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Abstract. The classical De Finetti Theorem classifies the S∞-invariant probabil-
ity measure on [0, 1]N. More precisely it states that those invariant measures
are mixes of measures of the form νN where ν is a measure on [0, 1]. Recently,
Tsankov generalized this theorem showing that under condition that M is an ℵ0-
categorical structure with no algebraicity and that weakly eliminates imaginaries,
then the Aut(M)-invariant measures on [0, 1]M are mixes of measures of the form
νM where ν is a measure on [0, 1] .

In this note, we use the result of Tsankov to generalize it to a wider class of
structures, that includes the rational Urysohn space.

1. Preliminaries

1.1. Model Theory. A relational countable language L is a countable collection
of symbols (relations), to each of which is associated a positive natural number,
that we call its arity. A structure M in a language L is a domain, that we denote by
Dom(M), and an interpretation of the symbols in L, i.e. to each relation R ∈ L

of arity r is associated a subset of Dom(M)r, that corresponds to the elements
verifying the relation. For a structure M and R a symbol of arity r in its language,
we write RM(x1, . . . , xr) to mean that (x1, . . . , xr) verifies R in M.

A substructure of a given structure A is a structure whose domain is included
in Dom(A) and the relations are the relations induced by restriction. An em-
bedding from a structure A into a structure B in the same language L is a
map f from Dom(A) to Dom(B) such that for any R ∈ L with arity r and
x1, . . . , xr ∈ Dom(A), we have RA(x1, . . . , xr) ⇔ RB( f (x1), . . . , f (xr)). If there
is such an f , it needs to be injective. If there is such a map that is bijective, we
say that A and B are isomorphic. If it is a bijection and A = B, we call it an
automorphism of A.

A class F of finite structures is a Fraïssé class if it contains structures of arbi-
trarily large (finite) cardinality and satisfies the following:

i) (Hereditary Property) If A ∈ F and B is a substructure of A, then B ∈ F.
ii) (Joint Embedding Property) If A, B ∈ F then there exists C ∈ F such that

A and B can be embedded in C.
iii) (Amalgamation Property) If A, B, C ∈ F and f : A→ B, g : A→ C are em-

beddings, then there exists D ∈ F and h : B → D, l : C → D embeddings
such that h ◦ f = l ◦ g.

A Fraïssé class F admits a Fraïssé limit which is a countable structure whose
age, i.e. the set of its finite substructures up to isomorphism, is F. Fraïssé limits
are homogeneous, i.e. any isomorphism between two finite substructures of the
structure can be extended to an automorphism of the structure. The Fraïssé limit
of a Fraïssé class is unique up to isomorphism. For more details on Fraïssé classes
see [H].

An example of a Fraïssé class is the class of finite metric space with rational
distances. The limit of this class is called the rational Urysohn space, it is the
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main example to which the main theorem of this note applies. More generally, if
D ⊂ Q+ is such that the finite metric spaces with distances in D is a Fraïssé class,
then we call its limit the Urysohn space over D and denote it by UD.

We define here the model-theoretic assumptions that we will need to express
the theorems. The definitions here are given from a permutation group perspec-
tive and may require some work to prove that they are equivalent their original
formulation. Let M be a Fraïssé limit, we say that:

1) M has no algebraicity if for any tuple a ∈ M, for any x /∈ a, Ga · x is
infinite, where Ga denotes the stabilizer of a for the action of Aut(M) on
M.

2) M is ℵ0-categorical if for all n ∈N, G y Mn has finitely many orbits.
3) M has weak elimination of imaginaries if for every proper, open subgroup

V < Aut(M), there exists k and a tuple ā ∈ Mk such that Ga ≤ V and
[V : Gā] < ∞.

4) M is said to be transitive if for any a, b ∈ M, there is g ∈ Aut(M) such
that g(a) = b.

1.2. Dynamics. Let G be a Polish group. A G-flow is a continuous action of a
topological group G on a compact space, we write G y X. For example, if M is
a Fraïssé limit, then Aut(M) acts on [0, 1]M as follows. If x ∈ [0, 1]M, g ∈ G and
a ∈ M, then (g · x)(a) = x(g−1a).

An invariant measure on a flow G y X is a Borel measure µ on X such that
for all g ∈ G and A ⊂ X measurable, µ(g · A) = µ(A). The following definition
is useful when describing measures.

