈ I, there is an idempotent
u ∈ I with p ∈ Iu.

We now apply this to S(G). First note that the minimal right ideals of S(G)
are exactly the minimal subflows of S(G). Notice also that every minimal
subflow of S(G) is universal, simply by the universal property of S(G). We
argue that M(G) is unique up to isomorphism, a classical theorem of Ellis
[E2]. Fix M ⊆ S(G) a minimal right ideal, and let u ∈ M be an idempotent.
Suppose φ : M → M is a G-map. Then by Fact 3, we have φ(p) = φ(up) =
φ(u)p for any p ∈ M, hence φ = λφ(u)|M. By Fact 4, we have φ(u) ∈ Mv for
some idempotent v. Then since Mv is a group with identity v, we can find
q ∈ M with qφ(u) = v. Notice that λv|M is the identity on M (since M = vM).
Since λv|M = λq ◦ λφ(u)|M, the map λφ(u)|M = φ must be a bijection, hence a
G-flow isomorphism. If N is another minimal flow which is universal, then
let ψ : M → N and θ : N → M be G-maps. If M 6∼= N, then θ ◦ ψ is not
injective, contradicting that every G-map from M to itself is an isomorphism.

Furthermore, suppose X is a minimal G-flow, and suppose φ and ψ are
two G-maps from M to X. Let u ∈ M be an idempotent, and consider
ψ−1({φ(u)}) ⊆ M. If p ∈ ψ−1({φ(u)}), then ψ(pu) = ψ(p)u = φ(u)u =
φ(uu) = φ(u). It follows that ψ ◦ λp = φ, i.e. there is only one G-map from
M to X up to isomorphism.

Now suppose K is another topological group and that π : G → K is a
continuous surjective homomorphism. We note that every K-flow is also a
G-flow, where if X is a K-flow, x ∈ X, and g ∈ G, we set x · g = x · π(g).
The map π continuously extends to a map from S(G) to S(K), which we also
denote by π. If M ⊆ S(G) is a minimal subflow, then π[M] ⊆ S(K) is also
minimal and is isomorphic to M(K).

3.3 Almost periodic points

This section proves the following key propositions which will be used in
the proof of Theorems 3.1.1 and 3.1.2. Throughout this section, we consider a
Polish group H, which will be the same H that appears in the main theorems.
We fix on H a compatible left-invariant metric d of diameter one, and for
c > 0, we set Uc := {g ∈ H : d(1H , g) < c}.

Given an H-flow X, the almost periodic points of X, denoted AP(X), are
those points in X belonging to minimal subflows.

Proposition 3.3.1. Let H be a Polish group, and suppose that M(H) is metrizable.
Then for any H-flow X, the set AP(X) ⊆ X is closed.

The assumption that M(H) is metrizable is essential. Hindman and Strauss
in [HS2] show that when H = Z and X = βZ, then AP(X) ⊆ X is not even
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Borel. In a work in preparation, Bartošová and Zucker generalize this, show-
ing that for any Polish group H with M(H) non-metrizable and X = S(H),
then AP(X) ⊆ X is not Borel.

On AP(X), the relation given by E(x, y) iff x and y belong to the same
minimal subflow of X is an equivalence relation, and one can ask about the
complexity of this equivalence relation. It turns out that in the setting of
Theorem 3.3.1, this equivalence relation is as nice as possible.

Proposition 3.3.2. In the setting of Proposition 3.3.1, the equivalence relation E ⊆
AP(X)×AP(X) is closed.

Combining the key results from [MNT] and [BMT], we have the following.

Fact 3.3.3. Whenever M(H) is metrizable, then there is an extremely amenable, co-
precompact subgroup H∗ ⊆ H so that M(H) ∼= Ĥ∗\H, the left completion of the
right coset space.

In particular, M(H) comes equipped with a canonical compatible metric
∂ inherited from the metric d on H. The key property we need about this
metric is the following.

Lemma 3.3.4. Let H be a Polish group, and assume M(H) ∼= Ĥ∗\H is metrizable
with the compatible metric ∂ inherited from d. Then whenever ∂(p, q) < c and
A 3 p is open, we have q ∈ AUc.

Proof. Fix sequences pn, qn ∈ H with H∗pn → p and H∗qn → q. We may
assume for every n < ω that d(H∗pn, H∗qn) < c. By modifying qn if neces-
sary, we may assume p−1

n qn ∈ Uc. Now if A 3 p is open, then eventually
H∗pn ∈ A. Then H∗qn ∈ AUc, implying that q ∈ AUc as desired.

We now assume M(H) metrizable with a compatible metric ∂ as in Lemma
3.3.4, and we fix an H-flow X. Consider some collection {Xi : i ∈ I} of
minimal subflows of X; we will treat I as a directed partial order. For each
i ∈ I, let φi : M(H) → Xi be an H-map. The key lemma regards the right
action of S(H) on X. In general, this action is not continuous, but the lemma
states that in this setting, we recover some fragments of continuity.

Lemma 3.3.5. Suppose we have p, q ∈ M(H) with φi(p) → x and φi(q) → y.
Suppose r ∈ S(H) with pr = q. Then xr = y.

Proof. Fix an open B 3 y, and fix a net (gj)j∈J from H with gj → r. We want
to show that eventually xgj ∈ B. Find some open C 3 y and ε > 0 with
CUε ⊆ B. Eventually ∂(pgj, q) < ε; fix such a gj. Eventually φi(q) ∈ C, so

by Lemma 3.3.4 for such i ∈ I we have pgj ∈ φ−1
i (C)Uε ⊆ φ−1

i (CUε). So
φi(pgj) = φi(p)gj ∈ CUε. As this is true for all large enough i ∈ I, we have
xgj ∈ CUε ⊆ B as desired.

The other lemma we will need allows us to express points in AP(X) as
limits of certain nice nets. The proof is almost identical to that of Lemma
3.3.5.
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Lemma 3.3.6. Suppose φi are as above, and suppose we have pi ∈ M(H) with
φi(pi)→ x ∈ X. If pi → p ∈ M(H), then φi(p)→ x.

Proof. Fix an open B 3 x; we want to show that eventually φi(p) ∈ B. Find
some open C 3 x and ε > 0 so that CUε ⊆ B. Eventually we have φi(pi) ∈ C
and ∂(p, pi) < ε. For such i ∈ I, since φ−1

i (C) 3 pi, we have by Lemma 3.3.4

that p ∈ φ−1
i (C)Uε = φ−1

i (CUε) ⊆ φ−1(CUε). It follows that φi(p) ∈ B as
desired.

We can now easily complete the proof of both key propositions. First
suppose xi ∈ AP(X) with xi → x. Each xi belongs to some minimal flow
Xi, so fix H-maps φi : M(H) → Xi. Also fix pi ∈ M(H) with φi(pi) = xi. By
passing to a subnet, we may assume pi → p, so by Lemma 3.3.6, we have
φi(p) → x. Now fix a minimal subflow M ⊆ S(H), and consider the H-flow
isomorphism λp|M : M → M(H). If u ∈ M is such that pu = p, then by
Lemma 3.3.5, we have xu = x, i.e. that x ∈ λx[M], showing that x ∈ AP(X)
as desired.

For the second proposition, suppose (xi, yi) ∈ E with xi → x and yi → y.
Much as above, we may assume that there are p, q ∈ M(H) with φi(p) → x
and φi(q) → y. Now suppose r ∈ S(H) with pr = q. By Lemma 3.3.5, we
have xr = y. It follows that (x, y) ∈ E as desired.

3.4 Abstract proof of Theorems 3.1.1 and 3.1.2

This section applies the key propositions from Section 3.3 to prove the two
main theorems from the introduction. Fix a short exact sequence 1 → H →
G → K → 1 of Polish groups, and let d be a compatible left-invariant metric
on G with diameter 1. Then d induces compatible left-invariant metrics on
H and K, which we also denote by d. Given c > 0, we set Uc = {g ∈ G :
d(1G, g) < c}. Then Uc ∩ H is the ball of radius c around 1H = 1G in H, and
HUc is the ball of radius c around 1K = H in K.

We first tackle Theorem 3.1.1. The assumption that M(K) is metrizable
is only used at the very end, but the assumption that M(H) is metrizable
is used throughout the proof. Indeed, the proof proceeds by viewing M(G)
as an H-flow. We write APH(M(G)) for those points in M(G) belonging to
minimal H-subflows.

Lemma 3.4.1. The set APH(M(G)) ⊆ M(G) is G-invariant, hence dense.

Proof. Suppose X ⊆ M(G) is a minimal H-subflow. Fix g ∈ G. Then XgH =
XHg = Xg, so Xg is an H-flow. Now suppose y ∈ Xg. Then yHg−1 =
yg−1H ⊆ X is dense, so also yH ⊆ Xg is dense, showing that Xg is also a
minimal H-subflow.

Proof of Theorem 3.1.1. By Proposition 3.3.1 and Lemma 3.4.1, we must have
APH(M(G)) = M(G), i.e. every point in M(G) belongs to a minimal H-
subflow. Furthermore, by Proposition 3.3.2, the relation E defined by E(x, y)
iff x ∈ y · H is a closed equivalence relation on M(G). Then Y = M(G)/E
is a compact Hausdorff space and since the projection of the action of G is
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H-invariant, Y is a K-flow. This flow is minimal by minimality of the action
of G on M(G), hence it is metrizable and has cardinality c. Each equivalence
class is a minimal H-flow, hence is metrizable and has cardinality c. This
means that M(G) has cardinality at most c and by [Z3] Proposition 2.7.5, if
M(G) were non-metrizable, it would have cardinality 2c.

Furthermore, note that for every y ∈ M(K), the fiber π−1({y}) is an H-
flow, giving us a map ψ : Y → M(K). As Y is minimal and M(K) is the univer-
sal minimal flow, we must have ψ an isomorphism, i.e. each fiber π−1({y})
is a minimal H-flow.

We now turn towards the proof of Theorem 3.1.2, so assume M(H) and
M(K) are metrizable and that both H and K are uniquely ergodic. The main
idea of the proof is to apply the following measure disintegration theorem
(see [F2] Theorem 5.8 and Proposition 5.9).

Theorem 3.4.2. Let X, Y be standard Borel spaces and φ : X → Y a Borel map. Let
µ ∈ P(X) and ν = φ∗µ, then there is a Borel map y 7→ µy from Y to P(X) such
that:

i) µy(φ−1({y}) = 1

ii) µ =
∫

µydν(y).

Moreover, if there is another such map y 7→ µ′y, then for ν-almost all y, µy = µ′y.

We apply the theorem with X = M(G), Y = M(G)/E = M(K), and φ = π.
First note that G is amenable (see the proof in Section 3.7), so let us take µ any
G-invariant measure. Then ν = φ∗µ is K-invariant, hence it is the unique such
measure. The following lemma gives us the uniqueness of the disintegration,
hence the unique ergodicity of G and the proof of Theorem 3.1.2.

Lemma 3.4.3. For ν-almost all y ∈ Y, µy is H-invariant.

Proof. We remark that by the uniqueness of the decomposition, it is easy to
establish that for any countable set (hn)n∈N of elements of H, ν-almost surely
µy is (hn)n∈N-invariant for all n ∈ N. Since H is Polish, we can assume that
(hn)n∈N is dense in H. Since the set of h ∈ H such that h · µy = µy is closed,
it follows that for any y ∈ Y with µy (hn)n∈N-invariant, we in fact have that
µy is H-invariant.

3.5 Examples

In this section, we give several examples of short exact sequences appearing
in the realm of non-archimedian Polish groups. The main application of
Theorems 3.1.1 and 3.1.2 occurs in Subsection 3.5.1, where we discuss wreath
products. Subsection 3.5.2 describes instances of more general Polish group
extensions, where the main theorems don’t apply as clearly.
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3.5.1 Wreath products

The simplest (non trivial) setting in which short exact sequences appear is
the one where we have H a Polish group, K is a Polish group that acts on a
countable set X and G = HX o K. The product is defined as:

((ha)a∈X , σ) · ((ga)a∈X , τ) = ((hagσ(a))a∈X , στ)

This is a short exact sequence where HX is the normal subgroup and K is the
quotient.

We apply the main theorems to prove the following.

Theorem 3.5.1. Letting G = HX o K, if M(H) and M(K) are metrizable, then so
is M(G). Under those hypotheses, if H and K are uniquely ergodic, then so is G.

The proof relies on the following lemma.

Lemma 3.5.2. Let (Gi)i∈N be a family of groups such that M(Gi) is metrizable
for all i ∈ N, and set G = ∏i∈N Gi, then M(G) is metrizable. Moreover, if Gi is
uniquely ergodic for all i ∈N, then so is G.

Proof. Using Fact 3.3.3, we know that there exists a sequence (G∗i )i∈N such
that G∗i is an extremely amenable, closed, co-precompact subgroup of Gi.

Let us consider G∗ = ∏i∈N G∗i as a subgroup of G. It is a closed subgroup
and is extremely amenable, as the property of being extremely amenable is
closed under arbitrary (not just countable) products.

The observation Ĝ∗\G = ∏i∈N Ĝ∗i \Gi gives the co-precompactness of G∗.

Hence M(G) = Ĝ∗\G and is metrizable.
This also implies unique ergodicity of G, for let µi be the unique Gi-

invariant measure on M(Gi) and µ any G-invariant measure on M(G). The
pushfoward of µ on ∏i<n M(Gi) has to be equal to µ0 ⊗ · · · ⊗ µn−1 for all
n ∈N, hence µ is uniquely determined on the basic open set of the topology
of M(G) and is therefore uniquely determined.

Proof of Theorem 3.5.1. By Theorems 3.1.1 and 3.1.2, it is enough to show that
if M(H) is metrizable (and uniquely ergodic), then so is M(HX). Lemma
3.5.2 gives us exactly that.

Note that this result was already proven by Pawliuk and Sokic ([PS] The-
orem 2.1) and Sokic ([M1] Proposition 5.2) in the case where H and K are
automorphism groups of Fraïssé limits.

3.5.2 Beyond semi-direct products

We now consider group extensions which are not semidirect products. This
subsection does not contain any particular applications of the main theorem,
but is included to give some more understanding of how diverse short exact
sequences of Polish groups can be. The reason that applying the main theo-
rems is difficult here is that often, the closed subgroup H is equally difficult
to work with as G itself.
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To show that certain group extensions are not semi-direct products, we
briefly discuss some of the properties of those group extensions that are. Let
H and K be topological groups, and suppose we are given a homomorphism
φ : K → Aut(H). We will write φ(k) as φk to simplify notation. Then we can
endow H × K with a group operation, where we define (h0, k0) · (h1, k1) =
(h0φk0(h1), k0k1). Now suppose φ has the property that whenever ki → k ∈ K
and hi → h ∈ H, we have φki

(hi) → φk(h) ∈ H. For example, when H
is locally compact, this property says that φ is continuous when Aut(H) is
given the compact-open topology. In this case, H × K endowed with the
above operation is a topological group, and we denote this by H oφ K, or
Ho K if φ is understood. Setting G = Ho K, we identify H with the closed
normal subgroup {(h, 1K) : h ∈ H}, and the quotient G/H is isomorphic to
K, showing that G is an extension of K by H.

If 1 → H → G π−→ K → 1 is a short exact sequence of topological groups,
we say that the sequence splits continuously if there is a continuous homomor-
phism α : K → G so that π ◦ α = idK, the identity map on K. Such an α will
always have closed image. When G = Ho K, one can define α(k) = (1H , k).
Conversely, if α : K → G is a continuous homomorphism with closed image
and π ◦ α = idK, then we obtain a homomorphism φ : K → Aut(H) given by
φk(h) = α(k)hα(k−1). Then φ satisfies the required continuity property, and
we have G ∼= Hoφ K.

Ordered homogeneous metric space with distances 1, 3 and 4.

We first consider the countable homogeneous metric space with distances 1,
3 and 4, which we denote by F. This is the Fraïssé limit of those metric spaces
with distances belonging to the set {1, 3, 4}. In F, there are infinitely many
infinite equivalence classes of points at distance 1 and such that the distance
between two non-equivalent points is 3 or 4 at random.

We now consider an extension F∗ of this structure where on each equiv-
alence class we generically put a dense linear ordering, and we leave points
between different classes unordered. We set G = Aut(F∗).

Letting H be the subgroup that stabilizes every class set-wise, then H ⊆ G
is a closed normal subgroup. Moreover, it is easy to prove via a back and forth
that the quotient H\G is isomorphic to S∞.

This extension cannot be a semi-direct product. To prove this we consider
the element σ of S∞ that swaps 0 and 1, leaving all other points fixed. We
have σ2 = idN. Suppose now that G is indeed a semidirect product; letting
α : S∞ → G be a continuous homomorphism with π ◦ α = idS∞ , then the
element g∗ = α(σ) has order 2 in G and permutes two equivalence classes,
say A and B. If we look at the action of g∗ on a class C which g∗ fixes set-wise,
then g∗ defines an automorphism of (Q,<) of order 2, thus it acts trivially
on C. Now given x ∈ A, let y = g∗(x) ∈ B. Then using the homogeneity of
F∗, we can find z ∈ C with d(x, z) = 3 and d(y, z) = 4. Therefore we must
have g∗(z) 6= z, a contradiction.

The switching group

We now consider the structure F formed by first considering the Rado graph
H = (V, E). The structure F has domain V and the language only has one
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4-ary relation symbol R with the following condition:

RF(x, y, w, z)⇔
(
(EH(x, y) ∧ EH(w, z)) ∨ (¬EH(x, y) ∧ ¬EH(w, z)

)
where x, y, w, z are vertices. We obviously have Aut(H) C Aut(F). The
quotient is Z/2Z.

Again, this is not a semi-direct product, otherwise we would have f an
involution of the vertices such that E(x, y) ⇔ ¬E( f (x), f (y)), which is im-
possible because we would have E(x, f (x)), ¬E(( f (x), f 2(x)), and f 2(x) = x.

Partitioned (Q,<)

We partition Q in dense codense classes that we name (Ei)i∈N. We define an
equivalence relation E on Q:

E(x, y)⇔ ∃i ∈N : (x, y) ∈ Ei.

We let G be the subgroup of Aut(Q,<) fixing the equivalence relation E, and
we let H be the subgroup of G that fixes each Ei setwise; it is normal in G.

Again, a torsion argument allows us to prove this is not a semi direct
product.

3.6 Combinatorial proof of Theorem 3.1.1

This section provides a combinatorial proof of a weakening of Theorem 3.1.1;
this proof does not show that each fiber is a minimal H-flow. The advantage
of this proof is that it is “quantitative” in a sense that will be made precise.
We will first reprove the theorem in the case that G is non-Archimedean, and
then discuss the general case.

3.6.1 The non-Archimedean case

We first assume that G, hence also H and K, are non-Archimedean. So fix
{Un : n < ω} a base at 1G of clopen subgroups. Then {H ∩Un : n < ω}
and {π[Un] : n < ω} are bases of clopen subgroups at the identity in H
and K, respectively. For instance, if G = Aut(K) for some Fraïssé structure
K = Flim(K), and we write K =

⋃
n An as an increasing union of finite

substructures, then we can let Un be the pointwise stabilizer of An. We will
need the following definition, which we translate from the Fraïssé setting to
the group setting.

We consider the left coset space Gn := G/Un, which is countable. When
Un = Stab(An), then Gn can be identified with the set Emb(An, K). The
group G acts on Gn on the left in the natural way. If X is a compact space,
then XGn becomes a right G-flow, where for γ ∈ XGn and g0 ∈ G, we define
γ · g0 via γ · g0(g1Un) := γ(g0g1Un).

Definition 3.6.1. Fix n, m < ω. We say that the clopen subgroup Un ⊆ G has
Ramsey degree m < ω if the following both hold.

1. For any r < ω and any coloring γ : Gn → r, there is some δ ∈ γ · G and some
F ⊆ r with δ ∈ FGn and |F| ≤ m. Equivalently, for any γ as above, there is
p ∈ S(G) with |Im(γ · p)| ≤ m.
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2. There is a surjective coloring γ : Gn → m so that γ · G is a minimal G-flow.
We often call such colorings minimal, or G-minimal to emphasize the group.

When Un = Stab(An), then Definition 3.6.1 coincides with the Ramsey
degree (for embeddings) of An ∈ K. We then have the following theorem.

Theorem 3.6.2 ([Z2]). M(G) is metrizable iff for every n < ω, the subgroup Un
has finite Ramsey degree.

By Theorem 3.6.2 and our assumption that M(H) and M(K) are metriz-
able, we know that for every n < ω, the subgroups H ∩ Un ⊆ H and
π[Un] ⊆ K have finite Ramsey degrees mH and mK, respectively. We will
use these to bound the Ramsey degree of Un. The following proposition will
prove Theorem 3.1.1 in the non-Archimedean case.

