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Introduction – Motivation

Nonconvex quadratic program

max
x

x>Qx

s.t. x>Mix ≥ 0, i = 1, . . . , k

We have x>Ax = Tr(x>Ax) = Tr(Axx>) = 〈A, xx>〉.

max
x
〈Q, xx>〉

s.t. 〈Mi, xx
>〉 ≥ 0, i = 1, . . . , k

Can write X = xx> if and only if X � 0 and rank(X) = 1.

max
X
〈Q,X〉

s.t. 〈Mi, X〉 ≥ 0, i = 1, . . . , k

X � 0

rank(X) = 1
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Introduction – Motivation

max
X
〈Q,X〉

s.t. 〈Mi, X〉 ≥ 0, i = 1, . . . , k

X � 0

rank(X) = 1

The condition rank(X) = 1 is nonconvex.

Convex (semidefinite program) relaxation:

max
X
〈Q,X〉

s.t. 〈Mi, X〉 ≥ 0, i = 1, . . . , k

X � 0
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Introduction – Motivation

When is this relaxation tight?

Feasible set perspective.

Tight for every objective function if and only if every extreme ray is
rank one (Rank-One Generated/ROG).

Analogous to integral polyhedra/total unimodularity.

Burer ’15, Hildebrand ’16, Blekherman et al. ’16.
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Introduction – Our Question

Question

Let M1,M2 be n× n symmetric matrices.

When is
S := {Y � 0 : 〈Y,M1〉 ≥ 0, 〈Y,M2〉 ≥ 0}

an ROG cone?
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Introduction – Outline

Two geometric perspectives.
Each perspective gives a sufficient condition for S to be ROG.
Together these conditions are also necessary.

〈M,Y 〉 = 0 as a hyperplane in Sn := {n× n symmetric matrices}.
〈M,xx>〉 = x>M1x as a quadratic form in Rn.
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C. Argue, F. Kılınç-Karzan (CMU) ROG spectral cones defined by two LMIs 6 / 21



6/21

Introduction – Outline

Two geometric perspectives.
Each perspective gives a sufficient condition for S to be ROG.
Together these conditions are also necessary.

〈M,Y 〉 = 0 as a hyperplane in Sn := {n× n symmetric matrices}.
〈M,xx>〉 = x>M1x as a quadratic form in Rn.
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Introduction – Recap

A set/cone is ROG if all its extreme points/rays have rank 1.

SDP relaxations of quadratic programs are tight for every objective
function if and only if the feasible set is ROG.

Consider S := {Y � 0 : 〈Y,M1〉 ≥ 0, 〈Y,M2〉 ≥ 0} (two LMIs).

Two geometric perspectives – Sn and Rn.
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Geometry of Sn+ – Rank

Consider Sn+ := {positive semidefinite n× n matrices} ⊆ Sn.

Red ray:

[
1 0
0 0

]
Green ray:

[
1 0
0 1

]
Rank 1 ↔ extreme.
Rank ≥ 2↔ not extreme.
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Geometry of Sn+ – One LMI

Fact [Ye, Zhang ’03]

S := {Y � 0 : 〈M,Y 〉 ≥ 0} is ROG
for any M ∈ S3.
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Geometry of Sn+ – Two LMIs

Interacting inside Sn+. Non-interacting inside Sn+.
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Geometry of Sn+ – Non-interacting LMIs

If M1 and M2 are non-interacting, then
every extreme ray of

S = {Y � 0 : 〈Y,M1〉 ≥ 0, 〈Y,M2〉 ≥ 0}

is an extreme ray of either

{Y � 0 : 〈Y,M1〉 ≥ 0}

or
{Y � 0 : 〈Y,M2〉 ≥ 0}.

⇒ S is ROG.
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Geometry of Sn+ – Non-interacting LMIs

Non-interacting inside Sn+ when:

One LMI does not intersect Sn+, i.e.
when ±Mi � 0.

〈±M1, X〉 ≥ 0 is a consequence of
〈±M2, X〉 ≥ 0 for X � 0.

Using S-lemma, this is true when
λ(±M1)− (±M2) � 0 for some
λ ≥ 0.

