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Graphs

A graph is a set of vertices (sommets) and edges (arêtes).
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Automorphisms of a graph

An automorphism of a graph is a transformation of the vertices

that preserves the presence and absence of edges.

1
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The transformation that sends (1, 2, 3, 4) to (4, 1, 2, 3) gives
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2 1 3
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'

4

This is not an automorphism.
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The automorphisms of our graph are :
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Groups

The automorphisms of a graph form what we call a group, i.e. we

can compose two of them and inverse any of them.

Dynamics is (roughly) the study of groups that transform spaces.

There are actions on spaces of graphs, but also other rich examples.
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Actions of a group

We denote by S6 the group of permutations of 6 elements. For

example the map that sends (1, 2, 3, 4, 5, 6) to (2, 1, 3, 5, 4, 6).
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Our graph Γ is the following :
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Our group S6 acts on the space of graphs by moving the vertices

around. For example the permutation that sends (1, 2, 3, 4, 5, 6) to

(5, 3, 4, 6, 2, 1)
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The automorphism group of Γ, Aut(Γ), is the subset (in fact

subgroup) of S6 that sends our graph Γ to itself.
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Our group S6 acts on other spaces, for example linear orderings of

6 elements, LO(6).

For example the map that sends (1, 2, 3, 4, 5, 6) to (2, 1, 3, 6, 5, 4)

transforms the ordering

3 < 5 < 2 < 1 < 6 < 4

into

3 < 5 < 1 < 2 < 4 < 6.

Our subgroup Aut(Γ) also acts on LO(6), the same as S6 but with

fewer elements.

We write Aut(Γ) y LO(6).
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An infinite graph with a lot of automorphisms

The random graph R.

Construction : Take N as a domain (vertices) and put an edge

between two points with probability 1/2. Almost surely you obtain

the same structure (up to isomorphism), call it R.

This structure has an interesting automorphism group : if A and B

are two finite subgraphs of R and f an isomorphism between A

and B, then there is an automorphism of R extending f . This

property is called homogeneity.

Any finite graph can be embedded in R. We say that Age(R), i.e.

the class of finite structures embeddable in R, is the class of finite

graphs.
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More on Fräıssé structures
A Fräıssé structure is a countable homogeneous structure.

A Fräıssé class is a collection F of finite structures that verify the

Hereditary Property (HP), the Joint Embedding Property (JEP)

and the Amalgamation Property (AP).

Theorem (Fräıssé ’54)

A Fräıssé class F admits a Fräıssé limit F, i.e. a Fräıssé structure

such that Age(F), the class of finite structures embeddable in F, is

exactly F . This limit is unique up to isomorphism.

Examples :
Fräıssé class Fräıssé limit Aut. group

finite graphs Random graph Aut(R)

finite sets N S∞
finite linear orderings (Q, <) Aut(Q)

finite partial orderings The generic poset PO Aut(PO)

finite complete partite graphs ω-partite graph Aut(Part)
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An important action

Let F be a Fräıssé limit. If you denote by LO(F) the space of linear

orderings on F, then there is the logic action Aut(F) y LO(F) in

the following way :

a(g · <)b ⇔ g−1a < g−1b.
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Aut(R) y LO(R)

Fact 1 : This action is very good at describing other actions of this

group.

Fact 2 : There is only one invariant probability measure for this

action.

An invariant (probability) measure is a measure on the space

LO(N), such that for any A measurable and g ∈ G = Aut(R),

µ(g · A) = µ(A).

Here the invariant measure is the one such that

µ(x1 < · · · < xn) =
1

n!
.
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Some definitions from dynamics

Let G be a Polish group. A G -flow is a continuous G -action on a

compact space.

Examples : If G = Aut(F) for some Fräıssé limit F, then there are

two remarkable G -flows.

1) G y [0, 1]F by permuting the coordinates.

This flow always admits some invariant measures of the form

νF for some ν measure on [0, 1].

2) G y LO(F) as before. The invariant measure mentioned

before is also an invariant measure for G .

Remark : There can be more invariant measures than these.
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Some definitions from dynamics

Definition
A group G is amenable if for every G -flow G y X there is a

G -invariant measure on X .

Definition
A group G is extremely amenable if every G -flow admits a fixed

point.

Definition
A G - flow is minimal if it admits no proper subflow.

Proposition

Any G -flow admits a minimal subflow.
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Theorem (Ellis ′69)

There exists a unique universal minimal flow (UMF) M(G ).

This means that for any minimal G -flow G y X , there is a

surjective G -map from M(G ) to X .

Definition
G is uniquely ergodic iff every minimal G -flows admits a unique

G -invariant measure.

Equivalently : G y M(G ) admits a unique invariant measure.

(Angel, Kechris, Lyons ’12).

19/59



Theorem (Ellis ′69)

There exists a unique universal minimal flow (UMF) M(G ).