Proposition 3.6.3. With mH and mK as above, the Ramsey degree mG of Un satisfies
mG ≤ mH ·mK.

Proof. Write Hn := H/(H ∩ Un) and Kn := K/π[Un]. Then we have an
inclusion map Hn ↪→ Gn as well as a projection map πn : Gn → Kn, both of
which respect the various left actions. Furthermore, the equivalence relation
En induced by πn is exactly the orbit equivalence relation of the left H-action
on Gn. From now on, we will view Hn as a subset of Gn.

Let γ : Gn → r be a coloring. Find {gk : k < ω} ⊆ G so that {gk · Hn :
k < ω} lists the En-classes in Gn. We now inductively define a sequence
of colorings {γk : k < ω} ⊆ rGn . Set γ = γ0. If γk is defined for some
k < ω, consider γk · gk|Hn . We can find pk ∈ S(H) ⊆ S(G) so that |γk · gk ·
pk[Hn]| ≤ mH . Then set γk+1 = γk · gk · pk · g−1

k . Note that |γk+1[gk Hn]| ≤ mH .
Also notice that gk · pk · g−1

k ∈ S(H), implying that for any i ≤ k, we have
γk+1[gi Hn] ⊆ γk[gi Hn]. Let δ : Gn → r be any cluster point of {γk : k < ω}.
Then for each k < ω, δ[gk Hn] is a subset of r of size at most mH . This allows
us to produce a finite coloring η : Kn → [mH ]

≤r, and we can find q ∈ S(G)
with |η · π(q)[Kn]| ≤ mK. It follows that δ · q[Gn] ≤ mH ·mK as desired.

3.6.2 The general case

In the general case, we will need the following analogue of Theorem 3.6.2.
If G is a Polish group equipped with a compatible left-invariant metric of
diameter 1 and X is a compact metric space, then LipG(X) will denote the
space of 1-Lipschitz functions from G to X. When endowed with the topology
of pointwise convergence, LipG(X) becomes a compact space. We have a
right action of G on LipG(X); if f ∈ LipG(X) and g ∈ G, then f · g is given by
f · g(h) = f (gh). This action is continuous, turning LipG(X) into a G-flow.

Theorem 3.6.4. M(G) is metrizable iff for every c > 0, there is k < ω so that if X
is a compact metric space and f ∈ LipG(X), there is φ ∈ f · G so that φ[G] ⊆ X
can be covered by k-many balls of radius c.

Remark. One should think of k < ω above as the “Ramsey degree” of the constant
c > 0, and we will use this terminology.
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Proof. Assume first that M(G) is metrizable. Fact 3.3.3 gives M(G) a canoni-
cal compatible metric ∂ which satisfies the following property: for any G-map
ψ : M(G) → S(G), for any compact metric space X, and for any 1-Lipschitz
function f : G → X, then upon extending f to S(G), the function f ◦ ψ is
1-Lipschitz for ∂.

For any function φ ∈ f · G with φ · G minimal, there is a minimal subflow
M ⊆ S(G) and p ∈ M with φ = f · p. It follows that φ[G] = f [M]. Given
c > 0, pick k < ω so that M(G) can be covered by k-many ∂-balls of radius c.
Then if ψ : M(G) → M is an isomorphism, f ◦ ψ is 1-Lipschitz and the result
follows.

For the other direction, suppose M(G) is not metrizable. Fixing minimal
M ⊆ S(G) and mimicking the proof of Lemma 2.5 in [BMT], we can find a
constant c > 0, {pn : n < ω} ⊆ M, and functions { fn : n < ω} ⊆ LipG([0, 1]).
with fn(pn) = c and fm(pn) = 0 whenever m 6= n. Then for any N < ω, we
can form f : G → [0, 1]N given by f = ( fn)n<N . If p ∈ M, then f · p ∈
LipG([0, 1]N) has minimal orbit closure, but covering f · p[G] requires at least
N-many balls of radius c, and N < ω is arbitrary.

We now return to the setting where 1 → H → G → K → 1 is a short
exact sequence of Polish groups, and we assume that M(H) and M(K) are
metrizable. Therefore given c > 0, we let mH , mK < ω be the Ramsey degrees
of c for H and K, respectively.

Proposition 3.6.5. Suppose c > 0 and mH , mK < ω are as above. Then letting mG
denote the Ramsey degree of 2c in G, we have mG ≤ mH ·mK.

Proof. Let X be a compact metric space, and let γ ∈ LipG(X). Find group
elements {gi : i < [G : H]} so that {gi H : i < [G : H]} lists the elements
of K. We proceed much as in the non-Archimedean case. Set γ = γ0. If γα

is defined for some ordinal α < [G : H], find pα ∈ S(H) with the property
that γα · gα · pα[H] ⊆ X can be covered by at most mH-many balls of radius c.
Then set γα+1 = γα · gα · pα · g−1

α . If γβ has been defined for each β < α and
α is a limit ordinal, let γα be any cluster point of {γβ : β < α}.

Letting κ = [G : H] (so κ = ω or c), notice that for any α < κ, we have
γκ [gα H] ⊆ γα+1[gα H]. Now form K(X), the space of compact subsets of
X equipped with the Hausdorff metric. Notice that since γκ is 1-Lipschitz,
the function η : K → K(X) given by η(gα H) = γκ [gαH] is 1-Lipschitz. Find
q ∈ S(G) so that η · q[K] ⊆ K(X) can be covered by at most mK-many balls
of radius c. It follows that γκ · q[G] ⊆ X can be covered by at most mH ·mK
balls of radius 2c.

3.7 Questions

Analyzing the fibers

Our first question is a strengthening of Theorem 3.6.4, where we aim to de-
scribe the minimal H-flows of the form π−1({y}) for y ∈ M(K).
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Question 3.7.1. Let 1 → H → G π−→ K → 1 be a short exact sequence of Polish
groups with M(H) and M(K) metrizable. Is it the case that π−1({y}) ∼= M(H) for
every y ∈ M(K)?

In the interest of understanding this question better, we focus on the
case that G is non-Archimedean, and we continue to use notation from Sec-
tion 3.6.1. For each n < ω, let mH(n), mG(n), and mK(n) denote the Ramsey
degrees of the clopen subgroups H ∩Un, Un, and π[Un] in H, G, and K, re-
spectively. In Proposition 3.6.3, we showed that mG(n) ≤ mH(n) ·mK(n) for
every n < ω.

Proposition 3.7.2. Suppose for each n < ω, we have mG(n) = mH(n) · mK(n).
Then for any y ∈ M(K), we have π−1({y}) ∼= M(H).

We will need the following lemma.

Lemma 3.7.3. Suppose for each n < ω that γn : Gn → mG(n) is a surjective
coloring with γn · G minimal. Form γ = (γn)n<ω ∈ ∏ mG(n)Gn , and assume also
that γ · G is minimal. Then M(G) ∼= γ · G.

Remark. Notice that we may then think of M(G) as the space of all such γ =
(γn)n<ω.

Proof. We use some of the ideas from [Z2]. Recall that we have S(G) =
lim←− βGn. We let πn denote the projection onto coordinate n. Explicitly, given
p ∈ S(G), we have πn(p) = lim

g→p
gUn ∈ βGn. Notice that if gUn = hUn,

then πn(pg) = πn(ph). If x ∈ βGn, we set p · x = lim
gUn→x

πn(pg) ∈ βGn. If

p, q ∈ S(G), we note that πn(pq) = p · πn(q).
Let M ⊆ S(G) be a minimal subflow. It is shown in [Z2] that |πn[M]| =

mG(n). The map λγ : M → γ · G given by λγ(p) = γ · p is a G-map, and it
suffices to show that it is injective. Notice first that γ · p = (γn · p)n<ω for
any p ∈ S(G). Suppose u ∈ M is an idempotent such that γ = γ · u. For each
n < ω, consider the coloring λn

u : Gn → πn[M] given by λn
u(gUn) = πn(ug).

Then λn
u and γn · u = γn are both surjective, minimal colorings each taking

mG(n) values. Because mG(n) is the Ramsey degree of Un in G, we must have
that λn

u and γn are equivalent, i.e. for g0Un, g1Un ∈ Gn, we have πn(ug0) =
πn(ug1) iff γn(g0Un) = γn(g1Un).

So suppose γ · p = γ · q for some p, q ∈ M. In particular, upon extending
the coloring to βGn, we have γn(πn(p)) = γn(πn(q)). So also we have u ·
πn(p) = u ·πn(q). But since u is a left identity for M, we have πn(p) = πn(q).
Since n < ω is arbitrary, we have p = q as desired.

Proof of Proposition 3.7.2. Suppose mG(n) = mH(n) ·mK(n). Let γ = (γn)n<ω

be as in Lemma 3.7.3, so that M(G) ∼= γ · G. It is enough to show that
γ · H ∼= M(H). From the proof of Theorem 3.1.1, we know that γ · H is
minimal, so also each γn · H is minimal. These in turn factor onto γn|Hn · H,
so also (γn|Hn)n<ω · H is minimal. We then note that since γn was a surjective,
minimal mG(n)-coloring, we must have that γn|Hn is a surjective, H-minimal
mH(n)-coloring. Therefore we are done by Lemma 3.7.3.
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Unique ergodicity and open subgroups

Theorem 3.1.2 tells us that metrizability of the universal minimal flow and
unique ergodicity are stable under group extension. Therefore we can add
entries to the following table, describing which dynamical properties are pre-
served under which group-theoretic operations.

Amen. Ext. amen. Met. of UMF + unique ergo.
Group ext. X X X X
Count. prod. X X X X
Direct lim. X X × ×
Open subgrp X X X ?

The arguments for open subgroups can be found in the proof of Lemma
13 in [BPT]. We already proved that metrizability of the universal minimal
flow and unique ergodicity are stable under group extension and countable
products, thus we only need to prove that amenability and extreme amenabil-
ity are stable under group extension and direct limits. We will also produce
counter examples for the failure of stability of metrizability of the universal
minimal flow and unique ergodicity under direct limits.

We will use the following characterization of amenability (see [P1]):

Definition 3.7.4. A Polish group G is amenable if every continuous affine action
of G on a compact convex subspace of a locally convex topological vector space admits
a fixed point.

As this definition is very close to extreme amenability, we will only pro-
duce the proof of stability of amenability, the proof for extreme amenability
following the same steps.

Stability under group extension: We consider the short exact sequence

1→ H → G π−→ K → 1,

where H and K are amenable, and an affine continuous action G y X on a
convex compact space. H acts on X and therefore admits fixed points. Since
the action is affine, the set of fixed points is convex, it is closed by continuity
of the action. Morevover, K acts on this set of fixed point, and by amenability
this action also admits a fixed point. This point will then be G invariant.

Stability under direct limits: A group G is a direct limit of the sequence
(Gn)n<ω if we have

G0 ≤ · · · ≤ Gn ≤ · · · ≤ G

and
⋃

Gn is dense in G. We are interrested in the case where Gn is amenable
for all n ∈N.

Again, consider an affine continuous action G y X on a convex compact
space. Gn y X admits a fixed point xn. Since X is compact, (xn)n∈N admits
a cluster point x ∈ X. Then x is Gn-invariant for all n ∈ N, hence it is
G-invariant.

Counterexamples: In [KPT] appendix 2, it is proven that non compact lo-
cally compact group have non metrizable universal minimal flows. Moreover,
Weiss proved in [W] that discrete group are never uniquely ergodic. Hence,
any locally finite discrete group produce the counterexample we need, for
instance the group of permutations of N with finite support.

33



The next question concerns the question mark appearing in the array.

Question 3.7.5. Let G be a uniquely ergodic Polish group with metrizable universal
minimal flow and U an open subgroup. Is U uniquely ergodic?

Another question concerns the connection between M(G) metrizable and
unique ergodicity. For all known examples of uniquely ergodic Polish groups
G, we have that M(G) is metrizable.

Question 3.7.6. Let G be a uniquely ergodic Polish group. Is M(G) metrizable?
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CHAPTER 4

Action on the space of linear orderings

This is joint work with Todor Tsankov, it follows closely [JT].

4.1 Introduction

In this chapter, we will be interested in the invariant probability measures on
dynamical systems of the automorphism group Aut(M) of a homogeneous
structure M. More precisely, we will consider two specific systems: products
of the type ZM, where Z is a standard Borel space, and the compact space
LO(M) of all linear orders on M.

Our study of invariant measures on product spaces of the type ZM is in-
spired by the classical de Finetti theorem. One formulation of this theorem
is that the only ergodic measures on ZM invariant under the full symmetric
group Sym(M) are product measures of the type λM, where λ is some prob-
ability measure on Z. (Recall that a measure is ergodic if the only elements of
the measure algebra fixed by the group are ∅ and the whole space.) In our
first theorem, we obtain the same conclusion under a weaker hypothesis: that
the measure is invariant under the much smaller group Aut(M), provided
that the structure M satisfies certain model-theoretic conditions. We will say
that a structure M is transitive if the action Aut(M)y M is transitive.

Theorem 4.1.1. Let M be an ℵ0-categorical, transitive structure with no algebraic-
ity that admits weak elimination of imaginaries. Let Z be a standard Borel space and
consider the natural action Aut(M)y ZM. Then the only invariant, ergodic proba-
bility measures on ZM are product measures of the form λM, where λ is a probability
measure on Z.

We will discuss the model-theoretic hypotheses of the theorem in detail in
the next section, where we give all relevant definitions. Here we only remark
that they are all necessary (with the possible exception of ℵ0-categoricity) and
that they are satisfied, for example, by the random graph, the homogeneous
triangle-free graph, the dense linear order (Q,<), the universal, homoge-
neous partial order, and many other structures.
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The ergodicity assumption in the theorem is not essential: one can ob-
tain a description of all invariant measures using the ergodic decomposition
theorem.

A different formulation of the theorem that does not involve the group
and that would perhaps be more appealing to model theorists is the follow-
ing. Let M satisfy the hypothesis of the theorem and let {ξa : a ∈ M} be a
family of random variables. Suppose that for all tuples ā, b̄ ∈ Mk that have
the same type, we have that (ξa0 , . . . , ξak−1) and (ξb0 , . . . , ξbk−1

) have the same
distribution. Then the family {ξa : a ∈ M} is conditionally independent over
the tail σ-field T. The tail σ-field is defined by

T =
⋂{
〈ξa : a /∈ F〉 : F ⊆ M finite

}
,

where 〈·〉 denotes the generated σ-field. It turns out that under the hypothe-
sis of Theorem 4.1.1, the invariant σ-field and the tail σ-field coincide.

In fact, Theorem 4.1.1 is a consequence of a rather more general inde-
pendence result that applies to any measure-preserving action of Aut(M) for
any ℵ0-categorical structure M (cf. Theorem 4.3.4). The proof is based on
representation theory and the results of [T1].

The model-theoretic formulation also permits to use Fraïssé’s theorem
and apply Theorem 4.1.1 even in situations where there is no homogeneity
or an obvious group present. For example, we can recover a theorem of Ryll-
Nardzewski [RN], which is another well-known strengthening of de Finetti’s
theorem; cf. Corollary 4.3.7.

Theorem 4.1.1 was announced in the habilitation memoir of the second
author [T2]. Later, some independent related work has been done by Acker-
man [A1] and Crane–Towsner [CT]. They consider a different class of homo-
geneous structures (with combinatorial assumptions on the amalgamation)
and use completely different methods.

Next we consider Aut(M)-invariant probability measures on the compact
space LO(M) of linear orders on M. The systematic study of these measures
was initiated by Angel, Kechris, and Lyons in [AKL]. In most known exam-
ples, the universal minimal flow of Aut(M) is a subflow of the flow LO(M) of
all linear orders on M. In these situations, classifying the invariant measures
on LO(M) gives information about all minimal flows of the group as well as
other properties of G that can be expressed dynamically.

In the present chapter, we adopt a new approach to the unique ergodic-
ity problem on the space of linear orders, based on the generalization of de
Finetti’s theorem that we discussed above. It has the advantage of working
under rather general model-theoretic assumptions (which are mostly neces-
sary) and can also give information about the invariant measures even in the
absence of unique ergodicity. Our main theorem is the following.

Theorem 4.1.2. Let M be a transitive, ℵ0-categorical structure with no algebraic-
ity that admits weak elimination of imaginaries. Consider the action Aut(M) y
LO(M). Then exactly one of the following holds:

1. The action Aut(M)y LO(M) has a fixed point (i.e., there is a definable linear
order on M);

2. The action Aut(M)y LO(M) is uniquely ergodic.

Theorem 4.1.2 recovers almost all known results about unique ergodicity
of LO(M). More specifically, it applies to the following structures:
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• the random graph, the Kn-free homogeneous graphs, various homoge-
neous hypergraphs, and the universal homogeneous tournament [AKL];

• the generic directed graphs obtained by omitting a (possibly infinite)
set of tournaments or a fixed, finite, discrete graph [PS].

The class of structures satisfying the hypothesis of Theorem 4.1.2 is quite
a bit richer than the examples above. We should mention, however, that it
does not cover all cases where unique ergodicity of the space of linear orders
is known. The exception is the rational Urysohn space U0: it was proved
in [AKL] that the action Iso(U0) y LO(U0) is uniquely ergodic but U0 is
not ℵ0-categorical (as it has infinitely many 2-types). It also does not apply
directly to prove unique ergodicity for proper subflows of LO, for example
for the automorphism group of the countable-dimensional vector space over
a finite field.

The proof of Theorem 4.1.2 is the object of Section 4.4, where it is stated
as Theorem 4.4.1.

We also have an interesting corollary of Theorem 4.1.2 concerning amenabil-
ity.

Corollary 4.1.3. Suppose that M satisfies the assumptions of Theorem 4.1.2 and let
G = Aut(M). If the action G y LO(M) is not minimal and has no fixed points,
then G is not amenable.

Corollary 4.1.3 applies for example to the automorphism groups of the
universal homogeneous partial order and the circular directed graphs S(n)
for n ≥ 2, recovering results of Kechris–Sokić [KS] and Zucker [Z1], respec-
tively.

Corollary 4.1.3 also has an interesting purely combinatorial consequence
of which we do not know a combinatorial proof. Recall that a Fraïssé class F

(or its Fraïssé limit) has the Hrushovski property if partial automorphisms of
elements of F extend to full automorphisms of superstructures in F. It has
the ordering property if for every A ∈ F, there exists B ∈ F such that for any
two linear orders < and <′ on A and B respectively, there is an embedding
of (A,<) into (B,<′). The Hrushovski and the ordering properties are im-
portant in the theory of homogeneous structures and in structural Ramsey
theory but are not a priori related. We refer the reader to [KR] and [NR] for
more details about them.

Corollary 4.1.4. Suppose that the homogeneous structure M satisfies the assump-
tions of Theorem 4.1.2. If M has the Hrushovski property, then it has the ordering
property.

The chapter is organized as follows. In Section 4.2, we recall some prereq-
uisites from model theory, mostly about imaginaries and Meq. While using
standard model-theoretic terminology, we give all definitions and proofs in
the language of permutation groups in the hope of making the chapter more
accessible to non-logicians. In Section 4.3, we recall some facts from repre-
sentation theory and prove Theorem 4.1.1. Section 4.4 is devoted to the proof
of Theorem 4.1.2 and its corollaries. Finally, in Section 4.5, we briefly discuss
some examples and possible extensions of Theorem 4.1.2.

Aknowledgements: We would like to thank Itaï Ben Yaacov and David
Evans for helping us eliminate imaginaries in some examples and Lionel
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Investissements d’Avenir program of Université de Lyon (ANR-16-IDEX-0005).

4.2 Preliminaries from model theory

We start by recalling some basic definitions. A signature L is a collection of re-
lation symbols {Ri} and function symbols {Fj}, each equipped with a natural
number called its arity. An L-structure is a set M together with interpreta-
tions for the symbols in L: each relation symbol Ri of arity ni is interpreted
as an ni-ary relation on M, that is, a subset of Mni , and each function symbol
Fj of arity nj is interpreted as a function Mnj → M. Functions of arity 0
are called constants. A substructure of M is a subset of M closed under the
functions, equipped with the induced structure. The age of M is the collection
of isomorphism classes of all finitely generated substructures of M. If ā is a
tuple from M, we denote by 〈ā〉 the substructure of M generated by ā. If the
signature contains only relation symbols (which will usually be the case for
us), then a substructure of M is just a subset with the induced relations.

The automorphism group of M, Aut(M), is the set of all permutations of M
that preserve all relations and functions. Aut(M) is naturally a topological
group if equipped with the pointwise convergence topology (where M is
taken to be discrete). If M is countable, then Aut(M) is a Polish group.
If G = Aut(M) and A ⊆ M is a finite subset, we will denote by GA the
pointwise stabilizer of A in G. A basis at the identity of G is given by the
subgroups {GA : A ⊆ M is finite}. A topological group which admits a basis
at the identity consisting of open subgroups is called non-archimedean.