In sum, non-interacting when
αM1 + βM2 � 0 for some (α, β) 6= (0, 0).
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Geometry of Sn+ – Recap

Non-interacting LMIs yield ROG cones.

M1,M2 are non-interacting if 〈±M2, Y 〉 ≥ 0 along with Y � 0
implies 〈±M1, Y 〉 ≥ 0.

Proposition 1

If αM1 + βM2 � 0 has a nontrivial solution, i.e. (α, β) 6= (0, 0) then S is
ROG.
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Showing Y /∈ Ext(S)

Question

In general, how do we show that a cone is ROG?

Show that Y /∈ Ext(S) when:

rank(Y ) ≥ 2.

〈Y,M1〉 = 〈Y,M2〉 = 0.

Find x ∈ Rn such that Y ± xx> ∈ S.

For Y − xx> � 0, need x ∈ Range(Y ).

Since 〈Y,Mi〉 = 0, need 0 = 〈xx>,Mi〉 = x>Mix.
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C. Argue, F. Kılınç-Karzan (CMU) ROG spectral cones defined by two LMIs 14 / 21



15/21

Quadratic Forms – Zero Sets

Fix a candidate extreme ray Y . Define

N1 := {x ∈ Rn : x>M1x = 0}.

N2 := {x ∈ Rn : x>M2x = 0}.

When is Range(Y ) ∩N1 ∩N2 6= {0}?
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Quadratic Forms

Start with n = 3.
Consider Y ∈ S3+, rank(Y ) = 2.

Range(Y ) is a plane.

If N1 ∩N2 ⊆ R3 contains a plane, then it intersects every plane
nontrivially.

Observation

S is ROG when N1 ∩N2 contains a plane.
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Quadratic Forms – N1 ∩N2 contains a plane

Question

When does N1 ∩N2 contain a plane?

{x ∈ R3 : x>Mx = 0} contains a plane when rank(M) ≤ 2 and M is
indefinite.

For any (α, β),

Nα,β := {x ∈ R3 : x>(αM1 + βM2)x = 0} ⊇ N1 ∩N2.

In particular, Nα,β contains a plane for all (α, β).

Answer∗

When rank(αM1 + βM2) ≤ 2 for all (α, β).
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Geometry of Quadratic Forms – Recap

Y is not an extreme ray when Range(Y ) ∩N1 ∩N2 has a nonzero
element.

In R3, if N1 ∩N2 contains a plane, no rank 2 extreme rays.

N1 ∩N2 contains a plane when rank(αM1 + βM2) ≤ 2 for all α, β.

Proposition 2

S is ROG when rank(αM1 + βM2) ≤ 2 for all (α, β),
Span{Range(M1) ∪ Range(M2)} has dimension 3, and αM1 + βM2 � 0
has only the trivial solution (α, β) = (0, 0).
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Main Result

Theorem 3 (A, Kılınç-Karzan, ’17)

{Y � 0 : 〈M1, Y 〉 ≥ 0, 〈M2, Y 〉 ≥ 0} is ROG iff one of the following holds

(i) αM1 + βM2 � 0 for some (α, β) 6= (0, 0).

(ii) rank(αM1 + βM2) ≤ 2 for all (α, β) and
Span{Range(M1) ∪ Range(M2)} has dimension 3.
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Proving Necessity (Sketch)

First consider the case of S3.
Suppose that:

(i) αM1 + βM2 6� 0 for any (α, β) 6= (0, 0).

(ii) rank(aM1 + bM2) ≥ 3 for some (a, b).

Need to construct an extreme ray Y of rank 2.

rank(aM1 + bM2) = 3 implies that N1 ∩N2 is “sparse.”

Get a vector z that is not spanned by any two vectors of N1 ∩N2.

Use infeasibility of αM1 + βM2 � 0 for (α, β) 6= (0, 0) to get w such
that Y = zzT + wwT is tight for both LMIs (w 6= λz for λ ∈ R).

We reduce the general case of Sn to the case of S3.
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Extensions/Questions

Necessary and sufficient conditions for more than 2 LMIs.

Use results to analyze conic constraints.

Alternate analysis of Burer’s work on extensions of the Trust Region
Subproblem.
Necessary and sufficient conditions for more general conic constraints.
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Thank you!

cargue@andrew.cmu.edu
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