Rank-one Generated Spectral Cones Defined by Two Homogeneous Linear Matrix Inequalities

C.J. Argue Joint work with Fatma Kılınç-Karzan

> Carnegie Mellon University

October 22, 2017
INFORMS Annual Meeting
Houston, Texas

Nonconvex quadratic program

$$\max_{x} x^{\top} Qx$$
s.t. $x^{\top} M_{i} x \ge 0, i = 1, \dots, k$

Nonconvex quadratic program

$$\max_{x} x^{\top}Qx$$
 s.t. $x^{\top}M_{i}x \geq 0, \ i=1,\ldots,k$ We have $x^{\top}Ax = \mathrm{Tr}(x^{\top}Ax) = \mathrm{Tr}(Axx^{\top}) = \langle A, xx^{\top} \rangle.$
$$\max_{x} \ \langle Q, xx^{\top} \rangle$$
 s.t. $\langle M_{i}, xx^{\top} \rangle \geq 0, \ i=1,\ldots,k$

Nonconvex quadratic program

$$\max_{x} x^{\top} Q x$$
s.t. $x^{\top} M_{i} x \ge 0, i = 1, \dots, k$

We have
$$x^{\top}Ax = \operatorname{Tr}(x^{\top}Ax) = \operatorname{Tr}(Axx^{\top}) = \langle A, xx^{\top} \rangle$$
.

$$\max_x \ \langle Q, xx^\top \rangle$$

s.t.
$$\langle M_i, xx^{\top} \rangle \geq 0, i = 1, \dots, k$$

Can write $X = xx^{\top}$ if and only if $X \succeq 0$ and $\operatorname{rank}(X) = 1$.

$$\max_{X} \ \langle Q, X \rangle$$
 s.t. $\langle M_i, X \rangle \geq 0, \ i = 1, \dots, k$
$$X \succeq 0$$

$$\operatorname{rank}(X) = 1$$

$$\max_{X} \langle Q, X \rangle$$
s.t. $\langle M_i, X \rangle \geq 0, i = 1, \dots, k$

$$X \succeq 0$$

$$\operatorname{rank}(X) = 1$$

The condition rank(X) = 1 is nonconvex.

$$\max_{X} \langle Q, X \rangle$$
s.t. $\langle M_i, X \rangle \geq 0, \ i = 1, \dots, k$

$$X \succeq 0$$

$$\operatorname{rank}(X) = 1$$

The condition rank(X) = 1 is nonconvex. Convex (semidefinite program) relaxation:

$$\max_{X} \langle Q, X \rangle$$
s.t. $\langle M_i, X \rangle \geq 0, \ i = 1, \dots, k$

$$X \succeq 0$$

• When is this relaxation tight?

- When is this relaxation tight?
- Feasible set perspective.

- When is this relaxation tight?
- Feasible set perspective.
- Tight for **every** objective function if and only if every extreme ray is rank one (Rank-One Generated/ROG).

- When is this relaxation tight?
- Feasible set perspective.
- Tight for **every** objective function if and only if every extreme ray is rank one (Rank-One Generated/ROG).
- Analogous to integral polyhedra/total unimodularity.

- When is this relaxation tight?
- Feasible set perspective.
- Tight for **every** objective function if and only if every extreme ray is rank one (Rank-One Generated/ROG).
- Analogous to integral polyhedra/total unimodularity.
- Burer '15, Hildebrand '16, Blekherman et al. '16.

Introduction - Our Question

Question

Let M_1, M_2 be $n \times n$ symmetric matrices.

When is

$$\mathcal{S} := \{ Y \succeq 0 : \langle Y, M_1 \rangle \ge 0, \langle Y, M_2 \rangle \ge 0 \}$$

an ROG cone?

Introduction - Outline

Two geometric perspectives.

Each perspective gives a sufficient condition for S to be ROG.

Together these conditions are also necessary.

Introduction - Outline

Two geometric perspectives.

Each perspective gives a sufficient condition for $\mathcal S$ to be ROG.

Together these conditions are also necessary.

• $\langle M, Y \rangle = 0$ as a hyperplane in $\mathbb{S}^n := \{n \times n \text{ symmetric matrices}\}.$

Introduction - Outline

Two geometric perspectives.

Each perspective gives a sufficient condition for $\mathcal S$ to be ROG.

Together these conditions are also necessary.