The type of a tuple ā ∈ Mk, denoted by tp ā, is the isomorphism type of the
substructure 〈ai : i < k〉 (with the ai named). Thus two tuples ā and b̄ have
the same type (notation: ā ≡ b̄) if the map ai 7→ bi extends to an isomorphism
〈ā〉 → 〈b̄〉. A k-type is simply the type of some tuple ā ∈ Mk. The structure
M is called homogeneous if for every two tuples ā and b̄ with ā ≡ b̄, there
exists g ∈ Aut(M) such that g · ā = b̄. We will say that M is transitive if there
is only one 1-type, i.e., G acts transitively on M.

What we call type is usually called quantifier-free type in the model-theoretic
literature. However, for homogeneous structures, which is our main interest
here, the two notions coincide.

An age is a countable family of (isomorphism types of) finitely generated
L-structures that is hereditary (i.e., closed under substructures) and directed
(i.e., for any two structures in the class, there is another structure in the class
in which they both embed). If M is a given countable structure, its age is the
collection of finitely generated structures that embed into it. If M is homo-
geneous, then its age has another special property called amalgamation. An
age with amalgamation is called a Fraïssé class. Fraïssé’s theorem states that
conversely, any Fraïssé class is the age of a unique countable, homogeneous
structure, called its Fraïssé limit. Thus in order to define a homogeneous struc-
ture, one needs only to specify its age; and, as already mentioned, combina-
torial properties of the age are reflected in the dynamics of the automorphism
group of the limit.

The structures that will be especially important for us are the ℵ0-categorical
ones. A structure is ℵ0-categorical if its first-order theory has a unique count-
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able model up to isomorphism. Another characterization that will be crucial
is given by the Ryll-Nardzewski theorem: M is ℵ0-categorical iff the diagonal
action Aut(M) y Mk has finitely many orbits for every k (a permutation
group with this property is called oligomorphic). In particular, if L is a signa-
ture that contains only finitely many relational symbols of each arity and no
functions, then every homogeneous L-structure is ℵ0-categorical. Conversely,
if M is any ℵ0-categorical structure, one can render it homogeneous by ex-
panding the signature to include all first-order formulas (this is another facet
of the Ryll-Nardzewski theorem). As we never make assumptions about the
signature, in what follows, we will tacitly assume that every ℵ0-categorical
is rendered homogeneous by this procedure. If G is any closed subgroup of
the full permutation group Sym(N) of some countable set N, one can con-
vert N into a homogeneous structure with Aut(N) = G by naming, for every
k, each G-orbit on Nk by a k-ary relation symbol. If the action G y N is
oligomorphic, then the resulting structure will be ℵ0-categorical.

For the rest of the chapter, we will only consider ℵ0-categorical structures.
In this setting, all model-theoretic information about M is captured by the
actions Aut(M) y Mk. We refer the reader to Hodges [H3] for more details
on Fraïssé theory, ℵ0-categorical structures, and their automorphism groups.

Let M be ℵ0-categorical, G = Aut(M), and let A ⊆ M be finite. The
algebraic closure of A (denoted acl(A)) is the union of all finite orbits of GA on
M. We will say that M has no algebraicity if the algebraic closure is trivial, that
is, acl(A) = A for all finite A ⊆ M. By Neumann’s lemma [H3, Lemma 4.2.1],
having no algebraicity is equivalent to the following: for all finite A, B ⊆ M,
there exists g ∈ G such that g · A ∩ B = ∅.

An imaginary element of M is the equivalence class of a tuple ā ∈ Mk

for some G-invariant equivalence relation on Mk. We denote by Meq the
collection of all imaginaries. In symbols,

Meq =
⊔
{Mk/E : k ∈N and E is a G-invariant equivalence relation on Mk}.

It is clear that G also acts on Meq and, moreover, the action G y Meq is
locally oligomorphic, i.e., it is oligomorphic on any union of finitely many G-
orbits (see, e.g., [T1, Theorem 2.4]).

We can define for a finite A ⊆ Meq,

acleq A = {e ∈ Meq : GA · e is finite}.

Similarly, we can define the definable closure as

dcleq A = {e ∈ Meq : GA · e = {e}}.

For arbitrary A ⊆ Meq, we define acleq A to be the union of acleq A′ for all
finite A′ ⊆ A. Similarly for dcleq. A subset A ⊆ Meq is algebraically closed
if acleq A = A. In other words, A is algebraically closed if for all finite
A′ ⊆ A, GA′ has only infinite orbits outside of A. We have the following
basic properties of the algebraic closure.

Lemma 4.2.1. The following hold for an ℵ0-categorical M:

1. For all A ⊆ Meq, acleq A is algebraically closed;

2. If A, B ⊆ Meq are algebraically closed, then so is A ∩ B.
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Proof. 1 A permutation group theoretic proof of this fact can be found for
example in [ET, Lemma 2.4].

2 Suppose that e ∈ (acleq C) \ (A ∩ B) for some finite C ⊆ A ∩ B. Then
there are finite A′ ⊆ A, B′ ⊆ B such that C = A′ ∩ B′. Suppose for defi-
niteness that e /∈ A. As A is algebraically closed, GC · e ⊇ GA′ · e is infinite,
contradiction.

M admits elimination of imaginaries if all imaginary elements are interdefin-
able with real tuples, that is, for every e ∈ Meq, there exists k ∈N and a tuple
ā ∈ Mk such that e ∈ dcleq ā and ā ∈ dcleq e, or equivalently, Ge = Gā. M
admits weak elimination of imaginaries if for every imaginary element e ∈ Meq,
there exists a real tuple ā ∈ Mk such that e ∈ dcleq ā and ā ∈ acleq e. Equiv-
alently, for every proper, open subgroup V < G, there exists k and a tuple
ā ∈ Mk such that Gā ≤ V and [V : Gā] < ∞.

The two hypothesis of no algebraicity and weak elimination of imaginar-
ies combined give us a complete understanding of the acleq operator.

Lemma 4.2.2. Suppose that M is ℵ0-categorical and that it has no algebraicity and
admits weak elimination of imaginaries. Then for all A, B ⊆ M, we have that

acleq A ∩ acleq B = dcleq(A ∩ B).

Proof. The ⊇ inclusion being clear, we only check the other. We may assume
that A and B are finite. Suppose that e = [c̄]E ∈ acleq A, where c̄ ∈ Mk and
E is a G-invariant equivalence relation. We will show that if e /∈ dcleq ∅,
then the tuple c̄ is contained in A. Consider the group H = GA∪{e}. As
GA · e is finite, H has finite index in GA, so it is open. By weak elimination
of imaginaries, there exists a tuple ā such that Gā ≤ H and [H : Gā] < ∞.
In particular, [GA : Gā] < ∞. By the no algebraicity assumption, ā must be
contained in A, so, in particular, H = GA, i.e., GA fixes e. If c̄ is not contained
in A, then the orbit GA · c̄ is infinite and is contained in [c̄]E, which together
with weak elimination of imaginaries implies that e ∈ dcleq ∅, contradiction.
Thus we conclude that c̄ is contained in A. An analogous argument shows
that c̄ is also contained in B and hence, e ∈ dcleq(A ∩ B).

4.3 Unitary representations and a generalization of
de Finetti’s theorem

Recall that a unitary representation of a topological group G is a continuous
action on a complex Hilbert space H by unitary operators, or, equivalently, a
continuous homomorphism from G to the unitary group of H. A represen-
tation G y H is irreducible if H contains no non-trivial, G-invariant, closed
subspaces.

In the case where M is an ℵ0-categorical structure and G = Aut(M), the
action G y Meq gives rise to a representation G yλ `2(Meq) given by

(λ(g) · f )(e) = f (g−1e), where f ∈ `2(Meq), g ∈ G, e ∈ Meq.

It turns out that this representation captures all of the representation theory
of G. More precisely, it follows from the results of [T1] that the following
holds.
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Fact 4.3.1. Let M be an ℵ0-categorical structure and let G = Aut(M). Then
every unitary representation of G is a sum of irreducible representations and every
irreducible representation is isomorphic to a subrepresentation of λ. In particular,
every representation of G is a subrepresentation of a direct sum of copies of λ.

Proof. The first claim is part of the statement of [T1, Theorem 4.2]. For the
second, it follows from [T1, Theorem 4.2] that every irreducible representa-
tion of G is an induced representation of the form IndG

H(σ), where H is an
open subgroup of G and σ is an irreducible representation of H that factors
through a finite quotient K = H/V of H. (We refer the reader to [T1] for
the definition of induced representation and more details.) As V ≤ G is
open, there exists a tuple ā from M such that Gā ≤ V. Define the G-invariant
equivalence relation E on G · ā by

(g1 · ā) E (g2 · ā) ⇐⇒ g1V = g2V

and note that V = G[ā]E . In particular, the quasi-regular representation
`2(G/V) is isomorphic to the subrepresentation `2(G · [ā]E) of `2(Meq). On
the other hand,

`2(G/V) ∼= IndG
V(1V) ∼= IndG

H(IndH
V (1V)) ∼= IndG

H(λK),

where λK denotes the left-regular representation of K. As σ (being an irre-
ducible representation of the finite group K) is a subrepresentation of λK, the
result follows.

If H is a Hilbert space, H1,H2,H3 are subspaces with H2 ⊆ H1 ∩H3,
we write H1 ⊥H2 H3 if H1 	H2 ⊥ H3 	H2. If we let p1, p2, p3 denote the
corresponding orthogonal projections, this is equivalent to p3 p1 = p2 p1.

If G y H is a unitary representation of G and A ⊆ Meq, let

HA = {ξ ∈ H : GA′ · ξ = ξ for some finite A′ ⊆ A}. (4.1)

It is clear that HA is a closed subspace of H.

Proposition 4.3.2. Let M be ℵ0-categorical and G = Aut(M). Let A and B be
algebraically closed subsets of Meq. Then HA ⊥HA∩B HB.

Proof. As for any subset C ⊆ Meq, the projection pC onto HC commutes with
direct sums and subrepresentations, by Fact 4.3.1, we can reduce to the case
where H = `2(Meq) and π = λ. If ξ ∈ H, we view it as a function Meq → C
and we let supp ξ = {e ∈ Meq : ξ(e) 6= 0}.

The main observation is the following: if C ⊆ Meq is algebraically closed,
then

HC = {ξ ∈ H : supp ξ ⊆ C}.
The ⊇ inclusion follows from the fact that vectors with finite support are
dense. For the other inclusion, as the subspace on the right-hand side is
closed, it suffices to see that for all finite C′ ⊆ C and all ξ fixed by GC′ ,
supp ξ ⊆ C. Let e ∈ Meq be such that ξ(e) 6= 0. As ξ is fixed by GC′ , it must
be constant on the orbit GC′ · e. As ξ is in `2, this implies that GC′ · e is finite,
i.e., e ∈ acleq C′ ⊆ C.

Now it follows from the hypothesis and Lemma 4.2.1 that

HA 	HA∩B = {ξ ∈ H : supp ξ ⊆ A \ B} and
HB 	HA∩B = {ξ ∈ H : supp ξ ⊆ B \ A},

whence the result.
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Remark 4.3.3. A more model-theoretic treatment of similar ideas, using the
formalism of semigroups of projections, can be found in [BIT].

Now consider a measure-preserving action G y (X, µ), where (X, µ) is
a probability space. As G is not locally compact, one has to take some care
how this is defined. We denote by MALG(X, µ) the Boolean algebra of all
measurable subsets of X with two such sets identified if their symmetric dif-
ference has measure 0. MALG(X, µ) is naturally a metric space with the
distance between A and B given by µ(A4B). We denote by Aut(X, µ) the
group of all isometric automorphisms of MALG(X, µ), that is, the group of
all automorphisms of the Boolean algebra that also preserve the measure.
Aut(X, µ) is naturally a topological group if equipped with the pointwise
convergence topology coming from its action on MALG(X, µ). If (X, µ) is
standard (i.e., X is a standard Borel space and µ is a Borel probability mea-
sure), then Aut(X, µ) is a Polish group. For us, a measure-preserving action
G y (X, µ) will mean a continuous homomorphism G → Aut(X, µ), that
is, G acts on measurable sets and measurable functions (up to measure 0)
but not necessarily on points. It is easy to see that if X is standard and one
has a jointly measurable action on points G y X that preserves the measure
µ, then this gives an action in our sense. The converse is also true for non-
archimedean groups but this is less obvious (see [GW2, Theorem 2.3]) and
we will not need it.

If F1,F2,G are σ-fields in a probability space, we will denote by F1 ⊥⊥G F2
the fact that F1 and F2 are conditionally independent over G, i.e., E(ξ | F2G) =
E(ξ | G) for every F1-measurable random variable ξ. If G is trivial, we will
write simply F1 ⊥⊥ F2 and will say that F1 and F2 are independent. We will
freely use the standard facts about conditional independence, as described,
for example, in [K1], and that go in model theory by the name of forking
calculus.

If G = Aut(M) and a measure-preserving action G y X is given, for
A ⊆ Meq, we denote by FA the σ-field of measurable subsets of X generated
by the GA′ -fixed subsets for all finite A′ ⊆ A. The following is the main result
of this section.

Theorem 4.3.4. Let M be an ℵ0-categorical structure and let G = Aut(M). Let
G y (X, µ) be any measure-preserving action on a probability space. Then the
following hold:

1. For all algebraically closed A, B ⊆ Meq, we have that FA ⊥⊥FA∩B FB.

2. If M has no algebraicity and admits weak elimination of imaginaries, then for
all A, B ⊆ M, we have that FA ⊥⊥FA∩B FB.

Proof. 1 Consider the Koopman representation G yπ L2(X) given by

(π(g) · f )(x) = f (g−1 · x), where f ∈ L2(X), g ∈ G, x ∈ X.

For C ⊆ Meq, we denote by L2(FC) the subspace of L2(X) consisting of
all FC-measurable functions. Observe that if we write H = L2(X), then
L2(FC) = HC (as defined in (4.1)). To show the required independence, it
suffices to see that for all ηA ∈ L2(FA), we have that

E(ηA | FB) = E(ηA | FA∩B)
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(see, e.g., [K1, Proposition 5.6]). Recalling that the conditional expectation
E(· | FC) for functions in L2 is just the projection operator onto HC, this
follows directly from Proposition 4.3.2.

2 Denote A′ = acleq A, B′ = acleq B, C = dcleq(A∩ B). By Lemma 4.2.1, A′

and B′ are algebraically closed and by Lemma 4.2.2, we have that C = A′ ∩ B′.
Now 1 applied to A′ and B′ yields that FA′ ⊥⊥FC FB′ . It only remains to
observe that FC = FA∩B and that FA ⊆ FA′ , FB ⊆ FB′ .

Theorem 4.3.4 has the following immediate corollary, which can be viewed
as a generalization of the classical theorem of de Finetti.

Corollary 4.3.5. Let M be an ℵ0-categorical structure with no algebraicity that
admits weak elimination of imaginaries and let G = Aut(M). Consider a family of
random variables {ξa : a ∈ M} whose joint distribution is invariant under G. Then
these variables are conditionally independent over the G-invariant σ-field. If the G-
invariant σ-field is trivial and M is transitive, then the ξa are i.i.d. (independent,
identically distributed).

Proof. Let a1, . . . , an, b1, . . . , bm ∈ M with {a1, . . . , an} ∩ {b1, . . . , bm} = ∅.
Then it follows from Theorem 4.3.4 2 that

(ξa1 , . . . , ξan) ⊥⊥
F∅

(ξb1 , . . . , ξbm)

and it remains to observe that F∅ is precisely the G-invariant σ-field.
If M is moreover transitive, the variables ξa must have the same distribu-

tion by G-invariance.

Remark 4.3.6. Using the properties of independence and an inductive argu-
ment, it is possible to replace the no algebraicity and weak elimination of
imaginaries assumption above with a slightly weaker one. Namely, we only
need that acleq A ∩ acleq B = dcleq ∅ for any disjoint A and B where B is a
singleton, rather than for arbitrary A and B.

An action G y (X, µ) is called ergodic if the G-invariant σ-field is trivial.
Thus in the case of ergodic actions, one obtains genuine independence in
Corollary 4.3.5.

Another interesting remark is that by virtue of Fraïssé’s theorem, Corol-
lary 4.3.5 can be applied even in situations in which there is no obvious
group around. This is best illustrated by the following example, which is
a well-known theorem of Ryll-Nardzewski [RN]. If ξ̄ = (ξ0, . . . , ξn−1) and
η̄ = (η0, . . . , ηn−1) are tuples of random variables, we use the notation ξ̄ ≡ η̄
to signify that ξ̄ and η̄ have the same distribution.

Corollary 4.3.7 (Ryll-Nardzewski). Let µ be a Borel probability measure on RN

and denote by ξi : RN → R the projection on the i-th coordinate. Suppose that
for all i0 < · · · < ik−1, we have that (ξi0 , . . . , ξik−1

) ≡ (ξ0, . . . , ξk−1). Denote
by φ : RN → RN the one-sided shift defined by φ(x0, x1, . . .) = (x1, x2, . . .) and
suppose moreover that µ is φ-ergodic. Then µ is a product measure.

Proof. Here the relevant structure is (N,<) which has no automorphisms. Its
age is the class of finite linear orders. This age amalgamates and its Fraïssé
limit is the countable dense linear order without endpoints (Q,<), which
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satisfies the hypothesis of Corollary 4.3.5. Consider the random variables
(ξa : a ∈ Q) whose distribution is defined by

(ξa0 , . . . , ξak−1) ≡ (ξ0, . . . , ξk−1) for all a0 < · · · < ak−1.

In order to apply Corollary 4.3.5 and conclude, we only need to check that
the Aut(Q)-invariant σ-field is trivial. Suppose that S is an Aut(Q)-invariant
event. Let Fn be the σ-field generated by ξ0, . . . , ξn−1. Then, by invariance,
for every ε, there exists n and an Fn-measurable event Sε with P(S4Sε) < ε.
This shows that S is measurable with respect to the original σ-field

∨
n Fn. As

φ extends to an automorphism of Q, we obtain that φ−1(S) = S and we are
done.

4.4 Invariant measures on the space of linear or-
derings

In this section, we fix a homogeneous, ℵ0-categorical structure M with no
algebraicity that admits weak elimination of imaginaries and we let G =
Aut(M). We denote by LO(M) the space of all linear orders on M, that is

LO(M) = {x ∈ 2M×M : x is a linear order}.

LO(M) is a closed subset of 2M×M and thus a compact space. If x ∈ LO(M),
we will use the more traditional infix notation a <x b instead of (a, b) ∈ x.
Sym(M) (and, in particular, G) acts naturally on LO(M) as follows:

a <g·x b ⇐⇒ g−1 · a <x g−1 · b.

Our goal is to study the G-invariant measures on LO(M). There is always at
least one such measure µu which is, in fact, invariant under all of Sym(M).
It is defined by

µu(a0 <x · · · <x ak−1) = 1/k! for all distinct a0, . . . , ak−1 ∈ M.

Here and below, we use the usual notation from probability theory and write
a0 <x · · · <x ak−1 for the event {x ∈ LO(M) : a0 <x · · · <x ak−1}. We
will call µu the uniform measure. Glasner and Weiss [GW1] have shown that
it is the only measure invariant under the whole symmetric group. (The
proof is simple: the way the tuple (a0, . . . , ak−1) is ordered gives a partition
of LO(M) into k! pieces and for every two elements of this partition, there is
an element of Sym(M) that sends one to the other, so they must all have the
same measure.)

Our main theorem is the following.

Theorem 4.4.1. Let M be a transitive, ℵ0-categorical structure with no algebraicity
that admits weak elimination of imaginaries. Consider the action G y LO(M).
Then exactly one of the following holds:

1. The action G y LO(M) has a fixed point (i.e., there is a definable linear order
on M);

2. µu is the unique G-invariant measure on LO(M).
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We describe a method to construct the uniform measure on LO(M) that
will help illustrate our strategy for the proof. Let

Ω = {z ∈ [0, 1]M : z(a) 6= z(b) for all a 6= b}

and define the map π : Ω→ LO(M) by

a <π(z) b ⇐⇒ z(a) < z(b) for a, b ∈ M. (4.2)

The group G acts naturally on [0, 1]M, Ω is a G-invariant set, and the map
π is G-equivariant. Thus any G-invariant measure on Ω gives rise, via π,
to a G-invariant measure on LO(M). In view of Corollary 4.3.5, the only
G-invariant, ergodic measures on [0, 1]M are of the form λM, where λ is a
measure on [0, 1]. It is clear that (λM)(Ω) = 1 iff λ is non-atomic and in that
case, π∗(λM) = µu (this is true because λM is Sym(M)-invariant and as we
noted above, µu is the only Sym(M)-invariant measure on LO(M)). What
we aim to show below is that if M does not admit a G-invariant linear order,
then the map π is invertible almost everywhere for any G-invariant, ergodic
measure on LO(M).