This means that for any minimal G -flow G y X , there is a

surjective G -map from M(G ) to X .

Definition
G is uniquely ergodic iff every minimal G -flows admits a unique

G -invariant measure.

Equivalently : G y M(G ) admits a unique invariant measure.

(Angel, Kechris, Lyons ’12).

19/59



Theorem (Ellis ′69)

There exists a unique universal minimal flow (UMF) M(G ).

This means that for any minimal G -flow G y X , there is a

surjective G -map from M(G ) to X .

Definition
G is uniquely ergodic iff every minimal G -flows admits a unique

G -invariant measure.

Equivalently : G y M(G ) admits a unique invariant measure.

(Angel, Kechris, Lyons ’12).

19/59



Examples :

I Compact groups.

Theorem (Weiss, ’12)

Infinite countable discrete groups are never uniquely ergodic.

Theorem (J.- Zucker ’20)

Locally compact non compact Polish groups are never uniquely

ergodic.

I S∞.

I Aut(Q) (and all extremely amenable groups).

I Angel, Kechris and Lyons prove that Aut(R) is uniquely

ergodic.
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Question (Angel, Kechris, Lyons ′12)

If G is amenable with metrizable UMF, is G uniquely ergodic ?

Problem : Understanding M(G ).

0) Completing the collection of known uniquely ergodic

automorphism group of directed graphs.

1) Metrizability of the UMF is stable under extension, so is

unique ergodicity.

2) The unique ergodicity of the action on linear orderings (for

some groups).

3) A sketch of proof of the main result.
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0 - The semigeneric graph.
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State of the art in 2017 (start of the thesis)

Angel, Kechris and Lyons provide a proof of unique ergodicity for

automorphism groups of the Fräıssé limit of graphs, Kn-free graphs

for n ∈ N, metric spaces and r -uniform hypergraphs.

Pawliuk and Sokic (’20, preprint ’17), using methods from [AKL],

extended the catalogue of uniquely ergodic automorphism groups

with the amenable automorphism groups of homogeneous directed

graphs, which were all classified by Cherlin, leaving as an open

question only the case of the semigeneric directed graph.
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Theorem (J.)

The automorphism group of the semigeneric directed graph is

uniquely ergodic.
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The semigeneric graph

The semigeneric graph is defined as the Fräıssé limit of finite

directed graphs such that :

i) The absence of edge is an equivalence relation ∼.

ii) For all x1 ∼ x2 and y1 ∼ y2, the number of (directed) edges

from {x1, x2} to {y1, y2} is even.

x1 x1 x1

x2 x2 x2

y1 y1 y1

y2 y2 y2
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I - Stability under extension
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Short exact sequences

Let G be a Polish group, H a closed normal subgroup and K such

that

1→ H → G → K → 1

is an exact sequence.

Theorem (J., Zucker, ′19+)

If M(H) and M(K ) are metrizable then M(G ) is metrizable.

Moreover, under these hypotheses, if H and K are uniquely

ergodic, then G is uniquely ergodic.
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Short exact sequences
Idea of the proof

G y M(K ) is a minimal G -flow, so there is a G -map φ from

M(G ) to M(K ).

Proposition

For all x ∈ M(K ), φ−1(x) is H-minimal.

If M(G ) were non metrizable it would need to have larger

cardinality.
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Disintegration to get unique ergodicity

Let µ ∈ P(M(G )) and ν = φ∗µ, then there is a Borel map from

M(K ) to P(M(G )), y 7→ µy such that :

i) µy (φ−1({y})) = 1

ii) µ =
∫
µydν(y).

ν and µy need to be K and H invariant, therefore are uniquely

determined.
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Ame. Ext. ame. Metr. UMF + unique ergo.

Grp. Ext. X X X X
Count. Prod. X X X X
Dir. lim. X X × ×
Open subgrp X X X ?
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Question

Let G be a uniquely ergodic group and U an open subgroup. Is U

uniquely ergodic ? With the extra assumption of G having

metrizable UMF ?

Question

Let G be a uniquely ergodic group, does it have metrizable UMF ?
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II - Unique ergodicity of the action on linear orderings (for some

groups).
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Computing UMFs - The

Kechris-Pestov-Todorcevic correspondence

Theorem (Kechris-Pestov-Todorcevic, ’05)

Let F be a Fräıssé limit, Aut(F) is extremely amenable iff Age(F)

has the Ramsey property.

If G admits a ”nice enough” extremely amenable subgroup G ∗,

then

M(G ) = Ĝ/G ∗.

Theorem (Ben Yaacov-Melleray-Nguyen Van Thé-Tsankov

’14-’17, Zucker ’14)

G has metrizable UMF iff there exists G ∗ ≤ G extremely amenable

such that

M(G ) = Ĝ/G ∗.
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The class of finite linear orderings has the Ramsey property

[Ramsey,’30], therefore [Pestov, ’98] Aut((Q, <)) is extremely

amenable.