- ullet $\langle M,Y \rangle = 0$ as a hyperplane in $\mathbb{S}^n := \{n \times n \text{ symmetric matrices}\}.$
- $\langle M, xx^{\top} \rangle = x^{\top} M_1 x$ as a quadratic form in \mathbb{R}^n .

Introduction - Recap

- A set/cone is ROG if all its extreme points/rays have rank 1.
- SDP relaxations of quadratic programs are tight for every objective function if and only if the feasible set is ROG.
- Consider $S := \{Y \succeq 0 : \langle Y, M_1 \rangle \ge 0, \langle Y, M_2 \rangle \ge 0\}$ (two LMIs).
- Two geometric perspectives \mathbb{S}^n and \mathbb{R}^n .

Geometry of \mathbb{S}^n_+ – Rank

Consider $\mathbb{S}^n_+ := \{ \text{positive semidefinite } n \times n \text{ matrices} \} \subseteq \mathbb{S}^n.$

- Red ray: $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
- Green ray: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- $\begin{array}{l} \bullet \ \, \mathsf{Rank} \ 1 \leftrightarrow \mathsf{extreme}. \\ \mathsf{Rank} \ \geq 2 \leftrightarrow \mathsf{not} \ \mathsf{extreme}. \end{array}$

Geometry of \mathbb{S}^n_+ – One LMI

Fact [Ye, Zhang '03]

 $\mathcal{S}:=\{Y\succeq 0: \langle M,Y\rangle \geq 0\} \text{ is ROG}$ for any $M\in\mathbb{S}^3.$

Geometry of \mathbb{S}^n_+ – Two LMIs

Interacting inside \mathbb{S}^n_+ .

Non-interacting inside \mathbb{S}^n_+ .

If M_1 and M_2 are non-interacting, then every extreme ray of

$$\mathcal{S} = \{Y \succeq 0 : \langle Y, M_1 \rangle \ge 0, \langle Y, M_2 \rangle \ge 0\}$$

is an extreme ray of either

$$\{Y \succeq 0 : \langle Y, M_1 \rangle \ge 0\}$$

or

$$\{Y \succeq 0 : \langle Y, M_2 \rangle \geq 0\}.$$

If M_1 and M_2 are non-interacting, then every extreme ray of

$$\mathcal{S} = \{ Y \succeq 0 : \langle Y, M_1 \rangle \ge 0, \langle Y, M_2 \rangle \ge 0 \}$$

is an extreme ray of either

$$\{Y \succeq 0 : \langle Y, M_1 \rangle \ge 0\}$$

or

$$\{Y \succeq 0 : \langle Y, M_2 \rangle \geq 0\}.$$

 $\Rightarrow S$ is ROG.

Non-interacting inside \mathbb{S}^n_+ when:

• One LMI does not intersect \mathbb{S}^n_+ , i.e. when $\pm M_i \succeq 0$.

Non-interacting inside \mathbb{S}^n_+ when:

- One LMI does not intersect \mathbb{S}^n_+ , i.e. when $\pm M_i \succeq 0$.
- $\langle \pm M_1, X \rangle \ge 0$ is a consequence of $\langle \pm M_2, X \rangle \ge 0$ for $X \succeq 0$.

Non-interacting inside \mathbb{S}^n_+ when:

- One LMI does not intersect \mathbb{S}^n_+ , i.e. when $\pm M_i \succeq 0$.
- $\langle \pm M_1, X \rangle \ge 0$ is a consequence of $\langle \pm M_2, X \rangle \ge 0$ for $X \succeq 0$.
- Using S-lemma, this is true when $\lambda(\pm M_1) (\pm M_2) \succeq 0$ for some $\lambda \geq 0$.

Non-interacting inside \mathbb{S}^n_+ when:

- One LMI does not intersect \mathbb{S}^n_+ , i.e. when $\pm M_i \succeq 0$.
- $\langle \pm M_1, X \rangle \ge 0$ is a consequence of $\langle \pm M_2, X \rangle \ge 0$ for $X \succeq 0$.
- Using S-lemma, this is true when $\lambda(\pm M_1) (\pm M_2) \succeq 0$ for some $\lambda \geq 0$.

In sum, non-interacting when $\alpha M_1 + \beta M_2 \succeq 0$ for some $(\alpha, \beta) \neq (0, 0)$.