Let µ be an ergodic, G-invariant measure on LO(M). We will use prob-
abilistic notation: we will denote by <x (or only by < if there is no danger
of confusion) a random element of LO(M) chosen according to µ, by P the
probability of events and by E the expectation. If A is an event, we denote by
1A its characteristic function. For every a ∈ M, we denote by Fa the σ-field
fixed by Ga.

For every 2-type τ and every a ∈ M, we define a random variable ητ
a by

ητ
a = P(c < a | Fa), where tp(ac) = τ.

The definition above does not depend on c but only on τ. Indeed, if c′ ∈ M
is another element with tp ac′ = τ, and ζτ

a = P(c′ < a | Fa), then for every
ξ ∈ L2(Fa), invariance implies that 〈ξ, 1c<a〉 = 〈ξ, 1c′<a〉, so ητ

a = ζτ
a a.s.

Lemma 4.4.2. The random variables (ητ
a )a∈M are i.i.d.

Proof. This is a direct consequence of Corollary 4.3.5.

The following is a basic fact about conditional expectation that we will
need.

Lemma 4.4.3. Let X ≥ 0 be an integrable random variable, A be an event and F be
a σ-field. Suppose that X > 0 on A. Then E(X | F) > 0 on A.

Proof. Let Y = E(X | F). Suppose, towards a contradiction, that for some
measurable C,

∫
C X > 0 but

∫
C Y = 0. In particular, C ⊆ {Y = 0}. As the set

{Y = 0} is in F, we have:

0 <
∫

C
X ≤

∫
Y=0

X =
∫

Y=0
Y = 0,

contradiction.

If τ is a 2-type and a ∈ M, we define

Dτ(a) = {b ∈ M : tp ab = τ}.

The next lemma is the main tool that allows us to recover the order from the
random variables (ητ

a )a∈M.
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a

y1

τ

y2

y3

y4 y2n−2

y2n−1

b

τττ ττ

Figure 4.1: An alternating τ-path between a and b

Lemma 4.4.4. Let the type τ and a, b ∈ M be such that Dτ(a)∩Dτ(b) 6= ∅. Then
almost surely,

a < b =⇒ ητ
a ≤ ητ

b .

Moreover, for any c ∈ Dτ(a) ∩ Dτ(b), we have that almost surely,

a < c < b =⇒ ητ
a < ητ

b .

Proof. It follows from Theorem 4.3.4 that for distinct a, b, c ∈ M,

a < b,Fb ⊥⊥
Fa

c < a,

so
a < b ⊥⊥

FaFb
c < a. (4.3)

Let c ∈ Dτ(a) ∩ Dτ(b). Using the fact that Fa ⊥⊥Fb c < b (which follows
from Theorem 4.3.4), (4.3), and their variants obtained by exchanging a and
b, we have:

E(1a<b | FaFb)(η
τ
b − ητ

a ) = E(1a<b | FaFb)
(
P(c < b | Fb)− P(c < a | Fa)

)
= E(1a<b | FaFb)

(
E(1c<b | FbFa)− E(1c<a | FaFb)

)
= E(1a<b(1c<b − 1c<a) | FaFb) ≥ 0.

By Lemma 4.4.3, E(1a<b | FaFb) is a.s. strictly positive on the event a < b.
This implies that on a < b, we have that ητ

a ≤ ητ
b . The second assertion

also follows from Lemma 4.4.3 because 1a<b(1c<b − 1c<a) = 1 on the event
a < c < b and hence, the last inequality is strict on that event.

We will also need a combinatorial fact about 2-types. For a 2-type τ
and a, b ∈ M, we say that y0, y1, . . . , y2n is an alternating τ-path (or just a
τ-path for brevity) between a and b if y0 = a, y2n = b and tp(y2iy2i+1) =
tp(y2i+2y2i+1) = τ for all i = 0, . . . , n − 1 and all of the nodes of the path
are distinct. The interior of the path is the collection of all nodes except its
endpoints. See Figure 4.1.

Lemma 4.4.5. For all distinct a, b ∈ M and any 2-type τ, there is k ∈N such that
for any finite A ⊆ M, there is an alternating τ-path of length k from a to b whose
interior avoids A. In particular, there are infinitely many τ-paths between a and b of
length k with pairwise disjoint interiors.

Proof. Let us first prove that there is an alternating τ-path between a and b.
Write c ∼τ d if there is an alternating τ-path between c and d or c = d. We
check that ∼τ is an equivalence relation. Symmetry and reflexivity are clear
from the definition. To check transitivity, consider a τ-path p1 from c0 to c1
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and a τ-path p2 from c1 to c2 and suppose that c0 6= c2. The concatenation
(y0, . . . , y2n) of p1 and p2 satisfies all the conditions of a τ-path except possi-
bly that vertices are distinct. Suppose for example that yi = yj for some i 6= j.
At least one of i and j is different from both 0 and 2n; suppose for definiteness
that this is true for i. By the no algebraicity assumption, there is an element
g ∈ G that fixes all points in p1 ∪ p2 \ {yi} and such that g · yi /∈ p1 ∪ p2.
Now replace yi by g · yi. Thus we have reduced the number of coincidences
in p1 ∪ p2. We can repeat this procedure several times to finally conclude that
there is a τ-path between c0 and c2 with distinct vertices.

By transitivity, there is c ∈ M such that tp ac = τ. By the no algebraicity
assumption, the orbit Gc · a is infinite, so the ∼τ-class of a is infinite. By
transitivity and weak elimination of imaginaries, it follows that the ∼τ-class
of a is all of M, so there is an alternating τ-path between a and b.

Now fix some alternating τ-path p between a and b and let k be the length
of p. By the no algebraicity assumption, there is g ∈ Gab that moves p to a
path whose interior is disjoint from A.

Denote by λτ the distribution of ητ
a ; this is a probability measure on [0, 1]

and by Lemma 4.4.2, it does not depend on a.

Lemma 4.4.6. Suppose that the measure λτ is non-atomic. Then for all a, b ∈ M,
we have that, almost surely,

a < b ⇐⇒ ητ
a < ητ

b .

Proof. First, we suppose that Dτ(a) ∩ Dτ(b) 6= ∅. The contrapositive of the
previous lemma gives us that in that case,

ητ
a < ητ

b =⇒ a < b. (4.4)

Next we consider the general case. Suppose that there exists an alternating
τ-path y0, . . . , y2n such that

ητ
y0

< ητ
y2

< · · · < ητ
y2n

. (4.5)

Then for all i, Dτ(y2i) ∩ Dτ(y2i+2) 6= ∅, so by the above observation, we ob-
tain that a = y0 < y2 < · · · < y2n = b. Now condition on ητ

a , ητ
b and suppose

that ητ
a < ητ

b . As the ητ
c are i.i.d. with non-atomic distribution, for a fixed

τ-path (y0, . . . , y2n) between a and b, (4.5) holds with positive probability that
only depends on n. By Lemma 4.4.5, there exist infinitely many τ-paths of the
same length between a and b with disjoint interiors and whether (4.5) holds
for them are independent events with the same probability. Thus almost
surely at least one of them happens and we conclude that (4.4) holds for all
a, b. For the reverse implication, it suffices to notice that P(ητ

a = ητ
b ) = 0.

Lemma 4.4.6 allows us to conclude in the case where λτ is non-atomic.

Lemma 4.4.7. Suppose that for some type τ, the distribution λτ is non-atomic. Then
µ = µu.

Proof. Define ρ : LO(M) → [0, 1]M by ρ(x)(a) = ητ
a (x) (ρ is defined µ-a.e.).

By Lemma 4.4.6, π ◦ ρ = id µ-a.e. (π is defined by (4.2)). By Lemma 4.4.2,
ρ∗µ = (λτ)M. Applying π to both sides, we obtain that

µ = π∗ρ∗µ = π∗(λ
τ)M = µu.
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Now we are left with the case where the distribution λτ has atoms for all
2-types τ and we will eventually conclude that there is a G-invariant linear
order on M.

From here on, as we will deal with several measures simultaneously, we
will incorporate the measure in our notation. If µ is an ergodic measure on
LO(M), τ is a 2-type, and p ∈ [0, 1] is an atom for the distribution λτ , we
define a new measure νµ,τ,p on basic clopen sets by

Pνµ,τ,p(a0 < · · · < ak−1) = Pµ(a0 < · · · < ak−1 | ητ
a0
= · · · = ητ

ak−1
= p), (4.6)

where a0, . . . , ak−1 are pairwise distinct elements of M. We note that as by
Theorem 4.3.4,

a0 < · · · < ak−1, ηa0 , . . . , ηak−1 ⊥⊥ ηb0 , . . . , ηbm−1

for any {b0, . . . , bm−1}∩{a0, . . . , ak−1}, we can condition additionally on ητ
b0
=

· · · = ητ
bm−1

= p on the right-hand side of (4.6) without changing the result.
For the next lemma, we will need the following well-known general er-

godicity criterion.

Proposition 4.4.8. Let G be a group and G y (X, µ) be a measure-preserving
action. Suppose that the collection

{A ∈ MALG(X, µ) : ∃g ∈ G g · A ⊥⊥ A}

is dense in MALG(X, µ). Then the action G y X is ergodic.

Proof. Suppose that B is G-invariant. For every ε > 0, there exist A and g
such that µ(A4B) < ε and g · A ⊥⊥ A. We have that

2(µ(A)− µ(A)2) = µ(A4g · A) ≤ µ(B4g · B) + 2ε = 2ε.

Taking a limit as ε → 0 yields that µ(B) − µ(B)2 = 0, so that µ(B) = 0 or
1.

Lemma 4.4.9. Let µ be a G-invariant, ergodic measure on LO(M), τ be a 2-type,
and p be an atom for λτ . Then νµ,τ,p extends to a G-invariant, ergodic measure on
LO(M).

Proof. For brevity, write ν = νµ,τ,p. To define ν on a general clopen set U, we
represent it as a disjoint union of basic clopen sets and use (4.6). It follows
from the remark after (4.6) that this is well-defined and gives rise to a finitely
additive measure on the Boolean algebra of clopen subsets of LO(M). Now
it follows from the Carathéodory extension theorem that ν extends to a Borel
measure on LO(M).

G-invariance of ν follows from (4.6) and the G-invariance of µ. Finally,
ergodicity follows from Proposition 4.4.8, whose hypothesis is verified by
virtue of Theorem 4.3.4 applied to µ.

If τ is a 2-type, say that a measure µ on LO(M) respects τ if for all a, b, c ∈
M such that tp ac = tp bc = τ and µ-a.e. x ∈ LO(M), c is not between a and
b in the order <x.

Lemma 4.4.10. Let µ be a G-invariant, ergodic measure on LO(M), τ be a 2-type,
and p be an atom for λτ . Let ν = νµ,τ,p. Then the following hold:
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1. ν respects τ;

2. If τ′ is a 2-type and µ respects τ′, then ν respects τ′.

Proof. 1 Let a, b, c ∈ M be such that tp ac = tp bc = τ. Using Lemma 4.4.4, we
have that

Pν(a < c < b) = Pµ(a < c < b | ητ
a = ητ

b = ητ
c = p)

≤
Pµ(a < c < b and ητ

a = ητ
b )

Pµ(ητ
a = ητ

b = ητ
c = p)

= 0.

We obtain similarly that Pν(b < c < a) = 0.
2 This is clear from the definition.

Lemma 4.4.11. Suppose that µ is a G-invariant, ergodic measure on LO(M) which
respects all 2-types. Then µ is a Dirac measure.

Proof. We will prove that the order between two elements a, b ∈ M is almost
surely determined by tp ab. More formally, we will show that for all a 6= b,
we have that a.s.,

tp ab = tp a′b′ =⇒
(
a < b ⇐⇒ a′ < b′

)
.

What the hypothesis gives us is that for all c, d, e ∈ M, a.s.,

tp ce = tp de =⇒
(
c < e ⇐⇒ d < e

)
. (4.7)

Let τ = tp ab = tp a′b′ and use Lemma 4.4.5 to construct a τ-path a =
y0, . . . , y2n = a′ from a to a′ whose interior avoids b and b′. Applying (4.7)
consecutively, we obtain that:

a < b ⇐⇒ a < y1 ⇐⇒ y2 < y1 ⇐⇒ y2 < y3 ⇐⇒ · · ·
⇐⇒ y2n−1 < a′ ⇐⇒ a′ < b′,

which concludes the proof.

Now we can complete the proof of the theorem.

Proof of Theorem 4.4.1. Let µ be a G-invariant, ergodic measure on LO(M).
Enumerate all 2-types as τ0, . . . , τn−1. If λτ0

µ is non-atomic, then we can ap-
ply Lemma 4.4.7 and conclude that µ = µu. Otherwise, we construct a se-
quence of invariant, ergodic measures µ0, . . . , µn such that for all i < n, µi
respects τ0, . . . , τi−1 and λ

τi
µi has an atom. Set µ0 = µ and suppose that

µi is already constructed. Set µi+1 = νµi ,τi ,pi , where pi is some atom for
λ

τi
µi . By Lemma 4.4.10, µi+1 respects τ0, . . . , τi. Moreover, λ

τi+1
µi+1 must have an

atom: otherwise, by Lemma 4.4.7, µi+1 = µu, which is not possible because
µu has full support and µi+1 does not (as µi+1 respects τi). Finally, apply
Lemma 4.4.11 to conclude that µn is a Dirac measure, which, by invariance,
implies that the action G y LO(M) has a fixed point.

Thus we have proved that either µu is the unique ergodic, invariant mea-
sure on LO(M) or there is a fixed point for the action. However, as convex
combinations of ergodic measures are dense in the space of all invariant mea-
sures (see, e.g., [P3, Section 12]), this implies that in that case, µu is indeed
the unique invariant measure.
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Proof of Corollary 4.1.3. Let Z ⊆ LO(M) be any minimal subsystem. By the
hypothesis, Z is not a point and it is a proper subset of LO(M). If G is
amenable, then there must be a G-invariant measure supported on Z, which
contradicts Theorem 4.4.1.

Proof of Corollary 4.1.4. By [KR, Proposition 6.4], the Hrushovski property im-
plies that there are compact subgroups K0 ≤ K1 ≤ · · · of G with

⋃
n Kn dense

in G. In particular, G is amenable.
If K ≤ G is any compact subgroup, then the orbits of K on M are finite.

If M admits a G-invariant linear order, then the K-orbits must be trivial, so K
is trivial. We conclude that there is no G-invariant linear order on M, so, by
Corollary 4.1.3, the action G y LO(M) must be minimal. This implies that
M has the ordering property (see [NVT, Theorem 4]).

4.5 Examples and other invariant measures

4.5.1 Examples

We briefly discuss some examples that show that the assumptions of Theo-
rem 4.1.1 and Theorem 4.1.2 are mostly necessary. This section requires more
familiarity with Fraïssé theory than the rest of the paper.

Transitivity

Let L be a language with two unary predicates P and Q and consider the age
consisting of all L-structures for which P ∩ Q = ∅ and every point satisfies
either P or Q. Let M be its Fraïssé limit. Then one can randomly order M as
follows. Let (ξa : a ∈ M) be uniform, i.i.d. on [0, 1] and define an Aut(M)-
invariant random order < on M by declaring all elements of P to be smaller
than all elements of Q and a < b ⇐⇒ ξa < ξb if a and b both belong to
P or to Q. This shows that the transitivity assumption in Theorem 4.1.2 is
necessary.

No algebraicity

Let V be the countable-dimensional vector space over F2, the field with two
elements. Let V∗ be its dual: the space of linear maps from V to F2. V∗

embeds as a subspace of FV
2 and, being a compact group, has a Haar mea-

sure which is invariant under the action of Aut(V). This gives an invariant,
ergodic measure on FV

2 which is not a product measure and shows that one
cannot omit the no algebraicity assumption in Theorem 4.1.1.

The same example also shows that this assumption cannot be omitted in
Theorem 4.1.2. The universal minimal flow of Aut(V) is a proper subspace of
LO(V) (see [KPT, Theorem 8.2]) and it carries a (unique) invariant measure
[AKL, Section 10]. This measure can be obtained as a factor of the measure
on FV

2 constructed above.

Weak elimination of imaginaries

In the presence of Aut(M)-invariant equivalence relations on M, it is easy to
construct distributions for (ξa : a ∈ M) for which the random variables are
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not independent. One can, for example, toss a coin for each equivalence class
and set ξa = 0 or 1 depending whether the coin toss for the class of a resulted
in heads or tails.

In view of Remark 4.3.6, it is more interesting to ask whether the weak
elimination of imaginaries assumption can be replaced just by requiring prim-
itivity of the action Aut(M)y M, that is, the absence of invariant equivalence
relations on M. (This would also have the advantage of being much easier
to check.) It turns out that the answer is negative, as the following example
shows.

Let the signature L consist of two unary relations S0 and S1 and a binary
relation R. We consider the class A of finite bipartite graphs viewed as L-
structures, where the two parts of the graphs are labeled by S0 and S1 and R
is the edge relation. For a point a, we denote by R(a) the set of R-neighbors
of a. For elements of A, we require furthermore that the degree of every
point in S0 is 2 and that |R(a) ∩ R(b)| ≤ 1 for all a 6= b in S0. It is easy to
check that this is an amalgamation class; let N be the Fraïssé limit. Denote
M = {a ∈ N : S0(a)} and P = {a ∈ N : S1(a)}. The class A is not hereditary,
so N is not fully homogeneous but we do have homogeneity for algebraically
closed, finite substructures of N. A finite substructure A ⊆ N is algebraically
closed iff for every a ∈ A ∩M, the degree of a (calculated in A) is 2 (that is,
A ∈ A).

Now consider M as a structure on its own (in a different signature) with
relations given by the traces of all definable relations on N. As N is ℵ0-
categorical, M is too. Using the homogeneity of N, it is easy to check that M
has no algebraicity and that the action Aut(M)y M is primitive. Indeed, the
action of Aut(M) on pairs of distinct elements of M has exactly two orbits:
{(a, b) : |R(a) ∩ R(b)| = 1} and {(a, b) : R(a) ∩ R(b) = ∅} and none of them
is an equivalence relation.

There is a homomorphism Aut(N)→ Aut(M) given by the natural action
of Aut(N) on M. As the elements of P can be recovered as imaginary ele-
ments of M, it turns out that this homomorphism is an isomorphism. With
all of this in mind, it is easy to construct non-independent, Aut(M)-invariant
distributions of random variables (ξa : a ∈ M). For example, we can start
with i.i.d. (ηb : b ∈ P) uniform in [0, 1] and define

ξa = min{ηb : b ∈ P, a R b}.

This also allows to construct non-uniform, invariant measures on LO(M):
just define a random order < on M as usual by a < b ⇐⇒ ξa < ξb.

ℵ0-categoricity.

We do not know whether ℵ0-categoricity is necessary in either Theorem 4.1.1
or Theorem 4.1.2, although it is crucial for our proofs. In the absence of ℵ0-
categoricity, however, the other assumptions may need tweaking as the cor-
respondence between model theory and permutation groups breaks down.

4.5.2 Other invariant measures on LO

One may ask, under the assumptions of Theorem 4.4.1, what other ergodic,
invariant measures there are on LO(M) apart from the uniform measure and
fixed points. A slight variation of the method we used to construct µu yields
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the following. Let λ be a probability measure on [0, 1] and let S = {z ∈
[0, 1] : λ({z}) > 0} be the set of its atoms (it can be finite or countable). Let
F ⊆ LO(M) be the set of G-fixed points (which, by Theorem 4.4.1, has to
be non-empty if we want to construct anything interesting) and finally, let
f : S → F be an arbitrary function. Note that ℵ0-categoricity of M implies
that F is finite. Let π : [0, 1]M → LO(M) be defined (λM-a.e.) by

a <π(z) b ⇐⇒ z(a) < z(b) or
(
z(a) = z(b) and a < f (z(a)) b

)
.

Then π∗(λM) is an invariant, ergodic measure on LO(M).
For many structures M, the methods we developed for the proof of Theo-

rem 4.4.1 can be used to show that all ergodic, invariant measures on LO(M)
can be obtained as above; however, in the presence of definable cuts, more
complicated constructions are possible. We just give one example.