If G = S∞ then G ∗ = Aut(Q) and M(S∞) = LO(N).

The class of finite ordered graphs has the Ramsey property

[Abramson-Harrington, Nešeťril-Rödl, ’78].

If G = Aut(R), G ∗ = Aut(R<) and M(Aut(R)) = LO(R).

For the limit of the class of partite complete graphs, the UMF of

the automorphism group is the space of linear orderings for which

each part is an interval.

For the limit of the class of partial orderings, the UMF of the

automorphism group is the space of linear orderings extending the

generic poset [Nešeťril-Rödl, Paoli-Trotter-Walker, ’84].
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Main result

Theorem (J.)

Let F be a transitive, ω-categorical Fräıssé limit with no

algebraicity that admits weak elimination of imaginaries. Denote

G = Aut(F) and consider the action G y LO(F). Then exactly

one of the following holds :

1. The action G y LO(F) has a fixed point (i.e., there is a

definable linear order on F) ;

2. The action G y LO(F) is uniquely ergodic.
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Discussing the hypothesis

a) ω-categoricity : for any n ∈ N there are finitely many n-types.

This is the only hypothesis we are not sure is necessary. Allows

us to use a theorem of Tsankov on group representations

[Tsankov ’12].
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Discussing the hypothesis

b) No algebraicity : fixing finitely many points in the structure

fixes no other point.

Counterexample : Take F the countable-dimensional vector space

over F2, the M(Aut(F)) is a proper subflow of LO(F) [KPT] and

the group is uniquely ergodic [AKL].

The group therefore admits at least two invariant measures on

LO(F) : the uniform and the one supported on a proper subflow.

There is also no definable ordering on F.
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Discussing the hypothesis

c) Weak elimination of imaginaries : for every proper, open

subgroup V < G , there exists k and a tuple ā ∈ Fk such that

Gā ≤ V and [V : Gā] <∞.

Counterexample : ω-partite complete graph : we saw that the UMF

of its automorphism group is a proper subflow of LO(F) and it also

is the support for a measure.
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Discussing the hypothesis

d) Transitivity : for any a, b ∈ F, there is g ∈ G such that

g(a) = b.

Counterexample : Take N with two unary predicates P,Q.

Consider the measure that orders elements of P above elements of

Q and orders each part uniformly.
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Consequences of the result

a) Recovers a lot of known unique ergodicity results.

The random graph, the homogenenous Kn-free graph, the generic

tournament...
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Consequences of the result

b) Since there is always one invariant fully supported measure on

LO(F), this allows us to prove non-amenability results.

Corollary

Suppose that F satisfies the assumptions of the Theorem and let

G = Aut(F). If the action G y LO(F) is not minimal and has no

fixed points, then G is not amenable.

Applies for instance for the generic poset [Kechris-Sokić, ′12].
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Consequences of the result

c) Allows us to get combinatorial results

Corollary

Suppose that F satisfies the assumptions of the Theorem. If F has

the Hrushovski property, then it has the ordering property, i.e. for

every A ∈ Age(F), there exists B ∈ Age(F) such that for any two

linear orders < and <′ on A and B respectively, there is an

embedding of (A, <) into (B, <′).
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A very important ingredient

The proof of this relies on

Theorem (Tsankov)

Let F be an ω-categorical structure with no algebraicity and weak

elimation of imaginaries. Then the only Aut(F)-ergodic invariant

measures on [0, 1]F are of the type νF, where ν is a Borel measure

on [0, 1].

Counterexample : ω-partite complete graph. Denote E the

equivalence relation being in the same part. There is a map from

[0, 1]F/E to [0, 1]F. The pushfoward of νF/E to [0, 1]F is not of the

form νF.
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III - Sketch of proof of the main result.
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(Sketch of) proof

G = Aut(F).

Step 1 : An efficient way to produce measures on LO(F).

Consider the map ρ : [0, 1]F → LO(F) where

a <ρ(x) b ⇔ x(a) < x(b).

For any atomless measure λ on [0, 1], ρ is λF-a.s. well-defined. We

therefore have a measure µλ = ρ∗λ
F.

Moreover µλ is S∞-invariant, so

µλ(x1 < . . . < xn) =
1

n!
.

Therefore µλ does not depend on λ and we really produced just

one measure.
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Step 2 : Proving that all measures are produced this way or

exhibiting a fixed point of the action.

Take µ a G -invariant ergodic measure on LO(F), i.e. an extreme

point of the set of G -invariant measures on LO(F).

We want a map from LO(F) to [0, 1]F that reverses ρ and pushes

µ to some λF.

We want to associate a number to each a ∈ F and each ordering.