Geometry of \mathbb{S}^n_+ – Recap

- Non-interacting LMIs yield ROG cones.
- M_1, M_2 are non-interacting if $\langle \pm M_2, Y \rangle \geq 0$ along with $Y \succeq 0$ implies $\langle \pm M_1, Y \rangle \geq 0$.

Proposition 1

If $\alpha M_1 + \beta M_2 \succeq 0$ has a nontrivial solution, i.e. $(\alpha, \beta) \neq (0, 0)$ then S is ROG.

Question

In general, how do we show that a cone is ROG?

Question

In general, how do we show that a cone is ROG?

Show that $Y \notin Ext(S)$ when:

• $\operatorname{rank}(Y) \geq 2$.

Question

In general, how do we show that a cone is ROG?

Show that $Y \notin Ext(S)$ when:

- $\operatorname{rank}(Y) \geq 2$.

Question

In general, how do we show that a cone is ROG?

Show that $Y \notin Ext(S)$ when:

- $rank(Y) \geq 2$.
- $\langle Y, M_1 \rangle = \langle Y, M_2 \rangle = 0.$

Find $x \in \mathbb{R}^n$ such that $Y \pm xx^{\top} \in \mathcal{S}$.

Question

In general, how do we show that a cone is ROG?

Show that $Y \notin \mathsf{Ext}(\mathcal{S})$ when:

- $\operatorname{rank}(Y) \geq 2$.

Find $x \in \mathbb{R}^n$ such that $Y \pm xx^{\top} \in \mathcal{S}$.

• For $Y - xx^{\top} \succeq 0$, need $x \in \text{Range}(Y)$.

Question

In general, how do we show that a cone is ROG?

Show that $Y \notin Ext(S)$ when:

- $\operatorname{rank}(Y) \geq 2$.
- $(Y, M_1) = \langle Y, M_2 \rangle = 0.$

Find $x \in \mathbb{R}^n$ such that $Y \pm xx^{\top} \in \mathcal{S}$.

- For $Y xx^{\top} \succeq 0$, need $x \in \text{Range}(Y)$.
- Since $\langle Y, M_i \rangle = 0$, need $0 = \langle xx^\top, M_i \rangle = x^\top M_i x$.

Quadratic Forms - Zero Sets

Fix a candidate extreme ray Y. Define

$$\mathcal{N}_1 := \{ x \in \mathbb{R}^n : x^\top M_1 x = 0 \}.$$

$$\mathcal{N}_2 := \{ x \in \mathbb{R}^n : x^{\top} M_2 x = 0 \}.$$

When is Range $(Y) \cap \mathcal{N}_1 \cap \mathcal{N}_2 \neq \{0\}$?

Quadratic Forms

Start with n=3.

Consider $Y \in \mathbb{S}^3_+$, $\operatorname{rank}(Y) = 2$.

Quadratic Forms

Start with n=3.

Consider $Y \in \mathbb{S}^3_+$, $\operatorname{rank}(Y) = 2$.

ullet Range(Y) is a plane.

Quadratic Forms

Start with n=3.

Consider $Y \in \mathbb{S}^3_+$, rank(Y) = 2.

- Range(Y) is a plane.
- If $\mathcal{N}_1 \cap \mathcal{N}_2 \subseteq \mathbb{R}^3$ contains a plane, then it intersects every plane nontrivially.

Quadratic Forms

Start with n=3.

Consider $Y \in \mathbb{S}^3_+$, rank(Y) = 2.

- Range(Y) is a plane.
- If $\mathcal{N}_1 \cap \mathcal{N}_2 \subseteq \mathbb{R}^3$ contains a plane, then it intersects every plane nontrivially.

Observation

 \mathcal{S} is ROG when $\mathcal{N}_1 \cap \mathcal{N}_2$ contains a plane.

Question

When does $\mathcal{N}_1 \cap \mathcal{N}_2$ contain a plane?

Question

When does $\mathcal{N}_1 \cap \mathcal{N}_2$ contain a plane?

• $\{x \in \mathbb{R}^3 : x^\top M x = 0\}$ contains a plane when $\mathrm{rank}(M) \leq 2$ and M is indefinite.

Question

When does $\mathcal{N}_1 \cap \mathcal{N}_2$ contain a plane?