Consider the language L = {<, f }, where < is a binary relation and f
is a unary function. Let A be the age consisting of all finite L-structures
where < is interpreted as a linear order and f is an involution without fixed
points. It is easy to check that A amalgamates; let N be its Fraïssé limit.
As for every n, the structure generated by n points is of size at most 2n
and there are only finitely many structures of any given finite size, N is ℵ0-
categorical. Let M = {a ∈ N : f (a) < a} and M′ = {a ∈ N : f (a) > a}.
It follows from homogeneity that M and M′ are the two orbits of the action
Aut(N) y N. Now consider M as a structure on its own with relations de-
fined as the traces of definable relations from N (in particular, the relations
a < b, f (a) < b, f (a) < f (b) for a, b ∈ M are definable in the structure M).
From a permutation group perspective, we can consider the homomorphism
π : Aut(N) → Sym(M) given by the natural action Aut(N) y M and then
Aut(M) = π(Aut(N)) (this is because Aut(M) and Aut(N) have the same
orbits on Mk for every k). It follows from the homogeneity of N that M is tran-
sitive, ℵ0-categorical, and has no algebraicity. (The algebraic closure operator
in N is given by acl(A) = A ∪ f (A).) One can also verify weak elimination
of imaginaries, for example using the criterion from [R, Proposition 10.1].

We can construct an invariant measure on LO(M) as follows. Let (ηa)a∈M
be a collection of i.i.d., Bernoulli, {0, 1}-valued random variables, where each
of the two values is taken with probability 1/2, and define a random order
≺ on M by

a ≺ b ⇐⇒ f ηa(a) < f ηb(b),

where f 0 = id and f 1 = f . This random order is different from the ones
considered above.

4.5.3 Application: a dynamical proof of unique ergodicity of
the automorphism group of the 2-graph

The notations in this subsection follow the ones from Chapter 2. For the sake
of readability, we remind here all the basic properties of the 2-graph.

Recall that we call even hypergraph a finite 3-regular hypergraphs such
that the number of hyperedges on any 4 vertices is even. The class of even
hypergraphs is a Fraïssé class (see [EHKN]). We denote by H the Fraïssé limit
of H. This limit is called the 2-graph. We write RH for the hyperedge relation
in H.
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There is a map from graphs to even hypergraphs by the following oper-
ation: from a graph, one obtains an even hypergraph with the same domain
by putting an hyperedge between 3 vertices iff there is an even number of
edges between those vertices in the original graph. One can check that this
always gives an even hypergraph. For a graph A, we call reduct of A the
even hypergraph thus obtained, and we denote it by redH(A).

For a given even hypergraph H, a graph on the same vertex set as H
whose reduct is isomorphic to H is called a graphing of H.

An important remark is that a graphing of an even hypergraph H is en-
tirely determined by the edges relation between one point a ∈ H and all the
other points in H. Indeed, if we want to know if there is an edge between to
points x and x′, we have the following possibilities:

1) There is an hyperedge (a, x, x′) in H. In this case, there is an edge
between x and x′ iff there is an odd number of edges between a and
{x, x′}.

2) There is no hyperedge (a, x, x′) in H. In this case, there is an edge
between x and x′ iff there is an even number of edges between a and
{x, x′}.

We remark in particular that there are 2n−1 graphings of a given even
hypergraph on n vertices.

Take G and G′ two finite graphs with the same vertex set D. We denote
by E the edge relation for graphs. We say that G′ is in the switching class
of G if there is A ⊂ D such that for all x, y ∈ A, EG(x, y) ⇐⇒ EG′(x, y);
for all x, y /∈ A, EG(x, y) ⇐⇒ EG′(x, y); and for all x ∈ A and y /∈ A,
EG(x, y) ⇐⇒ ¬EG′(x, y). Remark that by symmetry of the edge relation,
this is the same as saying or all x /∈ A and y ∈ A, EG(x, y) ⇐⇒ ¬EG′(x, y).
In this context, we call G′ the switching of G by A.

Remark that the reduct of a graph G is isomorphic to the reduct of another
graph G′ iff G′ is isomorphic to a graph in the switching class of G, indeed
this operation will not change the parity of the number of edges in a triplet
of vertices. In particular, the class of graphings of a given even hypergraph
can be recovered by all the switchings of any of its graphing. One way to see
this is simply to observe that there are exactly 2n−1 different switchings of
a graph on n vertices, which corresponds to the number of graphings of the
reduct of this graph.

The UMF of Aut(H) was computed by Evans, Hubicka, Konecny and
Nesestril in [EHKN]. It is G y LO(H)×Gr(H), where LO(H) is the space
of linear orderings of H and Gr(H) the space of graphings of H. Let us take
(<, E) ∈ LO(H)×Gr(H), g ∈ G, then for all a, b ∈H, we have

a(g· <)b⇔ g−1(a) < g−1(b)

and
g · E(a, b)⇔ E(g−1(a), g−1(b)).

It will be useful to consider H∗ the Fraïssé class of graphed ordered even
hypergraphs. We call H∗ its Fraïssé limit.

We will use Theorem 4.3.4 to get the description of the ergodic invariant
measures of some G-actions. Let us first show that H verifies the hypothesis
of this Theorem.
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First, we remark that ℵ0-categoricity, the absence of algebraicity and tran-
sitivity are inherited from the random graph because H is one of its reducts.
We spend some time on weak elimination of imaginaries. We use a criterion
from Poizat, stated as Lemma 16.17 in [P4]:

Proposition 4.5.1. Suppose F is ℵ0-categorical with no algebraicity. Let H =
Aut(M). Then weak elimination of imaginaries is implied by 〈HB, HC〉 = HB∩C for
all finite B, C ⊆ M, where HB is the pointwise stabiliser of B.

I am thankful to David Evans for pointing me towards this proposition.
We use it to prove:

Proposition 4.5.2. H weakly eliminates imaginaries.

Proof. Let B and C be finite substructures of H. It is easy to see that 〈GB, GC〉 ≤
GB∩C. Moreover, 〈GB, GC〉 is closed in GB∩C, so we only have to prove that
〈GB, GC〉 is dense in GB∩C.

Let us take X = {x1, . . . , xn} and Y = {y1, . . . , yn} two finite substructures
of H such that there is an element of GB∩C that sends xi to yi for all 1 ≤ i ≤ n.
We want to prove that there is an element of 〈GB, GC〉 that sends xi to yi for
all 1 ≤ i ≤ n. Because of the absence of algebraicity of H, up to using
more elements of 〈GB, GC〉, we can assume that X and Y are disjoint and also
disjoint from B and C.

Let us take a compatible graphing E of B ∪ C ∪ X ∪ Y such that for all
a ∈ B∩C E(a, xi)⇔ E(a, yi) for all 1 ≤ i ≤ n. This is always possible, because
X and Y are in the same GB∩C-orbit. Indeed, one can take a graphing of
(B∩C)∪X and graph (B∩C)∪Y as the image of the graphing of (B∩C)∪X
by an element of GB∩C that sends X to Y. R Remark that this also forces the
edges between X and Y, because of the parity condition. The rest of the edges
are chosen so that E is compatible with the even hypergraph structure. Such
a graphing exists because a graphing of a given even hypergraph can alway
be extended to a graphing of a bigger even hypergraph. The proof of this fact
is an easy induction.

Let us take Z = {z1, . . . , zn} with zi /∈ B ∪ C ∪ X ∪ Y and construct E′

a graphing of B ∪ C ∪ X ∪ Y ∪ Z such that for all h, h′ ∈ B ∪ C ∪ X ∪ Y, we
have E(h, h′) ⇔ E′(h, h′) and for all 1 ≤ i ≤ n, and b ∈ B, c ∈ C, we have
E′(b, zi) ⇔ E(b, xi) and E′(c, zi) ⇔ E(c, yi). There is no issue over the inter-
section of B and C, because of the way we constructed E.

Let us now consider L the reduct of (B ∪ C ∪ X ∪ Y ∪ Z, E′). It embeds in
H in such a way that we can identify B∪C∪X ∪Y to their original elements.
We will also identify Z and its image.

By construction, there is gB ∈ GB that sends X to Z and gC ∈ GC that
sends Z to Y, therefore gC ◦ gB is as wanted.

We can now state the result we will actually use:

Proposition 4.5.3. Let x1, . . . , xn, y ∈H. Let us denote by Dy the Gx1,...,xn orbit of
y. Then the Gx1,...,xn -ergodic and Gx1,...,xn -invariant measures on 2Dy are of the form
Ber(p)⊗Dy where p ∈ [0, 1] and Ber(p) stands for the Bernoulli distribution with
parameter p.

Proof. Let µ be a Gx1,...,xn -ergodic invariant measure on 2Dy . We prove that
for any disjoints A, B ⊂ Dy, any two random variables ηA and ηB fixed by
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Gx1,...,xn ∩ GA and Gx1,...,xn ∩ GB respectively, are independent. For this, we
use Theorem 4.3.4 i).

We consider H1 the structure in the language (R, c1, . . . , cn), where R is a
3-ary relation (hyperedges) and c1, . . . , cn are constants. The domain of H1
is equal to the domain of H, and the the interpretation of the constants are
such that xi =

H1 ci for all i ≤ n and the interpretation of the relation R is
such that RH(z1, z2, z3)⇔ RH1(z1, z2, z3) for all z1, z2, z3.

We first remark that Aut(H1) = Gx1,...,xn . Using the Ryll-Nardzewski
characterisation of ℵ0-categoricity, we can see that H1 is ℵ0-categorical be-
cause Aut(H1) y Hn

1 has finitely many orbits for every n ∈ N. Moreover,
H1 weakly eliminates imaginaries. Indeed, let V be an open subgroup of
Gx1,...,xn . By weak elimination of imaginaries of G, there is a z such that
Gz ≤ V with finite index in V. Necessarily Gz ≤ Gx1,...,xn , which by the no
algebraicity assumption implies {x1, . . . , xn} ⊂ z, therefore we have weak
elimination of imaginaries for H1.

Finally, by the no algebraicity of H, A ∪ {x1, ..., xn} and B ∪ {x1, ..., xn}
have to be algebraically closed. Therefore we can apply Theorem 4.3.4 i)
to get ηA ⊥⊥Fx1,...,xn

ηB. The ergodicity of µ tells us that Fx1,...,xn is trivial,
therefore the variables are independent.

Proof of unique ergodicity

Let us first observe that G y LO is uniquely ergodic, by Theorem 4.4.1.
We can also prove that G y Gr is uniquely ergodic. We will denote

by ∼ the relation of having an edge between two vertices. For all a ∈ H,
there is a continuous G-map πa from Gr to 2H\{a}. The map associates to an
ordered graphing x the function fx such that fx(b) = 1 iff a ∼x b. This map
is a bijection because of the parity condition on the edges with regard to the
hyperedges of H.

Lemma 4.5.4. Let ν be a G-invariant measure on Gr. The pushforward νa = (πa)∗ν
is Ber(1/2)⊗H\{a}.

Proof. By Proposition 4.5.3 the Ga-ergodic invariant measures of 2M\{a} are
of the form Ber(p)⊗M\{a}.

We use the ergodicity decomposition theorem to get

νa =
∫
[0,1]

Ber(p)⊗M\{a}dρ(p)

for some measure ρ on [0, 1].
Take x, x′ such that RH(a, x, x′) and y, y′ such that ¬RH(a, y, y′). Remark

that (x, x′, RH) is isomorphic to (y, y′, RH), therefore there is an automor-
phism of H that sends (x, x′) to (y,y’) and we have Pν(x ∼ x′) = Pν(y ∼ y′).
Let us compute this quantity in two different ways.

First, we see that Pν(x ∼ x′) =
∫
[0,1] p2 + (1− p)2dρ(p). Indeed x ∼ x′

iff there is an even number of edges between a and (x, x′), therefore 1x∼x′ =
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1a∼x,a∼x′ + 1a�x,a�x′ . We can therefore compute:

Pµ(x ∼ x′) = Eν[1x∼x′ ]

= Eν[1a∼x,a∼x′ + 1a�x,a�x′ ]

=
∫
[0,1]

EBer(p)⊗M\{a} [1a∼x,a∼x′ + 1a�x,a�x′ ]dρ(p).

=
∫
[0,1]

p2 + (1− p)2dρ(p)

Similarly, we have Pµ(y ∼ y′) =
∫
[0,1] 2p(1− p)dρ(p).

The equality Pµ(x ∼ x′) = Pµ(y ∼ y′) implies that
∫
[0,1](1− 2p)2dρ = 0.

Therefore ρ = δ1/2.

This allows us to conclude that G y Gr is uniquely ergodic, because all
invariant measures are sent to the same measure via the pushforward by πa,
and because πa is a bijection, all invariant measures of G y Gr must be
equal.

We can finally prove that G y LO×Gr is uniquely ergodic. Let µ be a
G-ergodic invariant measure on LO×Gr.

We will denote by Ẽ the random graph relation induced by µ on H.
Recall that R = (N, E) is the random graph, of which H is a reduct. We

will denote by ' the graph isomorphism.

Proposition 4.5.5. There exists a measure ν on LO(R) such that, for all (x1, . . . , xn, E) ⊂
R and (y1, . . . , yn, H) the reduct of (x1, . . . , xn, E), we have that

ν(x1 < . . . < xn) := µ(y1 < . . . < yn|(y1, . . . , yn, Ẽ) ' (x1, . . . , xn, E))

Proof. Let us check, using Theorem 1.3.5 that ν can indeed be extended to a
measure on LO(R). Conditions 1) is obviously satisfied, but we need prove
2).

Let us consider (x1, ..., xn, z, E) ∈ R and (y1, ..., yn, z′, RH) the associated
reduct in H. We want to prove that

ν(x1 < · · · < xn) =

(
∑

1≤i≤n−1
ν(x1 . . . < xi < z < xi+1 < . . . < xn)

)
+ ν(z < x1 < . . . < xn) + ν(x1 < . . . < xn < z).

We call (∗) this equality.
We define a family of events in LO(H):

Ui = {y1 . . . < yi < z′ < yi+1 < . . . < yn}

for i ranging from 1 to n− 1.
We also set U0 = {z < y1 < . . . < yn} and Un = {y1 < . . . < yn < z}.
In order not to have too heavy notations, y will denote (y1, . . . , yn) and

x = (x1, . . . , xn). If the edge set is not specified, y is assumed to have edge
set Ẽ and x is assumed to have edge set E.

In those terms, (∗) becomes:

µ(y1 < . . . < yn|y ' x) = ∑
i

µ(Ui|(y, z′, Ẽ) ' (x, z, E))
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This translates to

µ(y1 < . . . < yn ∩ y ' x)
µ(y ' x)

= ∑
i

µ(Ui ∩ (y, z′, Ẽ) ' (x, z, E))
µ((y, z′, Ẽ) ' (x, z, E))

Remarking that since G y Gr is uniquely ergodic, we necessarily have:

µ(y ' x) =
1

2n−1

= 2µ((y, z′, Ẽ) ' (x, z, E)).

Therefore, (∗) becomes

µ(y1 < . . . < yn ∩ (y ' x)) = 2 ∑
i

µ(Ui ∩ (y, z′, Ẽ) ' (x, z, E))

The following lemma is the final ingredient that will allow us to conclude.

Lemma 4.5.6. Let (x1, . . . , xn, z, E) ∈ R and (y1, . . . , yn, z′, RH) be its reduct in
H. We have:

µ(Ui ∩ y ' x ∩ y1 ∼Ẽ z′) = µ(Ui ∩ y ' x ∩ y1 �Ẽ z′).

Proof. This is very similar to the proof of Lemma 4.5.4. We look at Dz′ , the or-
bit of z′ under Gy1,...,yn . Let us denote by Gry,x(Dz′) is the space of graphings
of {y1, . . . , yn} ∪Dy such that (y1, . . . , yn, Ẽ) ' (x1, . . . , xn, E). Consider π the
map ψ from Gry,x(Dz′) to 2Dz′ that associates to a graphing x the function fx
such that fx(b) = 1 iff y1 ∼x b for all b ∈ Dz′ . This map is a bijection because
of the parity condition on the edges with regard to the hyperedges of H.

We know by Proposition 4.5.3 that the Gy1,...,yn invariant ergodic measures
on 2Dz are of the form Ber(p)Dz .

Let us look at the measure µy1,...,yn on Gry,x(Dz′) defined for all A mea-
surable as:

µy1,...,yn(A) = µ(A|y1 < . . . < yn and (y1, ..., yn, Ẽ) ' (x1, ..., xn, E)).

The pushforward of µy1,...,yn by π decomposes into
∫
[0,1] Ber(p)Dz dρ(p).

Just as in the proof of Lemma 4.5.4, ρ = δ1/2, this gives us the result.

By symmetry, we assume that (x1, z) ∈ E and we have

µ(y1 < . . . < yn ∩ y ' x) =∑
i

µ(Ui ∩ y ' x)

=∑
i

µ(Ui ∩ y ' x ∩ x1 ∼ y) + µ(Ui ∩ y ' x ∩ x1 � y)

=∑
i

2µ(Ui ∩ y ' x ∩ x1 ∼ y)

=∑
i

2µ(Ui ∩ (y, z′, Ẽ) ' (x, z, E)).

Therefore (∗) is true and we have item 2) of Theorem 1.3.5, therefore ν is
indeed well-defined.
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We define ν as in Proposition 4.5.5. It is easy to see that ν is an Aut(R)-
invariant measure on LO(R), hence it needs to be the uniform measure.
Therefore µ is uniquely determined on a field generating the σ-algebra of
Gr× LO.
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CHAPTER 5

The case of the semigeneric directed graph

This is a slightly modified version of [J].

5.1 Introduction

We denote S, is the Fraïssé limit of the class S of simple, loopless, directed,
finite graphs that verify the following conditions:

i) the relation ⊥, defined by x ⊥ y iff ¬(x → y∨ y→ x), is an equivalence
relation,

ii) for any x1 6= x2, y1 6= y2 such that x1 ⊥ x2 and y1 ⊥ y2, the number of
(directed) edges from {x1, x2} to {y1, y2} is even,

where → denotes the directed edge. We will refer to ⊥-equivalence classes
as columns and to the second condition as the parity condition. The ⊥-class
of an element a ∈ S will be referred to as a⊥.

x1 x1 x1

x2 x2 x2

y1 y1 y1

y2 y2 y2

Figure 5.1: The three possible configurations (up to isomorphism) of two
pairs of equivalent points respecting the parity condition.

More details on this structure will be given in the next section.
In this paper, we prove:

Theorem 1. The topological group Aut(S) is uniquely ergodic.

The method we use is different from the one found in [AKL] and [PS]
since we do not work with the so-called "quantitative expansion property",
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but rather show that an ergodic measure can only take certain values on a
generating part of the Borel sets. It is also different from the approach in [T2]
(see Theorem 7.4) which only applies when the structure eliminates imagi-
naries. Our method relies on the idea that if there are equivalence classes in a
structure and the universal minimal flow is essentially the convex orderings
regarding the equivalence classes, then the ordering inside the equivalence
classes and the ordering of the equivalence classes are independent, provided
that the automorphism group behaves well enough.

Acknowledgements:
I am grateful to my PhD supervisors Lionel Nguyen Van Thé and Todor

Tsankov for their helpful advice during my research on this paper. I also want
to thank Miodrag Sokić for his comments on this paper. I thank the referee,
whose comments helped me greatly improve the structure of the paper.

5.2 Preliminaries

The starting point of our proof is common with that of [AKL]: to prove that
Aut(S) is uniquely ergodic, it suffices to show that one particular action is
uniquely ergodic, namely, its universal minimal flow, Aut(S)y M (Aut(S)).
This is the unique minimal Aut(S)-flow that maps onto any minimal Aut(S)-
flow (such a flow exists for any Hausdorff topological group by a classical re-
sult of Ellis, see [E2]); an explicit description was made by Jasiński, Laflamme,
Nguyen Van Thé and Woodrow in [JLNVTW]. It is the space of expansions
of S whose Age is a certain class S∗.

Before describing this class, we give some more background on S. Ob-
serve that the parity condition is equivalent to the fact for every A ∈ S and
two columns P, Q in A, we have for all x, x′ ∈ P,(
∀y ∈ Q

(
(x → y)⇔ (x′ → y)

))
or
(
∀y ∈ Q

(
(x → y)⇔ (y→ x′)

))
.

This remark allows us to define the equivalence relation ∼Q on P as:

x ∼Q x′ ⇔ ∀y ∈ Q (x → y⇔ x′ → y).

Note that as a consequence of the parity condition, we get that in S,

∀y ∈ Q (x → y⇔ x′ → y)⇔ ∃y ∈ Q (x → y and x′ → y).

We can now consider P0 and P1 the two ∼Q equivalence classes in P, and
we have P = P0 t P1. Note that each of these class could be empty. Similarly,
we have Q = Q0 t Q1, where Q0 and Q1 are ∼P-equivalence classes. Note
that at that stage, this labelling of these classes is arbitrary, which is crucial
to the construction and understanding of S∗ below. Indeed, the language of
S∗ has a binary relation R whose interpretation is mainly to give a proper
labelling of those equivalence classes.