Definition 1.1. Let G be a Polish group acting continuously on a compact space
X. A G-invariant measure ν is said to be G-ergodic if for all A ⊂ X measurable
such that

∀g ∈ G, ν(A4g · A) = 0,
we have ν(A) ∈ {0, 1}.

We can now state the the theorem describing the extreme point of the convex
set of invariant measures (see [P1] Proposition 12.4):

Theorem 1.2. Let G be a Polish group acting continuously on a compact space X. Let
PG(X) denote the convex compact space of G-invariant measures on X. Then the extreme
points of PG(X) are the G-ergodic invariant measures.

2. Main result

Definition 2.1. A Fraïssé limit M is said to be locally well behaved if every fi-
nite substructure A can be embedded in a Fraïssé limit M′ such that Age(M′) ⊂
Age(M) and M′ is ω-categorical, has no algebraicity and weakly eliminates imag-
inaries.

Definition 2.2. A Fraïssé limit is said to be countably-homogeneous if for all
Fraïssé limit M′ such that Age(M′) ⊂ Age(M), there is a copy N ⊂ M of M′ such
that any automorphism of N can be extended into an automorphism of M.

We will see in the next two sections that the rational Urysohn space is count-
ably homogeneous and locally well behaved and it therefore we can apply to it
the following theorem:

Theorem 2.3. Let M be a countably-homogeneous locally well behaved Fraïssé limit. Let
µ be an Aut(M) invariant ergodic measure on [0, 1]M. Then µ has to be of the form ν⊗M

for some ν measure on [0, 1].
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Before starting the proof, we recall this following theorem from [JT]:

Theorem 2.4. Let M be an ℵ0-categorical structure with no algebraicity that admits
weak elimination of imaginaries. Then the only invariant, ergodic probability measures
on [0, 1]M are product measures of the form λ⊗M, where λ is a probability measure on
[0, 1].

Proof. Let us take a family (ηa)a∈M with distribution µ. We need to show that for
any two disjoint finite A, B ⊂ M, then (ηa)a∈A ⊥⊥ (ηb)b∈B. Let N be a Fraïssé limit
such that N ⊂ M that is ω-categorical, has no algebraicity and weakly eliminates
imaginaries. We also assume that any automorphism of N can be extended into
an automorphism of M and A, B ⊂ N.

We consider λ = φ∗µ where φ is the restriction map from [0, 1]M to [0, 1]N. We
want to show that λ is Aut(N)-invariant.

For u ∈ Aut(N), we denote by gu one of its extensions in Aut(M)

Fact 2.5. For any event A ⊂ [0, 1]N, φ−1(u · A) = gu · φ−1(A).

Proof. Consider ω ∈ gu · φ−1(A), then g−1
u ·ω ∈ φ−1(A), hence g−1

u ω�N ∈ A, and
since (gu)�N = u, we have ω�N ∈ u · A, we have the first inclusion.

For the second one, let us take ω ∈ φ−1(u · A), we construct α so that α ∈
φ−1(A) and guσ = ω. We take σ = g−1

u ω which obviously satisfies the conditions.
�

This implies that λ is Aut(N)-invariant. We can apply theorem 2.4 in N,
we have λ =

∫
ν⊗Ndα for some measure α on P([0, 1]). In particular, we have

(ηa)a∈A ⊥⊥ (ηb)b∈B conditionally on α. It is now easy to conclude that µ =∫
ν⊗Mdα, simply by equality of the finite dimensional marginals. By ergodicity

of µ, α needs to be a Dirac mass and we have the result.
�

3. Locally well-behaved structures

An important remark regarding locally well-behaved structures is that for
ℵ0 categoric structures with algebraicity, weak elimination of imaginaries has
a somewhat simple caracterization. We use a criterion from Poizat, stated as
Lemma 16.17 in [P2]:

Proposition 3.1. Suppose M is ℵ0-categorical with no algebraicity. Let H = Aut(M).
Then weak elimination of imaginaries is implied by 〈HB, HC〉 = HB∩C for all finite
B, C ⊆ M, where HB is the pointwise stabiliser of B.

I am thankful to David Evans for pointing me towards this proposition.

Fact 3.2. Let D be a finite subset of the positive rationals. There is D ⊂ D′ such
that the metric spaces over D′ amalgamate and the Fraïssé limit UD′ weakly eliminates
imaginaries and has no algebraicity.