- $\{x \in \mathbb{R}^3 : x^\top M x = 0\}$ contains a plane when $\mathrm{rank}(M) \leq 2$ and M is indefinite.
- For any (α, β) ,

$$\mathcal{N}_{\alpha,\beta} := \{ x \in \mathbb{R}^3 : x^\top (\alpha M_1 + \beta M_2) x = 0 \} \supseteq \mathcal{N}_1 \cap \mathcal{N}_2.$$

Question

When does $\mathcal{N}_1 \cap \mathcal{N}_2$ contain a plane?

- $\{x \in \mathbb{R}^3 : x^\top M x = 0\}$ contains a plane when $\mathrm{rank}(M) \leq 2$ and M is indefinite.
- For any (α, β) ,

$$\mathcal{N}_{\alpha,\beta} := \{ x \in \mathbb{R}^3 : x^\top (\alpha M_1 + \beta M_2) x = 0 \} \supseteq \mathcal{N}_1 \cap \mathcal{N}_2.$$

In particular, $\mathcal{N}_{\alpha,\beta}$ contains a plane for all (α,β) .

Question

When does $\mathcal{N}_1 \cap \mathcal{N}_2$ contain a plane?

- $\{x \in \mathbb{R}^3 : x^\top M x = 0\}$ contains a plane when $\mathrm{rank}(M) \leq 2$ and M is indefinite.
- For any (α, β) ,

$$\mathcal{N}_{\alpha,\beta} := \{ x \in \mathbb{R}^3 : x^\top (\alpha M_1 + \beta M_2) x = 0 \} \supseteq \mathcal{N}_1 \cap \mathcal{N}_2.$$

In particular, $\mathcal{N}_{\alpha,\beta}$ contains a plane for all (α,β) .

Answer*

When $rank(\alpha M_1 + \beta M_2) \leq 2$ for all (α, β) .

• Y is not an extreme ray when $\mathrm{Range}(Y) \cap \mathcal{N}_1 \cap \mathcal{N}_2$ has a nonzero element.

- Y is not an extreme ray when $\mathrm{Range}(Y) \cap \mathcal{N}_1 \cap \mathcal{N}_2$ has a nonzero element.
- In \mathbb{R}^3 , if $\mathcal{N}_1 \cap \mathcal{N}_2$ contains a plane, no rank 2 extreme rays.

- Y is not an extreme ray when $\mathrm{Range}(Y) \cap \mathcal{N}_1 \cap \mathcal{N}_2$ has a nonzero element.
- In \mathbb{R}^3 , if $\mathcal{N}_1 \cap \mathcal{N}_2$ contains a plane, no rank 2 extreme rays.
- $\mathcal{N}_1 \cap \mathcal{N}_2$ contains a plane when $\operatorname{rank}(\alpha M_1 + \beta M_2) \leq 2$ for all α, β .

- Y is not an extreme ray when $\mathrm{Range}(Y) \cap \mathcal{N}_1 \cap \mathcal{N}_2$ has a nonzero element.
- In \mathbb{R}^3 , if $\mathcal{N}_1 \cap \mathcal{N}_2$ contains a plane, no rank 2 extreme rays.
- $\mathcal{N}_1 \cap \mathcal{N}_2$ contains a plane when $\operatorname{rank}(\alpha M_1 + \beta M_2) \leq 2$ for all α, β .

Proposition 2

S is ROG when $\operatorname{rank}(\alpha M_1 + \beta M_2) \leq 2$ for all (α, β) , $\operatorname{Span}\{\operatorname{Range}(M_1) \cup \operatorname{Range}(M_2)\}$ has dimension 3, and $\alpha M_1 + \beta M_2 \succeq 0$ has only the trivial solution $(\alpha, \beta) = (0, 0)$.

Main Result

Theorem 3 (A, Kılınç-Karzan, '17)

 $\{Y\succeq 0: \langle M_1,Y\rangle \geq 0, \langle M_2,Y\rangle \geq 0\}$ is ROG iff one of the following holds

- (i) $\alpha M_1 + \beta M_2 \succeq 0$ for some $(\alpha, \beta) \neq (0, 0)$.
- (ii) $\operatorname{rank}(\alpha M_1 + \beta M_2) \leq 2$ for all (α, β) and $\operatorname{Span}\{\operatorname{Range}(M_1) \cup \operatorname{Range}(M_2)\}$ has dimension 3.

First consider the case of \mathbb{S}^3 .

Suppose that:

(i)
$$\alpha M_1 + \beta M_2 \succeq 0$$
 for any $(\alpha, \beta) \neq (0, 0)$.