This description has an interesting consequence when we recall that there
must be an edge between any two points of P and Q. Denote Pi → Qj to
mean for all x ∈ Pi and y ∈ Qj, we have x → y. Then Pi → Qj, implies that
Qj → P1−i, P1−i → Q1−j and Q1−j → Pi. In particular, this means that for
each i ∈ {0, 1}, there is a unique j ∈ {0, 1} such that Pi → Qj.

The class S∗ is the class of finite structures in the language L = (→,<, R),
verifying :

60



Pi

P1−i

Qj

Q1−j

1. S∗|→ = S,

2. < is interpreted as a linear ordering convex with respect to the columns,
i.e. the columns are intervals for the ordering. For two columns P, Q,
we will therefore write P < Q to mean that for all x ∈ P, y ∈ Q we have
x < y.

3. For A∗ ∈ S∗, the binary relation RA∗ verifies

(a) For all x, y ∈ A∗,
RA∗(x, y)⇒ ¬x ⊥ y.

b) For all x, y, y′ ∈ A∗,

(RA∗(x, y) & y ⊥ y′)⇒ RA∗(x, y′).

c) For all x, x′, y ∈ A∗,

(x → y & y→ x′ & x ⊥ x′ & x <A∗ y)⇒ (RA∗(x, y)⇔ ¬RA∗(x′, y)).

Observe that in a structure A∗ ∈ S∗, RA∗ gives us a proper labelling of the
∼Q-equivalence classes in P when P < Q. In particular, we can render the
arbitrary decomposition P = P0 t P1, Q = Q0 tQ1 canonical by setting

x ∈ P1 ⇔ (∀y ∈ Q RA∗(x, y))

and
y ∈ Q1 ⇔ (∀x ∈ P (y→ x ⇔ RA∗(x, y))).

A remarkable property of this decomposition is that the edge relation is
actually entirely defined by it. Indeed, take two columns P, Q in A∗ that we
decompose as above in P = P0 t P1, Q = Q0 tQ1. We know, by construction
of R on Q, that Q1 → P1. As we observed before, this means that P1 → Q0,
P0 → Q1 and Q0 → P0.

Another point of view on this expansion is given in [JLNVTW]. Take A ∈
S with n columns P1, . . . , Pn and an expansion A∗ ∈ S∗. The expansion A∗

is interdefinable with a structure A∗∗ in the language {→,<, Li, f } where Li, f

is a unary predicate for all i ∈ {1, . . . , n} = [n] and f ∈ 2[n]\i. We have
A∗|→,< = A∗∗|→,<. Assuming that P1 <A∗ . . . <A∗ Pn, then we define

LA∗∗
i, f = {x ∈ Pi : ∀j ∈ [n]\i, y ∈ Pj ( f (j) = 1⇔ RA∗(x, y)}.
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Denote M ⊂ {0, 1}S2 × {0, 1}S2
the space of expansions of S whose Age is

exactly S∗. We will denote E = (<E, RE) the elements of M, by identification
with the structure that can be inferred from the expansion. The result shown
in [JLNVTW] is:

Theorem 5.2.1. The universal minimal flow of Aut(S) is Aut(S)yM.

We are interested in showing that the Aut(S)-invariant measures on M

are all equal. A useful tool of measure theory is the following Lemma (see
[G] Theorem 3.5)

Lemma 5.2.2. Let µ and ν be two probability measures defined on a σ-field E. If
there is a family (An)n∈N ∈ EN stable under intersection that generates E and such
that for all n ∈N, µ(An) = ν(An), then µ = ν.

The rest of this section is devoted to describing a family P of clopen sets
that generate the Borel sets of M. The sets of our family P are of the form

U
(xi)

n
i=1,(εj

i)1≤i<j≤n
∩V(a1

1,...,a1
i1
),...,(ak

1,...,ak
ik
) ⊂M.

They are defined as follows.
Let (xi)

n
i=1 be in different columns. Let (εj

i)i<j≤n ∈ {0, 1}(n
2). An element

E = (<E, RE) ∈ M belongs to U
(xi)

n
i=1,(εj

i)1≤i<j≤n
iff the following conditions

are satisfied :

1. (x⊥1 <E . . . <E x⊥n )

2. for k < l,
RE(xk, xl)⇔ (xk → xl)

εl
k .

where for all x, y ∈ S and ε ∈ {0, 1}, (x → y)ε means (x → y) if ε = 1
and ¬(x → y) otherwise.

The rest of R on those columns can be recovered from this by construction
of S∗. Indeed, observe that for all x ∈ x⊥k , y ∈ x⊥l , we have

RE(x, y)⇔
((

x ∼S

x⊥l
xk and RE(xk, xl)

)
or
(

x �S

x⊥l
xk and ¬RE(xk, xl)

))
.

An important remark is that if we have a different family (x′1, . . . , x′n) such
that xi ⊥ x′i , then there is a family (α

j
i)1≤i<j≤n such that

U
(xi)

n
i=1,(εj

i)1≤i<j≤n
= U

(x′i)
n
i=1,(αj

i)1≤i<j≤n
.

This can be achieved by taking α
j
i = ε

j
i if xi ∼x⊥j

x′i and α
j
i = 1− ε

j
i otherwise.

An additional remark that will be useful throughout the paper is that for
a given family (x1, . . . , xn) of elements taken in different columns,

M =
⊔

σ∈Sn ,(εj
i)1≤i<j≤n

U
(xσ(i))

n
i=1,(εj

i)1≤i<j≤n
.

We also define

V(a1
1,...,a1

i1
),...,(ak

1,...,ak
ik
) = {E ∈M :

(a1
1 <E · · · <E a1

i1) ∧ · · · ∧ (ak
1 <E · · · <E ak

ik )}
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where (aj
i ⊥ aj′

i′ ) iff j = j′.
This collection of sets is a generating family for the open sets of our space,

so it is also a generating family for the Borel sets.
To use Lemma 5.2.2, we would also need to know that this family is stable

under intersection, unfortunately this is not the case. However, the intersec-
tion of two sets in P is actually a disjoint union of sets in P. Therefore if we
consider P′ the collection of finite intersection of elements of P, the evalu-
ation of a measure on an element of P′ is determined by the evaluation of
the measure on P. By Lemma 5.2.2, any measure is entirely characterized by
its evaluation on elements of P′, so it is characterized by its evaluation on
elements of P.

5.3 Invariant measures

From this point on, we denote G = Aut(S). Let us first define µ0 a G-invariant
probability measure on M. We define µ0 by:

µ0

(
U
(xi)

n
i=1,(εj

i)1≤i<j≤n
∩V(a1

1,...,a1
i1
),...,(ak

1,...,ak
ik
)

)
=

1

n!2(
n
2)

1
k

∏
j=1

ij!

.

We call µ0 the uniform measure. It is proven in [PS] that this measure is well-
defined on all Borel sets and that it is G-invariant. We want to show that it is
actually the only invariant measure. By Lemma 5.2.2, we only have to check
that the invariant measures coincide on U

(xi)
n
i=1,(εj

i)1≤i<j≤n
∩V(a1

1,...,a1
i1
),...,(ak

1,...,ak
ik
).

Before proving Theorem 1 we need to prove the following preliminary
results:

Proposition 5.3.1. For all (xi)
n
i=1 such that ¬(xi ⊥ xj) for i 6= j and (ε

j
i)i<j≤n ∈

2(
n
2), we have:

µ

(
U
(xi)

n
i=1,(εj

i)1≤i<j≤n

)
=

1

n!2(
n
2)

.

Proposition 5.3.2. For all (a1
1, . . . , a1

i1
, . . . , ak

1, . . . , ak
ik
) such that aj

i ⊥ aj′

i′ iff j = j′,
we have:

µ

(
V(a1

1,...,a1
i1
),...,(ak

1,...,ak
ik
)

)
=

1
k

∏
j=1

ij!

.

Similar results were proven in [PS]. We will prove those results using
different methods. The proof of Proposition 5.3.2 is very similar to what we
will do later on in order to conclude and contains the key argument of this
paper.

For proofs of Proposition 5.3.2 and Theorem 1, we will need an ergodic
decomposition theorem, thus we need to define the notion of ergodicity.

Definition 5.3.3. Let Γ be a Polish group acting continuously on a compact
space X. A Γ-invariant measure ν is said to be Γ-ergodic if for all A measurable
such that

∀g ∈ Γ ν(A4g · A) = 0,

we have ν(A) ∈ {0, 1}.
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We can now state the following (see [P3] Proposition 12.4):

Theorem 5.3.4. Let Γ be a Polish group acting continuously on a compact space X.
Let P(X) denote the space of probability measures on X and PΓ(X) = {µ ∈ P(X) :
Γ · µ = µ}. Then, the extreme points of PΓ(X) are the Γ-ergodic invariant measures.

We will also need to use Neumann’s Lemma (see [C1], Theorem 6.2) :

Theorem 5.3.5. Let H be a group acting on Ω with no finite orbit. Let Γ and ∆ be
finite subsets of Ω, then there is h ∈ H such that h · Γ ∩ ∆ = ∅.

The remaining of the section will be divided in three subsections. One
for the proof of Proposition 5.3.1, one for the proof of Proposition 5.3.2 and
finally one for the proof of Theorem 1.

5.3.1 Proof of Proposition 5.3.1

For this proof, we will need the following technical lemma.

Lemma 5.3.6. Let k < n, let P1, . . . , Pn be different columns in S and let y1 ∈
P1, . . . , yk ∈ Pk. Take a given family ε

j
i ∈ {0, 1} where 1 ≤ i < j ≤ n and k < j.

Then there exist yk+1 ∈ Pk+1, . . . , yn ∈ Pn such that (yi → yj)
ε

j
i for all i < j and

k < j.

Proof. Take xk+1 ∈ Pk+1, . . . , xn ∈ Pn. Consider the following structure

A = ((yA
1 , . . . , yA

n , xA
k+1, . . . , xA

n ),→A)

where (yA
i →A yA

j ) ⇔ (yi → yj) if i < j ≤ k, (yA
i →A yA

j ) ⇐⇒ (ε
j
i = 1) if

1 ≤ i < j ≤ n and k < j. We also have xA
i ⊥A yA

i for i > k and (xA
i →A xA

j ⇔
xi → xj) for k < i < j.

We put edges between xA
i and yA

j in order for them to respect the parity
condition. Remark that there is more than one way to do this, for instance
one can ask that when k < i < j, (xA

i →A yA
j ) ⇔ (xA

i →A xA
j ) and (xA

j →A

yA
i ) ⇔ (yA

j →A yA
i ). The remaining edges can be added arbitrarily because

they concern columns with only one vertex.
We make sure that A ∈ S. Indeed, noting that since there is one point in

the first k columns, and two in the remaining ones, it suffices to check the
parity condition in the last n − k columns. Take k < j < i ≤ n. We know
that the edges between xA

i and yA
j and the edge between xA

i and xA
j go in the

same direction. Similarly, the edge between xA
j and yA

i and the edge between

yA
j and yA

i also go in the same direction. Therefore the parity condition must
be respected.

Remark that ((yA
1 , . . . , yA

k , xA
k+1, . . . , xA

n ),→A) and ((y1, . . . , yk, xk+1, . . . , xn),→S

) are isomorphic, hence A embeds in S in a way that extends this isomor-
phism. The image of (yA

k+1, . . . , yA
n ) is as wanted.

The fundamental observation for the proof of Proposition 5.3.1 is that if
we take x1, . . . , xn ∈ S all in different columns,

Aut(S) · (<∗, R∗) =
⊔

σ∈Sn , (εj
i)1≤i<j≤n

U
(xσ(i))

n
i=1,(εj

i)1≤i<j≤n
.
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We will show that for any two families ε =
(

ε
j
i

)
i<j≤n

, α =
(

α
j
i

)
i<j≤n

and

σ ∈ Sn there is a g ∈ G such that

U(xi)
n
i=1,ε = g ·U(xσ(i))

n
i=1,α.

This means that all sets of this form have the same measure, hence we
will have the result because there are n!2(

n
2) such sets.

First, we construct g′ ∈ G such that

g′ ·U(xσ(i))
n
i=1,α = Ux1,...,xn ,β

for some β = (β
j
i)1≤i<j≤n.

We want to prove that there is g′ ∈ G such that g′ · xi ∈ (xσ(i))
⊥. By

Lemma 5.3.6, there exists x′1, . . . , x′n ∈ S such that xσ(i) ⊥ x′i and xi → xj
iff x′i → x′j. Remark that by construction, there is a partial automorphism τ

that sends xσ(i) to x′i . By homogeneity, there is g′ an automorphism of S that
extends τ. We remark that

g′ ·U(xi)
n
i=1,α = U(x′

σ(i))
n
i=1,α

and as we observed before, U(x′
σ(i))

n
i=1,α does not depend on x′i , but on their

columns. Thus, there exist a family β = (β
j
i)1≤i<j≤n such that

U(x′
σ(i))

n
i=1,α = U(xi)

n
i=1,β.

Next, we construct h ∈ G such that

U(xi)
n
i=1,ε = h ·U(xi)

n
i=1,β.

Assume that there are k < l such that β
j
i = ε

j
i for all (i, j) 6= (k, l) and

βl
k 6= εl

k. Remark that taking care of this case will be enough to prove the
result : If α and β disagree in more than one coordinate, iterating this process
still allows to modify coordinates one at a time.

Let us take x′k ⊥ xk such that for all i ∈ [n]\{k, l}, x′k → xi iff xk →
xi and x′k → xl iff xl → xk. This is possible using Lemma 5.3.6 where
{y1, . . . , yn−1} = {x1, . . . , xn}\{xk} and Pn = x⊥k . We define x′l ⊥ xl simi-
larly.

We take h ∈ G such that h(xi) = xi for all i ∈ [n]\{k, l}, h(x′k) = xk and
h(x′l) = xl . By homogeneity, such a h exists: indeed, by the parity condition,
we have (xk → xl)⇔ (x′k → x′l). Let us prove that h gives the result.

Take E ∈ Ux1,...,xn ,β. We will prove that

h · E ∈ U(xi)
n
i=1,ε.

For all i < j we want to prove that

Rh·E(xi, xj)⇔ (xi → xj)
ε

j
i ,

and since
Rh·E(xi, xj)⇔ RE(h−1(xi), h−1(xj)),
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we prove

RE(h−1(xi), h−1(xj))⇔ (xi → xj)
ε

j
i .

If {i, j} ∩ {k, l} = ∅, the result is obvious.
If j = k and i < k, we have:

Rh·E(xi, xk)⇔ RE(h−1(xi), h−1(xk))

⇔ (xi → h−1(xk))
βk

i

⇔ (xi → x′k)
βk

i

⇔ (xi → xk)
βk

i ,

and since βk
i = εk

i , we have

Rh·E(xi, xk)⇔ (xi → xk)
εk

i .

The other cases where |{i, j} ∩ {k, l}| = 1 are similar.
Finally, if (i, j) = (k, l), we have:

Rh·E(xk, xl)⇔ RE(h−1(xk), h−1(xl))

⇔ (xk → h−1(xl))
βl

k

⇔ (xk → x′l)
βl

k

⇔ (xk → xl)
εl

k .

The last equivalence is a direct consequence of the definition of x′l and the
fact that βl

k = (1− εl
k).

5.3.2 Proof of Proposition 5.3.2

We prove the result by induction on the number k of columns.
By homogeneity, for any column (aj

1)
⊥ and σ ∈ Sij there exists g ∈ G such

that
g ·V

(aj
1,...,aj

ij
)
= V

(aj
σ(1),...,a

j
σ(ij)

)
,

thus

µ

(
V
(aj

1,...,aj
ij
)

)
=

1
ij!

.

This proves the initial case.
Let us now assume that for all (a1

1, . . . , a1
i1

, . . . , ak−1
1 , . . . , ak−1

ik−1
) such that

aj
i ⊥ aj′

i′ iff j = j′, we have

µ

(
V
(a1

1,...,a1
i1
),...,(ak−1

1 ,...,ak−1
ik−1

)

)
=

1
k−1

∏
j=1

ij!

.

We consider (ak
1, . . . , ak

ik
) all in the same column and not in any (ai

1)
⊥ for

i < k. Remark that

V(a1
1,...,a1

i1
),...,(ak

1,...,ak
ik
) = V

(a1
1,...,a1

i1
),...,(ak−1

1 ,...,ak−1
ik−1

)
∩V(ak

1,...,ak
ik
).
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We want to prove that the ordering of (ak
1)
⊥ is independent from the ordering

of the other columns.
Enumerate as (V1, . . . , Vτ) all the different sets of the form V

(a1
σ1(1)

,...,a1
σ1(i1)

),...,(ak−1
σk−1(1)

,...,ak−1
σk−1(ik−1)

)

where σj is a permutation of {1, . . . , ij}. Thus τ =
k−1

∏
j=1

ij!.

For all l ∈ {1, . . . , τ}, we define

µVl (·) =
µ(· ∩Vl)

µ(Vl)
.

This is the conditional probability of µ given Vl . We remark that:

µ =
τ

∑
l=1

µ(Vl)µVl .

Denote LO((ak
1)
⊥) the space of linear orderings on (ak

1)
⊥. There is a re-

striction map r from M to LO((ak
1)
⊥). We denote Vr

(ak
1,...,ak

ik
)

the image of

V(ak
1,...,ak

ik
) by r. Let ν be, the pushforward of µ on LO(a1

1
⊥) by r, and let νVl be

the pushforward of µVl by the same map. We have:

ν =
τ

∑
l=1

µ(Vl)νVl .

Observe that the initial step of the induction implies that ν is the uniform
measure on LO((ak

1)
⊥)

We denote Stabset
(ak

1)
⊥ the setwise stabilizer of (ak

1)
⊥, Stabpw

(a1
1,...,a1

i1
,...,ak−1

1 ,...,ak−1
ik−1

)

the pointwise stabilizer of (a1
1, . . . , a1

i1
, . . . , ak−1

1 , . . . , ak−1
ik−1

) and set H = Stabset
(ak

1)
⊥ ∩

Stabpw
(a1

1,...,a1
i1

,...,ak−1
1 ,...,ak−1

ik−1
)
. We remark that νVl is H-invariant for all l ∈ {1, . . . , τ}.

Since LO(a1
1
⊥
) is compact, by Theorem 5.3.4, if we prove that ν is H-

ergodic, then we have the result. Indeed, then ν is an extreme point of the
H-invariant measures and all the νVl are equal to ν, thus for any l we have

µ

(
V(ak

1,...,ak
ik
) ∩Vl

)
= µVl

(
V(ak

1,...,a1
ik
)

)
µ(Vl)

= νVl

(
Vr
(ak

1,...,a1
ik
)

)
µ(Vl)

= ν

(
Vr
(a1

k ,...,a1
ik
)

)
µ(Vl)

=
1
ik!

1
k−1

∏
j=1

ij!

and this equality finishes the induction.
It only remains to prove the ergodicity of ν. The following lemma will

allow us to conclude.
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Lemma 5.3.7. Let K be a group acting on a set N with no finite orbits. Denote
LO(N) the space of linear orderings on N. Then the uniform measure λ on LO(N)
is K-ergodic.

Proof. Suppose A is a Borel subset of LO(N) such that for all g ∈ K λ(A4g ·
A) = 0. We want to show that λ(A) ∈ {0, 1}. Let ε > 0. There is a cylinder,
i.e. a set depending only on a finite set of N, B = B(b1, . . . , bk) such that
µ(B4A) ≤ ε. Using Neumann’s Lemma, we get that there exists g ∈ K such
that {b1, . . . , bk} ∩ g · {b1, . . . , bk} = ∅.

Moreover, since ν is uniform, the orderings of two disjoint sets of points
are independent. Indeed, taking (a1, . . . , ai) and (c1, . . . , ci′) two disjoint fam-
ilies of points. Note that λ(V(a1,...,ai)

∩ V(c1,...,ci′ )
) is equal to the number of

way to insert (c1, . . . , ci′) in (a1, . . . , ai) respecting both orderings times the
weight of a given ordering of (a1, . . . , ai, c1, . . . , ci′). We therefore have

λ(V(a1,...,ai)
∩V(c1,...,ci′ )

) =

(
i + i′

i

)
1

(i + i′)!

=
1
i!

1
i′!

.

This means that B and g · B are independent. We can now write:∣∣∣λ(A)− λ(A)2
∣∣∣ = ∣∣∣λ(A ∩ g · A)− λ(A)2

∣∣∣
≤ |λ(A ∩ g · A)− λ(B ∩ g · A)|+ |λ(B ∩ g · A)− λ(B ∩ g · B)|

+
∣∣∣λ(B ∩ g · B)− λ(B)2

∣∣∣+ ∣∣∣λ(B)2 − ν(A)2
∣∣∣

≤4ε.