Up to multiplying by an integer, we can assume that D is a subset of N and
denote by d its biggest element, then D′ = {0, 1, . . . , d} satisfies the above condi-
tions.

4. Countably-homogeneous structures

Being countably homogeneous for a Fraïssé limit M is the same as saying that
Aut(M) is universal in the class of Aut(N) where N ranges over the class Fraïssé
limits embeddable in M.
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This property has been researshed in the past, Uspenskij proving that the ra-
tional Urysohn space is countably homogeneous [U], Bilge and Melleray general-
ized this construction to free-amalgamation classes [BM] and Müller extending it
to structures with stationnary independence relation [M]. The proofs of those re-
sults relies on the same idea of starting with N an embeddable structure in M and
an automorphism φ of N and extending φ to the one point-extension of N and
iterating this process. This construction is generalizable to other structure that
have a "canonical" way of amalgamating, but it does not work for tournaments
for example.

5. Consequences of this theorem

One can use Theorem 2.3 to prove:

Theorem 5.1. Let M be a transitive, locally well-behaved and countably homogeneous
structure. Consider the action Aut(M) y LO(M). Then exactly one of the following
holds:

(i) The action Aut(M) y LO(M) has a fixed point (i.e., there is a definable linear
order on M);

(ii) The action Aut(M) y LO(M) is uniquely ergodic.

This is a generalization of Theorem 1.2 in [JT]; the proof of this theorem closely
follows the proof in [JT]. The only modification necessary for the proof to work
is to check that alternating τ-path do exist and that there are infinitely many of
them, which can be done using the locally well-behaved assumption.

The remaining of the paper is a description of some aspects of Kingman’s
theory, taken from [B]. The classical Kingman theorem being a consequence of
the classical De Finetti’s theorem, our point is to show that this correlation still
holds in a more general context.

Consider a Fraïssé limit M. We denote by Part(M) the space of equivalence
relations on the domain of M. This is a compact space on which Aut(M) acts.
A random partition is a measure on Part(M), it is said to be Aut(M)-ergodic
invariant iff the associated measure is.

An example of such a random partition is the so-called Paint Box partition.
Consider ρ a partitions of [0, 1] in intervals and (Ui)i∈M an i.i.d. family of uniform
random variables on [0, 1], we define the random partition π as

i ∼π j⇔ Ui and Uj are in the same interval of ρ.

Kingman’s theorem says that the S<∞-ergodic invariant permutations of N are
precisely the Paint Box partitions.

We say that M satisfies a De Finetti’s theorem iff the only Aut(M)-ergodic
invariant measures on [0, 1]M are of the form ν⊗M for some ν measure on [0, 1].

Theorem 5.2 (Kingman’s Theorem). If a Fraïssé limit M satisfies a De Finetti’s the-
orem, then the only Aut(M)-ergodic invariant random partitions of M are Paint Box
partitions.

This proof follows closely the proof of Theorem 2.1 in [B].

Proof. For a given partition π, we call b : M → M a selection if for all i ∈ M,
b(i) ∼π i and if i ∼π j, then b(i) = b(j). For example, if one orders discretely the
domain of M, a selection can be the minimum of the equivalence class for this
ordering.

Let π̃ be an Aut(M)-ergodic invariant random partition of M, and b a selection
for π̃. Consider (Ui)i∈M a family of i.i.d. uniform random variable on [0, 1] that



A DE FINETTI THEOREM FOR THE RATIONAL URYSOHN SPACE 5

is independent from π̃ and b. We define ξi = Ub(i). Observe that the distribution
of (ξi)i∈M does not depend on b. Moreover, (ξi)i∈M is Aut(M)-ergodic invariant.

Let ν be the distribution of ξi and q its quantile, i.e.

q(p) = inf{x ∈ [0, 1] : ν([0, x]) ≥ p}.
We can define the family of flat points of q,

F = {x ∈ [0, 1] : ∃ε > 0 such that q(x) = q(y) whenever |x− y| < ε}.
Let ρ be the partition of [0, 1] in intervals induced by F, i.e. the family of

interval in F and in [0, 1]\F.
Let (Vi)i∈M be an i.i.d. family of uniform random variables on [0, 1]. In par-

ticular (q(Vi))i∈M has the same distribution as (ξi)i∈M. The Paint Box partition
induced by ρ and Vi has same distribution as π̃. �
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