(ii) $rank(aM_1 + bM_2) \ge 3$ for some (a, b).

First consider the case of \mathbb{S}^3 .

Suppose that:

- (i) $\alpha M_1 + \beta M_2 \not\succeq 0$ for any $(\alpha, \beta) \neq (0, 0)$.
- (ii) $rank(aM_1 + bM_2) \ge 3$ for some (a, b).

Need to construct an extreme ray Y of rank 2.

First consider the case of \mathbb{S}^3 .

Suppose that:

- (i) $\alpha M_1 + \beta M_2 \not\succeq 0$ for any $(\alpha, \beta) \neq (0, 0)$.
- (ii) $rank(aM_1 + bM_2) \ge 3$ for some (a, b).

Need to construct an extreme ray Y of rank 2.

• $\operatorname{rank}(aM_1 + bM_2) = 3$ implies that $\mathcal{N}_1 \cap \mathcal{N}_2$ is "sparse."

First consider the case of \mathbb{S}^3 .

Suppose that:

- (i) $\alpha M_1 + \beta M_2 \not\succeq 0$ for any $(\alpha, \beta) \neq (0, 0)$.
- (ii) $rank(aM_1 + bM_2) \ge 3$ for some (a, b).

Need to construct an extreme ray Y of rank 2.

- $\operatorname{rank}(aM_1+bM_2)=3$ implies that $\mathcal{N}_1\cap\mathcal{N}_2$ is "sparse."
- Get a vector z that is not spanned by any two vectors of $\mathcal{N}_1 \cap \mathcal{N}_2$.

First consider the case of \mathbb{S}^3 .

Suppose that:

- (i) $\alpha M_1 + \beta M_2 \not\succeq 0$ for any $(\alpha, \beta) \neq (0, 0)$.
- (ii) $rank(aM_1 + bM_2) \ge 3$ for some (a, b).

Need to construct an extreme ray Y of rank 2.

- $\operatorname{rank}(aM_1 + bM_2) = 3$ implies that $\mathcal{N}_1 \cap \mathcal{N}_2$ is "sparse."
- Get a vector z that is not spanned by any two vectors of $\mathcal{N}_1 \cap \mathcal{N}_2$.
- Use infeasibility of $\alpha M_1 + \beta M_2 \succeq 0$ for $(\alpha, \beta) \neq (0, 0)$ to get w such that $Y = zz^T + ww^T$ is tight for both LMIs $(w \neq \lambda z \text{ for } \lambda \in \mathbb{R})$.

First consider the case of \mathbb{S}^3 .

Suppose that:

- (i) $\alpha M_1 + \beta M_2 \not\succeq 0$ for any $(\alpha, \beta) \neq (0, 0)$.
- (ii) $rank(aM_1 + bM_2) \ge 3$ for some (a, b).

Need to construct an extreme ray Y of rank 2.

- $\operatorname{rank}(aM_1 + bM_2) = 3$ implies that $\mathcal{N}_1 \cap \mathcal{N}_2$ is "sparse."
- Get a vector z that is not spanned by any two vectors of $\mathcal{N}_1 \cap \mathcal{N}_2$.
- Use infeasibility of $\alpha M_1 + \beta M_2 \succeq 0$ for $(\alpha, \beta) \neq (0, 0)$ to get w such that $Y = zz^T + ww^T$ is tight for both LMIs $(w \neq \lambda z \text{ for } \lambda \in \mathbb{R})$.

We reduce the general case of \mathbb{S}^n to the case of \mathbb{S}^3 .

Extensions/Questions

- Necessary and sufficient conditions for more than 2 LMIs.
- Use results to analyze conic constraints.
 - Alternate analysis of Burer's work on extensions of the Trust Region Subproblem.
 - Necessary and sufficient conditions for more general conic constraints.

Thank you!

cargue@andrew.cmu.edu

Further Reading

Samuel Burer (2015).

A Gentle Geometric Introduction to Copositive Optimization.

Mathematical Programming, June 2015, Volume 151, Issue 1, pp 89-116.

Roland Hildebrand (2016).

Spectrahedral Cones Generated by Rank-1 Matrices

Journal of Global Optimization, Feb. 2016, Volume 64, Issue 2, pp 349-397.

Grigoriy Blekherman et al. (2016).

Do Sums of Squares Dream of Free Resolutions?

SIAM J. Appl. Algebra Geometry, 1(1), 175-199.