The last inequality comes from the following inequalities

|λ(A ∩ g · A)− λ(B ∩ g · A)| ≤ λ((A4B) ∩ g · A) ≤ ε,
|λ(B ∩ g · A)− λ(B ∩ g · B)| ≤ λ(g · (A4B) ∩ B) ≤ ε,

λ(B ∩ g · B) = λ(B)2

and∣∣∣λ(B)2 − λ(A)2
∣∣∣ = (λ(A) + λ(B))|λ(A)− λ(B)| ≤ 2ε.

This proves that λ is K-ergodic.

We only have to prove that H has no finite orbits on (a1
1)
⊥. It suffices to

remark that for all a ∈ S, (u1, . . . , ui) ∈ S, there are infinitely many b ∈ a⊥

such that a→ uj iff b→ uj for all 1 ≤ j ≤ i.
Indeed, take k ∈ N. Consider the structure ((a1, . . . , ak, v1, . . . , vi),→),

where al ⊥ aj, al → vk iff a → uk and vm → vm′ iff um → um′ for all l, j ≤ k
and m, m′ ≤ i. It is obvious that this structure verifies the parity condition.
Therefore in S we can find k copies of a in its column for any k > 0.

This is enough to conclude that ν is indeed H-ergodic.
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5.3.3 Proof of Theorem 1

In what follows, we will show that

µ (U ∩V) = µ (U) µ (V)

for all U = U
(xi)

n
i=1,(εj

i)1≤i<j≤n
and V = V(a1

1,...,a1
i1
),...,(ak

1,...,ak
ik
). It will follow that

µ = µ0.
Let us take a certain set {x1, . . . , xn} where none of the xi are in the same

column. We denote m the number of sets U as above associated to this family.
We consider (Ui)

m
i=1 the disjoint sets of M corresponding to the ways of defin-

ing a relation R and an order on the columns x⊥1 , . . . , x⊥n , i.e. Ui = U(xσ(i))
n
i=1,ε

for some σ ∈ Sn and ε ∈ 2(
n
2). Proposition 5.3.1 tells us that:

∀i, j ∈ {1, . . . , m}, µ(Ui) = µ(Uj).

We remark that this quantity is 1
m . We now define, for all i ∈ {1, . . . , m},

µUi (·) =
µ (· ∩Ui)

µ (Ui)
.

This is the conditional probability of µ given Ui. Denote H the subgroup
of G that stabilizes x⊥i for all 1 ≤ i ≤ n and each ∼x⊥j

-equivalence class

in x⊥i for i 6= j. Remark that H stabilizes Ui, by construction, hence µUI is
H-invariant.

A simple but fundamental remark is that since
m⊔

i=1

Ui = M and all the Ui

have the same measure under µ, we have

µ =
1
m

m

∑
i=1

µUi .

Let LOp(S) denote the space of partial orders that are total on each column
and do not compare elements of different columns. There is a restriction map
from M to LOp(S). We consider λ the pushfoward of µ on LOp(S) by this
map. Similarly, we consider λUi the pushfoward of µUi on LOp(S). We have

λ =
1
m

m

∑
i=1

λUi .

The rest of the proof is similar to the proof of Proposition 5.3.2: we prove
that λ is H-ergodic. Take A a Borel subset of LOp(S) such that for all h ∈ H,
λ(A4h · A) = 0. For any ε > 0, there is a cylinder B that depends only on
finitely many points (b1, . . . , bk) such that λ(A4B) ≤ ε. We now want to find
an element g ∈ H such that B and g · B are λ-independent.

Take {b1, . . . , bk} ⊂ S. Remark that there is {b′1, ..., b′k} ⊂ S disjoint from
{b1, . . . , bk} such that bl ⊥ b′l and bl ∼x⊥j

b′l for all 1 ≤ l ≤ k and 1 ≤ j ≤ n.

Therefore there is an element of H that sends {b1, . . . , bk} to {b1, . . . , bk} and
is therefore as wanted.
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Just as in the proof of Proposition 5.3.2, we have:∣∣∣λ(A)− λ(A)2
∣∣∣ = ∣∣∣λ(A ∩ g · A)− λ(A)2

∣∣∣
≤ |λ(A ∩ g · A)− λ(B ∩ g · A)|+ |λ(B ∩ g · A)− λ(B ∩ g · B)|

+
∣∣∣λ(B ∩ g · B)− λ(B)2

∣∣∣+ ∣∣∣λ(B)2 − λ(A)2
∣∣∣

≤4ε.

Thus λ(A) ∈ {0, 1}.
Since LOp(S) is compact, we have the result: λ is an extreme point of the

H-invariant measures and all the λUi are equal. Therefore we have,

µ(V ∩Ui) = µUi (V)µ(Ui)

= λUi (V)µ(Ui)

= λ(V)µ(Ui)

= µ(V)µ(Ui)

for all i ∈ {1, . . . , m}, and V = V(a1
1,...,a1

i1
),...,(ak

1,...,ak
ik
). This finishes the proof of

Theorem 1.
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CHAPTER 6

Minimal model-universal flow for locally compact groups

This is joint work with Andy Zucker, it follows closely [JZ1].

6.1 Introduction

Topological dynamics can be understood as an attempt to describe the actions
of topological groups on compact spaces. Part of this process consists of
understanding which objects are generic or universal among the actions of a
given group. A famous instance of this is the universal minimal flow, whose
existence was proven by Ellis ([E2]). This is a minimal flow which maps onto
any other minimal flow; by understanding the properties of this one object,
we can better understand the collection of all minimal flows. In this paper,
we prove the existence of a minimal flow which is universal in a different
sense, in that it contains a copy of any measured free action. Similarly, this
“universal minimal model" can help shed light on the dynamical properties
of a given locally compact group.

Let G be a locally compact non-compact Polish group. Recall that a G-flow
is a continuous G-action on a compact space. A G-flow is said to be minimal
if every orbit is dense. If Y is a G-flow, then PG(Y) denotes the G-invariant
regular Borel probability measures on Y.

By a G-system, we will mean a Borel G-action on a standard Lebesgue
space (X, µ) which preserves µ. We say that a G-system (X, µ) is free if the
set

Free(X) := {x ∈ X : ∀g ∈ (G \ {1G}) gx 6= x}

has measure 1. Because G is locally compact, this set is Borel. Therefore when
dealing with free G-systems, we will often just assume that X = Free(X).

If (X, µ) and (Y, ν) are G-systems, we say that Y is a factor of (X, µ) if
there is a Borel, G-invariant subset X′ ⊆ X with µ(X′) = 1 and a Borel,
G-equivariant map f : X′ → Y with ν = f∗µ.

If we can find f as above which is also injective, then we say that (X, µ)
and (Y, ν) are isomorphic G-systems. We will denote this (X, µ) ∼= (Y, ν).
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A compact metric G-flow Y is weakly model-universal if for every free G-
system (X, µ), there is ν ∈ PG(Y) with (Y, ν) a factor of (X, µ). We say that
Y is model-universal if for every free G-system (X, µ), there is ν ∈ PG(Y) with
(X, µ) ∼= (Y, ν).

The main theorem of this paper is the construction of a minimal, model-
universal flow for every locally compact, non-compact Polish group.

Theorem 6.1.1. Let G be a locally compact, non-compact Polish group. Then there
exists a minimal model-universal flow for G.

This result extends a result of Weiss [W], who proved Theorem 6.1.1 in
the case of countable groups. Weiss uses the slightly different terminology
universal minimal model to describe this object. More recently, Zucker [Z4]
gives a new proof of Weiss’s result, and it is this proof that we generalize.
We remark that Theorem 6.1.1 cannot extend to all Polish groups. As an
example, the group Aut(Q) admits no non-trivial minimal flows, while the
shift action on [0, 1]Q equipped with the product Lebesgue measure is a free
G-system. It would be interesting to understand the precise class of Polish
groups for which Theorem 6.1.1 is true.

The universality of the flow from Theorem 6.1.1 is quite different from
that of the universal minimal flow M(G). Indeed, M(G) is universal in the
sense that it surjects onto every minimal flow, while we construct a minimal
flow into which every free G-system can be injected. Another difference is
uniqueness; while M(G) is unique up to isomorphism, it is shown in [Z4] that
when G is countable, there are continuum many minimal model-universal
flows up to isomorphism. Unfortunately, the proof of this requires some
machinery for countable groups that is not yet known to generalize to locally
compact groups. However, we strongly suspect that for any locally compact
G, minimal model-universal flows are not unique.

Another result of [Z4] that we do not address here is whether a minimal,
model-universal flow can be free. If Y is a minimal flow and ν ∈ PG(Y) is
such that (Y, ν) is a free G-system, then Y must be essentially free, meaning
that Free(Y) ⊆ Y is dense Gδ. However, Weiss’s construction of a minimal
model-universal flow left open the question of whether such an object could
be free. The first construction of a free minimal model-universal flow was
given by Elek [E1], and in [Z4], an easy method of transforming any minimal
model-universal flow into a free one is provided. The method is roughly as
follows: start with Z a minimal model-universal flow, where we note that
the construction from [Z4] gives a zero-dimensional flow. Then construct
an almost one-one extension π : Y → Z with Y free and so that for every
z ∈ Free(Z), |π−1({z})| = 1. Then π : π−1(Free(Z)) → Free(Z) is a G-
equivariant homeomorphism, and thus the map π−1 : Free(Z)→ Y will show
that Y is also model-universal. Unfortunately, it is essential that Z be zero-
dimensional for this to work, and our construction here does not produce
zero-dimensional flows (indeed this is impossible when G is connected). A
simple example is provided by Antonyan [A2]; let G = Z/2Z and set Z =
[−1, 1]ω. G acts on Z by negating every coordinate. Hence Free(Z) = Z \
{0}, where 0 = (0, 0, 0, ...). However, Antonyan shows that Z \ {0} does
not embed as a G-subspace of any free G-flow. Therefore any soft method
of transforming a minimal model-universal flow into a free one must use a
different method to work for all locally compact groups.
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One immediate consequence of Theorem 6.1.1 is a result that was sug-
gested by Angel, Kechris and Lyons in [AKL]. Recall that a topological group
G is said to be uniquely ergodic if all minimal G-flows admit exactly one G-
invariant probability measure.

Theorem 6.1.2. Let G be a locally compact non-compact Polish group. Then there
is a minimal G-flow with multiple invariant probability measures. In particular, G
is not uniquely ergodic.

Proof. Let Z be a minimal model-universal flow for G. It suffices to show that
Z admits an invariant probability measure that is not ergodic. Take (X, µ) a
free G-system (see [AEG], Proposition 1.2). Then G acts on X × 2 by acting
on the first coordinate. Letting δ1/2 be the (1/2, 1/2)-measure on 2, then
(X × 2, µ × δ1/2) is a free, non-ergodic G-system. So letting ν ∈ PG(Z) be
chosen so that (Z, ν) ∼= (X× 2, µ× δ1/2), we see that ν is not ergodic.

Aknowledgements: The authors would like to thank Todor Tsankov for
helpful discussions and the referee for their careful reading of an earlier draft,
which caught several minor errors.

6.2 Preliminaries

Fix a non-compact, locally compact Polish group G, on which we fix a right-
invariant compatible metric d. Throughout we assume that {g ∈ G : d(g, 1G) ≤
1} is compact.

Definition 6.2.1. If (X, dX) is a compact metric space and (Y, dY) is another met-
ric space, Lip(Y, X) denotes the space of Lipschitz functions (we always mean 1-
Lipschitz unless specified otherwise) from Y to X with the topology of pointwise
convergence. If f ∈ Lip(G, X) and g, h ∈ G, we set

(g · f )(h) = f (hg).

This action turns Lip(G, X) into a G-flow. Given a subflow Y ⊆ Lip(G, X) and
any B ⊆ G, we set

SB(Y) := {y|B : y ∈ Y}.
Notice that SB(Y) ⊆ Lip(B, X) is a compact metric space; when B ⊆ G is pre-
compact, we will use the uniform metric

dB(u, v) := sup{dX(u(g), v(g)) : g ∈ B}.

If u ∈ SB(Y) and g ∈ G, we define g · u ∈ SBg−1(Y) via (g · u)(h) = u(hg). If
A ⊆ G is another subset, we set

A|B := {g ∈ G : A ⊆ Bg−1}.

In particular, if g ∈ A|B and u ∈ SB(Y), then (g · u)|A ∈ SA(Y).

Remark. If (X, dX) and (Y, dY) are metric spaces, we will equip X × Y with the
metric dX×Y((x0, y0), (x1, y1)) = max{dX(x0, x1), dY(y0, y1)}.

We now spend some time understanding minimality in subflows of Lip(G, X).
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Definition 6.2.2. Let (X, dX) be a compact metric space. If ε > 0 and S ⊆ X, we
say that S ⊆ X is ε-dense if for every x ∈ X, there is s ∈ S with dX(x, s) < ε.

Now fix a pre-compact D ⊆ G and ε > 0. We say that a subflow Y ⊆ Lip(G, X)
is (D, ε)-minimal if for any y ∈ Y, we have that {(g · y)|D : g ∈ G} ⊆ SD(Y) is
ε-dense.

We remark that this notion is monotone; if Y is (D, ε)-minimal, then also
Y is (D0, ε0)-minimal for any D0 ⊆ D and ε0 ≥ ε.

Proposition 6.2.3. With notation as in Definition 6.2.2, the following are equiva-
lent.

1. The subflow Y ⊆ Lip(G, X) is (D, ε)-minimal.

2. There is a pre-compact open E ⊆ G so that for any u ∈ SE(Y), we have that
{(g · u)|D : g ∈ D|E} ⊆ SD(Y) is ε-dense.

Proof. Item 2 certainly implies item 1. Conversely, if Item 2 fails, let En ⊆ G
be an exhaustion of G by pre-compact open sets, and find un ∈ SEn(Y) and
vn ∈ SD(Y) with dD((g · un)|D, vn) ≥ ε for every g ∈ D|En. Passing to a
subsequence, let un → y ∈ Y and vn → v ∈ SD(Y). Towards a contradiction,
suppose there were g ∈ G with dD((g · y)|D, v) < ε. Then for some N < ω, we
have g ∈ D|En for every n ≥ N. But then we must have dD((g · un)|D, vn) < ε
for some n, a contradiction. Hence Y is not (D, ε)-minimal.

Proposition 6.2.4. With notation as in Definition 6.2.2, the subflow Y ⊆ Lip(G, X)
is minimal iff it is (D, ε)-minimal for every pre-compact D ⊆ G and ε > 0.

Proof. If Y is minimal, then fix pre-compact D ⊆ G, ε > 0, and y ∈ Y. If
u ∈ SD(Y), find z ∈ Y with z|D = u. Find gn ∈ G with gn · y → z. It follows
that we must have (gn · y)|D → u, implying that dD((gn · y)|D, u) < ε for
some n < ω. Hence Y is (D, ε)-minimal.

Now assume that Y is (D, ε)-minimal for every pre-compact D ⊆ G and
ε > 0. Let En ⊆ G be an exhaustion of G by pre-compact open sets, and
let εn → 0. Fix y, z ∈ Y. We can then find for each n < ω some gn ∈ G
with dEn((gn · y)|En , z|En) < εn. It follows that gn · y → z, showing that Y is
minimal.

The remainder of this section looks at other important flows closely re-
lated to Lip(G, X).

Definition 6.2.5. We let 2G denote the space of closed subsets of G with the Fell
topology. If B ⊆ G, we set Meets(B) := {F ∈ 2G : F∩ B 6= ∅} and Avoids(B) :=
{F ∈ 2G : F ∩ B = ∅}. By considering the sets Meets(U) and Avoids(C) for
U ⊆ G open and C ⊆ G compact, we obtain a sub-basis for the Fell topology.
The action we take is not quite the obvious one: given g ∈ G and F ∈ 2G, we set
g · F = Fg−1. We do this for the following reason: letting ι : 2G → Lip(G, [0, 1])
denote the map ι(S)(g) = min (d(g, S), 1), then ι is an injective G-map.
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Definition 6.2.6. Fix D ⊆ G any symmetric subset. Then a set S ⊆ G is D-spaced
if Dg ∩ Dh = ∅ for any g 6= h ∈ S. Notice that S ⊆ G is a maximal D-spaced set
iff S is D-spaced and D2S = G.

Now suppose D ⊆ G is a compact symmetric neighborhood of the identity. We
let GD ⊆ 2G denote the collection of S ⊆ G which are Int(D)-spaced and with
D2S = G. In particular, GD contains every maximal D-spaced set and every maxi-
mal Int(D)-spaced set.

Proposition 6.2.7. For every D ⊆ G a compact symmetric neighborhood of the
identity, the G-flow GD is weakly model-universal.

Proof. This fact follows from a theorem of Kechris and a theorem of Slutsky.
Suppose G× X → X is a standard Borel G-space. A cross-section is any Borel
C ⊆ X so that G ·C = X. If D ⊆ G is a compact neighborhood of the identity,
we say that a cross-section C is D-lacunary if whenever x 6= y ∈ C, we have
Dx∩Dy = ∅. A maximal D-lacunary cross-section is a D-lacunary cross-section
C such that for any x 6∈ C, C ∪ {x} is not D-lacunary. Notice that if C is a
maximal D-lacunary cross-section and D is symmetric, then D2C = X.

Kechris in [K2] proves the following.

Theorem 6.2.8. Let G be a locally compact Polish group and D a compact neighbor-
hood of the identity. Then any standard Borel G-space X admits a D-lacunary cross
section.

The measurable version of this result is a classical result of Feldman,
Hahn, and Moore [FHM]; however, we appeal to the Borel version as we
will need the following strengthening due to Slutsky ([S], Theorem 2.4).

Theorem 6.2.9. Let G be a locally compact Polish group, and let X be a standard
Borel G-space. Then if D is a compact symmetric neighborhood of the identity and
C ⊆ X is a D-lacunary cross-section of X, there is a maximal D-lacunary cross
section C′ ⊇ C.

Now fix (X, µ) a free G-system. Applying Theorem 6.2.9, let C ⊆ X be a
maximal D-lacunary cross section. We define a Borel G-map f : X → GD by
setting

f (x) = Cx := {g ∈ G : gx ∈ C}.

As C is a maximal D-lacunary cross-section, we have Cx ∈ GD, and certainly
f is G-equivariant. To see that f is Borel, suppose B ⊆ G is Borel, and
consider Meets(B) ⊆ 2G. Then f (x) ∈ Meets(B) iff Bx ∩ C 6= ∅. The set Y :=
{(g, x) : g ∈ B and gx ∈ C} ⊆ G× X is Borel, and f−1(Meets(B)) = πX [Y].
We note that since C is D-lacunary, the projection πX is countable-to-one on
Y, showing that f−1(Meets(B)) is Borel.

6.3 A (non minimal) model-universal flow

In this section, we prove

Theorem 6.3.1. The G-flow Lip(G, [0, 1])ω is model-universal.
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The proof is an adaptation of the proof of a result of Varadarajan.

Theorem 6.3.2 (Varadarajan [V]). Let G be a locally compact Polish group, and
let G× X → X be a Borel action of G on a standard Borel space X. Then there is a
compact metric G-flow Y and a G-equivariant Borel injection X ↪→ Y.

Write Lip := Lip(G, [0, 1]), and let λ denote the left Haar measure on G.

Definition 6.3.3. Suppose f : X → [0, 1] is Borel. We let fx : G → [0, 1] be the
Borel function given by fx(g) := f (gx). If φ : G → R+ is in L1(G, λ) with
‖φ‖1 ≤ 1, we let (φ ∗ f )x : G → [0, 1] be defined via

(φ ∗ f )x(g) =
∫

G
φ(h) f (h−1gx)dλ(h)

Lemma 6.3.4. With notation as in Definition 6.3.3, suppose λ(Supp(φ)) ≤ L and
that φ is K-Lipschitz. Then (φ ∗ f )x is 2L · K-Lipschitz.

Proof. Fix g0, g1 ∈ G. By considering the change of variables h→ gih, we see
that

|(φ ∗ f )x(g0)− (φ ∗ f )x(g1)| ≤
∫

G
|φ(g0h)− φ(g1h)| f (h−1x)dλ(h)

The right hand side is identically zero whenever h 6∈ g−1
0 · Supp(φ) ∪ g−1

1 ·
Supp(φ). For h inside this set, the integrand is at most K · d(g0, g1).

In particular, suppose φ is such that (φ ∗ f )x ∈ Lip for every x ∈ X.
Then the map φ ∗ f : X → Lip given by φ ∗ f (x) = (φ ∗ f )x is Borel and
G-equivariant.

Recall that a sequence (φn)n from L1(G, λ) is an approximate identity if
φn ≥ 0, φn is symmetric, ‖φn‖1 = 1, Supp(φn) is compact, and Supp(φn) →
{1G}.