First idea : associate to a, <x the number

lim
n→∞

#{b ∈ Fn : b <x a}
#Fn

where Fn is an enumeration of F.

Problem : this is not well defined.
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Solution :

Consider τ a 2-type and a ∈ F, we call

Dτ (a) = {b ∈ F : tp(ab) = τ}.

Lemma
Let a ∈ F and τ a 2-type. Take A ⊂ Dτ (a) be a definable, infinite

set. Then for µ-a.e. x ,

lim
n→∞

#{b ∈ Fn ∩ A : b <x a}
# Fn ∩ A

exists and does not depend on A.

Consequence of Tsankov’s Theorem.
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We can now define for almost all x ∈ LO(F)

ητa (x) = lim
n→∞

#{b ∈ Fn ∩ Dτ (a) : b <x a}
# Fn ∩ Dτ (a)

.

Lemma
If we denote λ the distribution of ητa , then the family (ητa )a∈F has

distribution λF.

This is again a consequence of Tsankov’s Theorem.
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We want to prove (if possible) that a.s.

1) λ is atomless.

2) For all a, b ∈ F, we have

a < b ⇔ ητa < ητb .

1) is not always true, we will have to assume it (for now), and

prove 2).
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Lemma
If the distribution of ητa is atomless, then we have a.s. for all

a, b ∈ F :

a < b ⇔ ητa < ητb .

50/59



Remark
If Dτ (a) ∩ Dτ (b) 6= ∅, then

a < b ⇒{c ∈ Dτ (a) ∩ Dτ (b) ∩ Fn : c < a}
⊂ {c ∈ Dτ (a) ∩ Dτ (b) ∩ Fn : c < b}

⇒#{c ∈ Dτ (a) ∩ Dτ (b) ∩ Fn : c < a}
# Dτ (a) ∩ Dτ (b) ∩ Fn

≤ #{c ∈ Dτ (a) ∩ Dτ (b) ∩ Fn : c < b}
# Dτ (a) ∩ Dτ (b) ∩ Fn

⇒ητa ≤ ητb
⇒ητa < ητb (by the atomless assumption).

a

c

b

τ τ
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If Dτ (a) ∩ Dτ (b) = ∅, our hypothesis imply that there are

infinitely many ”alternating τ -paths” between a and b.

· · ·

a

y1

τ

y2

y3

y4 y2n−2

y2n−1

b

τττ ττ

Since ητa < ητb and the (ητc )c∈F are i.i.d., there must be a path

such that

ητa < ητy2
< · · · < ητy2n−2

< ητb

which implies

a < y2 < · · · < y2n−2 < b.
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We proved

Lemma
If the distribution of ητa is atomless, then we have a.s. for all

a, b ∈ F :

a < b ⇔ ητa < ητb .

Denote λ the distribution of ητa and assume it is atomless.

The hypothesis of the Lemma are verified, and the map φ

LO(F)→ [0, 1]F

<x 7→ (ητa (x))a∈F

is the converse of ρ and φ∗µ is of the form λF.

By step 1, µ is the uniform measure !
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There remains the case when µ(ητa = ητb = p) > 0 for some p. This

is the case when there will be a definable ordering.

The important remark is that if

a

c

b

τ τ

then

µ(a < c < b|ητa = ητb = p) = 0.

Indeed,

µ(a < c < b|ητa = ητb = p)

= E
[

#{c ′ ∈ Fn ∩ (Ga,b · c) : a < c ′ < b}
#Fn ∩ (Ga,b · c)

|ητa = ητb = p

]
→ E [ητb − ητa |ητa = ητb = p] = 0.
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In particular :

µ(a < c < b|ητa = ητb = ητc = p) = 0

for all c ∈ Dτ (a) ∩ Dτ (b).

We define a new measure ν by taking

ν(x1 < · · · < xn) = µ(x1 < · · · < xn|ητx1
= . . . = ητxn = p).

ν is supported on a proper subflow of G y LO(F).
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Under ν, one can again define ητ
−1

a for all a ∈ F.

Necessarily, this ν(ητ
−1

a = q) > 0 for some q ∈ [0, 1].

We define ν ′ as

ν ′(x1 < · · · < xn) = ν(x1 < · · · < xn|ητ
−1

x1
= . . . = ητ

−1

xn = q).

For all a, b, c ∈ F such that c ∈ Dτ−1(a) ∩ Dτ−1(b)

ν ′(a < c < b) = 0.

Take a, b, c , d ∈ F such that tp(ab) = tp(cd) = τ , then ν ′-as

a < b iff c < d .
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· · ·

a

y1

τ

y2

y3

y4 y2n−2

y2n−1

c

τττ ττ

b d

τ τ
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By iterating this process for all 2-types, we get a measure that is a

Dirac mass. Therefore we have a fixed point !
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Thank you !
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