Fact 6.3.5 ([F1], Proposition 2.44). Suppose f : X → [0, 1] is Borel, and let (φn)n
be an approximate identity. Then for any x ∈ X and any compact K ⊆ G, we have
that ‖(φn ∗ f )x · χK − fx · χK‖1 → 0.

We can now work towards our proof of Theorem 6.3.1. Let { fk : k < ω}
be a sequence of characteristic functions of Borel subsets of X which generate
X. Let (φn)n be an approximate identity with each φn Cn-Lipschitz for some
Cn ∈ R+. Using Lemma 6.3.4, choose constants cn > 0 so that (cnφn ∗ fk)x ∈
Lip for every n, k < ω and x ∈ X. We define the map γ : X → Lipω×ω ∼= Lipω

by setting γ(x)(n, k) = (cnφn ∗ fk)x. Then γ is Borel and G-equivariant, and
we need only check that it is injective. Suppose γ(x) = γ(y). Using Fact 6.3.5,
this implies that for each k < ω, ( fk)x(g) = ( fk)y(g) for λ-almost every g ∈ G.
So for most g ∈ G, this is true for every k < ω. Fix such a g ∈ G. But then
gx = gy, since the fk separate points. In particular, also x = y.
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6.4 A minimal model-universal flow

In this section we prove our main theorem.

Definition 6.4.1. Suppose D ⊆ G is a compact symmetric neighborhood of the
identity. We call S0, S1 ⊆ G D-apart if DS0 ∩ DS1 = ∅.

Suppose (X, dX) is a compact metric space. We call a subflow Y ⊆ Lip(G, X)
D-irreducible if whenever S0, S1 ⊆ G are D-apart and whenever y0, y1 ∈ Y, there
is z ∈ Y with z|Si = yi|Si .

We note that if D ⊇ {g ∈ G : d(g, 1G) ≤ 1}, then Lip(G, [0, 1]n) ∼= Lipn

is D-irreducible. We first give an argument for n = 1. Let S0, S1 ⊆ G be
D-apart, and fix y0, y1 ∈ Lip. We define y ∈ Lip via

y(g) := max

(
sup

h∈S0∪S1

(yi(h)− d(g, h)); 0

)

where i ∈ {0, 1} is understood depending on the membership of h. Then y is
clearly Lipschitz, and because S0 and S1 are D-apart, we have y|Si = yi|Si for
each i ∈ {0, 1}. To conclude that Lipn is D-irreducible, we observe that if Yi ⊆
Lip(G, Xi) is D-irreducible for i < n, then so is ∏i<n Yi ⊆ Lip(G, ∏i<n Xi).

Definition 6.4.2. Suppose D ⊇ {g ∈ G : d(g, 1G) ≤ 1} is a compact symmetric
neighborhood of 1G, and let Y ⊆ Lipn be a D-irreducible subflow.

Fix E ⊆ G another compact symmetric neighborhood of 1G with D2 ⊆ E. Fix
some u ∈ SE(Y). Suppose F ⊆ G is yet another compact symmetric neighborhood
of 1G with E3 ⊆ F. We define the flow

Θ(Y, u, F) ⊆ Lipn

to consist of those functions f ∈ Lipn so that all of the following hold:

1. There is T ∈ GF so that (g · f )|E = u for each g ∈ T.

2. There is y ∈ Y with f (g) = y(g) for any g 6∈ E2T.

3. For every g ∈ G, we have (g · f )|D ∈ SD(Y).

If fn ∈ Θ(Y, u, F), where items 1 and 2 are witnessed by Tn ∈ GF and yn ∈
Y, respectively, then suppose fn → f ∈ Lipn. To show that f ∈ Θ(Y, u, F),
we first note that item 3 is a closed condition. Then pass to a subsequence
with Tn → T ∈ GF and yn → y ∈ Y. Then T and y will witness that items
1 and 2 hold for f , showing that Θ(Y, u, F) is closed. To see that Θ(Y, u, F)
is G-invariant, take f ∈ Θ(Y, u, F) and g ∈ G. Item 3 is clear for g · f , and if
T ∈ GF and y ∈ Y witness items 1 and 2 for f , then g · T = Tg−1 and g · y
will be witnesses for g · f .

We remark that since Y is D-irreducible, the flow Θ(Y, u, F) is non-empty;
the next proposition shows this and more.

Proposition 6.4.3. In the setting of Definition 6.4.2, suppose in addition that Y is
weakly model-universal. Then so is Θ(Y, u, F).
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Proof. First consider the restriction map SE3(Y) → SE3\E2(Y)× SE(Y). Since
Y is D-irreducible, this map is surjective. As this is a continuous surjection
between compact metric spaces, let η : SE3\E2(Y)× SE(Y)→ SE3(Y) be a Borel
section.

We now define a map θ : Y × GF → Θ(Y, u, F), where given y ∈ Y and
T ∈ GF, θ(y, T) is defined as follows.

1. If g 6∈ E2T, then θ(y, T)(g) = y(g).

2. If g = hk for some h ∈ E3 and k ∈ T, we set θ(y, T)(g) = η((k ·
y)|E3\E2 , u)(h).

Then θ is a Borel G-equivariant map. We check that θ(y, T) ∈ Θ(Y, u, F).
By construction, items 1 and 2 from Definition 6.4.2 are satisfied. For item 3,
consider g ∈ G. Since D2 ⊆ E, either Dg ∩ E2T = ∅ or Dg ⊆ E3k for some
k ∈ T. If Dg ∩ E2T = ∅, then (g · θ(y, T))|D = (g · y)|D ∈ SD(Y). If Dg ⊆ E3k
for some k ∈ T, then

(g · θ(y, T)) |D =
(

gk−1 · η
(
(k · y)|E3\E2 , u

)) ∣∣∣∣
D
∈ SD(Y).

Lastly, to see that θ(y, T) ∈ Lipn, we note that D ⊇ {g ∈ G : d(g, 1G) ≤ 1},
and we have just seen that item 3 holds.

Since Y× GF is weakly model-universal, then so is Θ(Y, u, F).

We will sometimes want to refer to the θ constructed here as the various
parameters change. In this case, we will refer to the map as θ〈Y, u, F〉.

Proposition 6.4.4. In the setting of Definition 6.4.2, Θ(Y, u, F) is F6-irreducible.

Proof. Let f0, f1 ∈ Θ(Y, u, F), where the membership of fi is witnessed by
Ti ∈ GF and yi ∈ Y. Suppose S0, S1 ⊆ G are F6-apart. Set T = (F5S0 ∩ T0) ∪
(F5S1 ∩ T1). Then T is an Int(F)-spaced set, so let U ⊇ T be a maximal Int(F)-
spaced set, and let V = (U \ F(S0 ∪ S1)) ∪ T. So in particular, V ∩ FSi =
Ti ∩ FSi.

We claim that V ∈ GF. Since V ⊆ U, V is Int(F)-spaced. To see that
F2V = G, let g ∈ G. If g 6∈ F3(S0 ∪ S1), then g ∈ Int(F)2h for some h ∈ U,
and since h 6∈ F(S0 ∪ S1), we have h ∈ V. If g ∈ F3Si, then g ∈ F2h for some
h ∈ (Ti ∩ F5Si) ⊆ T ⊆ V.

Since Y is D-irreducible and D ⊆ F, let y ∈ Y be chosen with y|F5Si
=

yi|F5Si
. Using V and y, we define the f ∈ Θ(Y, u, F) which will satisfy f |Si =

fi|Si . We set (g · f )|E = u for each g ∈ V, and we set f (g) = y(g) whenever
g 6∈ E2V. It remains to define f on (E2 \ E)g for g ∈ V. If g ∈ V and
E2g ∩ Si 6= ∅, we set f |E2g = fi|E2g. If g ∈ V and E2g ∩ (S0 ∪ S1) = ∅, then
we use the D-irreducibility of Y to find any vg ∈ SE3(Y) with vg|E3\E2 =

(g · f )|E3\E2 and vg|E = u, and we set (g · f )(h) = vg(h) for h ∈ E3.
We verify that f is as desired. Since V ∩ FSi = Ti ∩ FSi, we have f |Si =

fi|Si . To check that f ∈ Θ(Y, u, F), items 1 and 2 are witnessed by V and y.
For item 3, let g ∈ G. Then either Dg ∩ E2V = ∅, in which case (g · f )|D =
(g · y)|D ∈ SD(Y), or Dg ⊆ E3h for some h ∈ V. When Dg ⊆ E3h for
some h ∈ V, then either E2h ∩ (S0 ∪ S1) = ∅, in which case (g · f )|D =
(gh−1) · vh|D ∈ SD(Y), or E2h ∩ Si 6= ∅ for some i ∈ {0, 1}, in which case
(g · f )|D = (g · fi)|D ∈ SD(Y).
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We can now undertake the main construction. We set Lip = Lip(G, [0, 1]).
So note in particular that Lipn = Lip(G, [0, 1]n), and we can treat Lip0 as the
trivial (singleton) G-flow. We will inductively construct the following objects:

• Dn, En, Fn ⊆ G compact symmetric neighborhoods of the identity,

• A subflow Yn ⊆ Lipn so that Yn × Lip ⊆ Lipn+1 is Dn-irreducible.

The sets Dn, En, Fn ⊆ G will have the following properties:

1. D2
n ⊆ En, E3

n ⊆ Fn, F6
n ⊆ Dn+1

2.
⋃

n Dn = G

3. Suppose Kn < ω is such that SDn(Yn × Lip) can be covered by Kn-many
balls of radius 1/2n. Then there is a D2

n-spaced set {gn,i : i < Kn} ⊆ G
so that Dngn,i ⊆ En for each i < Kn.

4. There is a E4
n-spaced set {hn,i : i < 2n} ⊆ G so that E4

nhn,i ⊆ Int(Fn) for
each i < 2n.

We remark that the construction of the sets Dn, En, Fn ⊆ G requires that
G be non-compact, especially in regards to items 3 and 4. Start by setting
D0 = {g ∈ G : d(g, 1G) ≤ 1} and Y0 = Lip0.

Suppose we have defined Y0, ..., Yn; D0, ..., Dn; E0, ..., En−1; and F0, ..., Fn−1.
In particular, we have arranged so far that Yn×Lip ⊆ Lipn+1 is Dn-irreducible.
Find En ⊆ G satisfying items (1) and (3).

Lemma 6.4.5. There is un ∈ SEn(Yn × Lip) so that

{(g · un)|Dn : g ∈ Dn|En} ⊆ SDn(Yn × Lip)

is (1/2n)-dense.

Proof. By assumption, Yn × Lip is Dn-irreducible. Suppose Kn < ω is as
in item 3, and let { fi : i < Kn} ⊆ SDn(Yn × Lip) be chosen so that every
f ∈ SDn(Yn × Lip) satisfies dDn( f , fi) < 1/2n for some i < Kn. Let {gn,i :
i < Kn} ⊆ G be as guaranteed by item 3. Then Dgn,i and Dgn,j are Dn-apart
whenever i 6= j < Kn. Using Dn-irreducibility, we can find un ∈ SEn(Yn×Lip)
so that (gn,i · un)|Dn = fi for every i < Kn. Then un is as desired.

Now find Fn ⊆ G satisfying items (1) and (4), and form

Yn+1 := Θ(Yn × Lip, un, Fn) ⊆ Lipn+1.

Then find Dn+1 ⊆ G satisfying item (1). By Proposition 6.4.4, Yn+1 × Lip is
Dn+1-irreducible.

We can regard each Yn as a subflow of Lipω by adding a tail of constant
zero functions. Conversely, if m < n ≤ ω, we let πn

m : [0, 1]n → [0, 1]m denote
projection onto the first m coordinates. So if Z ⊆ Lipω is a subflow, we let
πω

n ◦ Z denote its projection to a subflow of Lipn. We now consider the space
Sub(Lipω) of subflows of Lipω equipped with the Vietoris topology. In this
topology, we have Zn → Z iff for each compact D ⊆ G and m < ω, we have
SD(π

n
m ◦ Zn) →n SD(π

ω
m ◦ Z) in the space K(Lip(D, [0, 1]m)), the space of

compact subsets of Lip(D, [0, 1]m) also equipped with the Vietoris topology.
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Lemma 6.4.6. In the space Sub(Lipω), we have Yn → Z for some minimal flow Z.

Proof. For notation, set S(k, m, n) := SDk (π
n
m ◦ Yn). Notice that when k ≤ n,

we have that S(k, m, n + 1) ⊆ S(k, m, n) by item 3 in Definition 6.4.2. So it fol-
lows that S(k, m, n) →n S(k, m) for some compact S(k, m) ⊆ Lip(Dk, [0, 1]m).
Also notice that πm+1

m ◦ S(k, m + 1) = S(k, m). Furthermore, if ` ≥ k and
m < ω, let

ρl
k : Lip(D`, [0, 1]m)→ Lip(Dk, [0, 1]m)

denote the restriction map. We note that whenever k ≤ ` ≤ n, we have
ρl

k[S(`, m, n)] = S(k, m, n), so also ρl
k[S(`, m)] = S(k, m). It follows that

Z := lim←−
k

lim←−
m

S(k, m) ⊆ Lipω

satisfies Yn → Z in K(Lipω). Since Sub(Lipω) is a closed subspace of K(Lipω),
it follows that Z ∈ Sub(Lipω).

To see that Z is minimal, it suffices to argue that πω
m ◦ Z is minimal for

each m < ω. To do this, we use Proposition 6.2.4. Fix z ∈ πω
m ◦ Z and k < ω.

We will argue that {(g · z)|Dk : g ∈ G} is dense in S(k, m), thus handling all
ε > 0 simultaneously.

Let n ≥ k. The construction of Yn+1 yields (keeping in mind that F6
n ⊆

Dn+1) that for any v ∈ S(n + 1, m, n + 1), we have that {(g · v)|Dn : g ∈
Dn|Dn+1} ⊆ S(n, m, n) is (1/2n)-dense. Since z|Dn+1 ∈ S(n + 1, m), we have
that {(g · z)|Dn : g ∈ Dn|Dn+1} ⊆ S(n, m) is (1/2n)-dense. By restricting
to Dk, we see that {(g · z)|Dk : g ∈ Dn|Dn+1} ⊆ S(k, m) is also (1/2n)-
dense. Letting n grow, we see that {(g · z)|Dk : g ∈ G} ⊆ S(k, m) is dense as
desired.

Set X = Lipω ×∏n GFn . Weakly model-universal flows are closed under
products, and if any member of the product is model-universal, then the
product is as well ([Z4], Proposition 6). So X is model-universal. We will
often write elements of X as tuples (( fn)n, (Sn)n)), where fn ∈ Lip and Sn ∈
GFn . We will find a Borel G-invariant set W ⊆ X with the following two
properties:

1. For every measure µ ∈ PG(X), µ(W) = 1.

2. There is a Borel, G-equivariant injection φ : W → Z.

This will show that Z is model-universal. We set

W = {(( fn)n, (Sn)n) : ∀k < ω ∃m < ω ∀n ≥ m (Ek ∩ E3
nSn = ∅)}.

In particular, membership in W only depends on the sets Sn. Fix µ ∈ PG(X);
we will show that µ(W) = 1. Fix n < ω, and let ν ∈ PG(GFn) be the projection
of µ onto GFn .

Lemma 6.4.7. If k ≤ n, we have

ν({S ∈ GFn : Ek ∩ E3
nS 6= ∅}) ≤ 1/2n
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Proof. Recall that by item (4) of the properties of the sets Dn, En, Fn, there is
an E4

n-spaced set {hn,i : i < 2n} ⊆ G so that E4
nhn,i ⊆ Int(Fn) for each i < 2n.

Note that we have:

h−1
n,i · {S ∈ GFn : Ek ∩ E3

nS 6= ∅} = {Shn,i ∈ GFn : Ek ∩ E3
nS 6= ∅}

= {T ∈ GFn : E3
nEkhn,i ∩ T 6= ∅}

⊆ {T ∈ GFn : E4
nhn,i ∩ T 6= ∅}.

Note that if gi ∈ E4
nhn,i ⊆ Int(Fn) and gj ∈ E4

nhn,j ⊆ Int(Fn), then we have

1G ∈ Int(Fn)gi ∩ Int(Fn)gj 6= ∅.

It follows that the collection

{h−1
n,i · {S ∈ GFn : Ek ∩ E3

nS} : i < 2n}

is pairwise disjoint. Since ν is G-invariant, we are done.

We can now apply the Borel-Cantelli lemma to conclude that µ(W) = 1.
We now turn to defining φ : W → Z. First let j : ω → ω× 2 be an infinite-

to-one surjection. We define for each n < ω a Borel G-equivariant map
φn : W → Yn so that φ(w) = limn φn(w). Start by letting φ0 denote the only
map to Y0. Suppose φn is defined. Let w = (( fn)n, (Sn)n) ∈ W be given. For
notation, we set f(n,0) = fn and f(n,1) = ι(Sn). We set

θn := θ〈Yn × Lip, un, Fn〉

i.e. θn : (Yn × Lip) × GFn → Yn+1 denotes the map defined in the proof of
Proposition 6.4.3. We set

φn+1(w) = θn((φn(w), f j(n)), Sn).

Lemma 6.4.8. For every w ∈W, the sequence φn(w) is convergent.

Proof. Fix w := (( fn)n, (Sn)n) ∈ W, and write φn(w) = (αn,m)m<ω, with
αn,m ∈ Lip. When m > n, we set αn,m to the constant zero function. Fix
m < ω and g ∈ G. We will show that as n → ∞, eventually αn,m(g) is
constant. Suppose k < ω is such that g ∈ Ek. Since w ∈ W, we eventually
have that E3

nSn ∩ Ek = ∅. This implies that φn+1(w)|Ek = (φn(w), f j(n))|Ek , so
in particular αn,m(g) = αn+1,m(g) whenever n is suitably large.

We can now define φ : W → Z by setting

φ(w) = lim
n

φn(w)

Then φ is Borel and G-equivariant. To see that φ is injective, suppose w, w′ ∈
W, where w = (( fn)n, (Sn)n) and w′ = (( f ′n)n, (S′n)n). Find n < ω and i < 2
with f(n,i) 6= f ′(n,i). In particular, there is some k < ω with f(n,i)|Ek 6= f ′(n,i)|Ek .
Because j : ω → ω× 2 is an infinite-to-one surjection, we can find N < ω with
j(N) = (n, i) which is as large as desired, in particular large enough so that
E3

mSm ∩ Ek = ∅ and E3
mS′m ∩ Ek = ∅ for every m ≥ N. Writing φ(w) = (αn)n

and φ(w′) = (α′n)n, we have that αN |Ek = f j(N)|Ek and α′N |Ek = f ′j(N)|Ek . Hence
φ(w) 6= φ(w′) as desired.

This concludes the proof that Z is a minimal, model-universal G-flow.
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Des progrès sur le problème d’unique ergodicité

Résumé. Cette thèse est à l’intersection de la dynamique, de la combinatoire et de la théorie
des probabilités. Mon travail se concentre sur une spécialisation de la notion de moyennabil-
ité : l’unique ergodicité. Il s’agit d’une qualification pour décrire les groupes pour lesquelles
les actions minimales admettent exactement une mesure invariante. Je m’intéresse partic-
ulièrement à des groupes d’automorphismes de limites de Fraïssé qui ont cette propriété. Les
groupes d’automorphismes de limites de Fraïssé ont plusieurs propriétés qui les rendent très
intéressants. Premièrement, il sont assez "gros", c’est à dire non localement compact. Le
chapitre 6 traite le cas des groupes localement compacts. Une autre propriété intéressante est
la compréhension que nous avons de la topologie de certains espaces sur lesquels agissent ces
groupes, ceci étant directement lié au fait qu’on a à faire à des groupes d’automorphismes.
Mon travail consiste principalement à exploiter notre compréhension de ces actions pour con-
struire des mesures qui nous permettent de comprendre toutes les mesures invariantes pour
certains groupes.

Mots-clés: Moyennabilité, Unique ergodicité, Probabilités, Dynamique des groupes
topologiques, Limites de Fraïssé.

Abstract. This thesis is at the intersection of dynamics, combinatorics and probability theory.
My work focuses on a specialization of the notion of amenability: unique ergodicity. This
notion refers to those groups whose minimal actions admit a unique invariant measure. I am
especially interested in automorphism groups of Fraïssé limits. Those groups have several
interesting properties. One of those properties is that they are somewhat "big", meaning not
locally compact. The case of locally compact groups is discussed in Chapter 6. Another
interesting property of automorphism groups is the understanding we have of some of their
actions. This is deeply linked to the fact that we are dealing with automorphism groups. My
work essentially relies on the understanding of those actions to construct measures that allow
us to understand all the invariant measures of some groups.

Keywords: Amenability, Unique ergodicity, Dynamics of topological groups, Fraïssé limits.

Image de couverture: Réalisée par Marie Callier.
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