Rank-one Generated Spectral Cones Defined by Two Homogeneous Linear Matrix Inequalities

C.J. Argue
Joint work with Fatma Kilnç-Karzan

Carnegie
 Mellon University

October 22, 2017
INFORMS Annual Meeting Houston, Texas

Introduction - Motivation

Nonconvex quadratic program

$$
\begin{aligned}
\max _{x} & x^{\top} Q x \\
\text { s.t. } & x^{\top} M_{i} x \geq 0, i=1, \ldots, k
\end{aligned}
$$

Introduction - Motivation

Nonconvex quadratic program

$$
\begin{aligned}
\max _{x} & x^{\top} Q x \\
\text { s.t. } & x^{\top} M_{i} x \geq 0, i=1, \ldots, k
\end{aligned}
$$

We have $x^{\top} A x=\operatorname{Tr}\left(x^{\top} A x\right)=\operatorname{Tr}\left(A x x^{\top}\right)=\left\langle A, x x^{\top}\right\rangle$.

$$
\begin{aligned}
& \max _{x}\left\langle Q, x x^{\top}\right\rangle \\
& \text { s.t. }\left\langle M_{i}, x x^{\top}\right\rangle \geq 0, i=1, \ldots, k
\end{aligned}
$$

Introduction - Motivation

Nonconvex quadratic program

$$
\begin{aligned}
& \max _{x} x^{\top} Q x \\
& \text { s.t. } x^{\top} M_{i} x \geq 0, i=1, \ldots, k
\end{aligned}
$$

We have $x^{\top} A x=\operatorname{Tr}\left(x^{\top} A x\right)=\operatorname{Tr}\left(A x x^{\top}\right)=\left\langle A, x x^{\top}\right\rangle$.

$$
\begin{aligned}
& \max _{x}\left\langle Q, x x^{\top}\right\rangle \\
& \text { s.t. }\left\langle M_{i}, x x^{\top}\right\rangle \geq 0, i=1, \ldots, k
\end{aligned}
$$

Can write $X=x x^{\top}$ if and only if $X \succeq 0$ and $\operatorname{rank}(X)=1$.

$$
\begin{aligned}
& \max _{X}\langle Q, X\rangle \\
& \text { s.t. }\left\langle M_{i}, X\right\rangle \geq 0, i=1, \ldots, k \\
& X \succeq 0 \\
& \operatorname{rank}(X)=1
\end{aligned}
$$

Introduction - Motivation

$$
\begin{aligned}
\max _{X} & \langle Q, X\rangle \\
\text { s.t. } & \left\langle M_{i}, X\right\rangle \geq 0, i=1, \ldots, k \\
& X \succeq 0 \\
& \quad \operatorname{rank}(X)=1
\end{aligned}
$$

The condition $\operatorname{rank}(X)=1$ is nonconvex.

Introduction - Motivation

$$
\begin{aligned}
\max _{X} & \langle Q, X\rangle \\
\text { s.t. } & \left\langle M_{i}, X\right\rangle \geq 0, i=1, \ldots, k \\
& X \succeq 0 \\
& \operatorname{rank}(X)=1
\end{aligned}
$$

The condition $\operatorname{rank}(X)=1$ is nonconvex.
Convex (semidefinite program) relaxation:

$$
\begin{aligned}
\max _{X} & \langle Q, X\rangle \\
\text { s.t. } & \left\langle M_{i}, X\right\rangle \geq 0, i=1, \ldots, k \\
& X \succeq 0
\end{aligned}
$$

Introduction - Motivation

- When is this relaxation tight?

Introduction - Motivation

- When is this relaxation tight?
- Feasible set perspective.

Introduction - Motivation

- When is this relaxation tight?
- Feasible set perspective.
- Tight for every objective function if and only if every extreme ray is rank one (Rank-One Generated/ROG).

Introduction - Motivation

- When is this relaxation tight?
- Feasible set perspective.
- Tight for every objective function if and only if every extreme ray is rank one (Rank-One Generated/ROG).
- Analogous to integral polyhedra/total unimodularity.

Introduction - Motivation

- When is this relaxation tight?
- Feasible set perspective.
- Tight for every objective function if and only if every extreme ray is rank one (Rank-One Generated/ROG).
- Analogous to integral polyhedra/total unimodularity.
- Burer '15, Hildebrand '16, Blekherman et al. '16.

Introduction - Our Question

Question

Let M_{1}, M_{2} be $n \times n$ symmetric matrices.

When is

$$
\mathcal{S}:=\left\{Y \succeq 0:\left\langle Y, M_{1}\right\rangle \geq 0,\left\langle Y, M_{2}\right\rangle \geq 0\right\}
$$

an ROG cone?

Introduction - Outline

Two geometric perspectives.
Each perspective gives a sufficient condition for \mathcal{S} to be ROG. Together these conditions are also necessary.

Introduction - Outline

Two geometric perspectives.
Each perspective gives a sufficient condition for \mathcal{S} to be ROG.
Together these conditions are also necessary.

- $\langle M, Y\rangle=0$ as a hyperplane in $\mathbb{S}^{n}:=\{n \times n$ symmetric matrices $\}$.

Introduction - Outline

Two geometric perspectives.
Each perspective gives a sufficient condition for \mathcal{S} to be ROG. Together these conditions are also necessary.

- $\langle M, Y\rangle=0$ as a hyperplane in $\mathbb{S}^{n}:=\{n \times n$ symmetric matrices $\}$.
- $\left\langle M, x x^{\top}\right\rangle=x^{\top} M_{1} x$ as a quadratic form in \mathbb{R}^{n}.

Introduction - Recap

- A set/cone is ROG if all its extreme points/rays have rank 1.
- SDP relaxations of quadratic programs are tight for every objective function if and only if the feasible set is ROG.
- Consider $\mathcal{S}:=\left\{Y \succeq 0:\left\langle Y, M_{1}\right\rangle \geq 0,\left\langle Y, M_{2}\right\rangle \geq 0\right\}$ (two LMIs).
- Two geometric perspectives - \mathbb{S}^{n} and \mathbb{R}^{n}.

Geometry of \mathbb{S}_{+}^{n} - Rank

Consider $\mathbb{S}_{+}^{n}:=\{$ positive semidefinite $n \times n$ matrices $\} \subseteq \mathbb{S}^{n}$.

- Red ray: $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
- Green ray: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
- Rank $1 \leftrightarrow$ extreme. Rank $\geq 2 \leftrightarrow$ not extreme.

Geometry of \mathbb{S}_{+}^{n} - One LMI

> Fact [Ye, Zhang '03]
> $\mathcal{S}:=\{Y \succeq 0:\langle M, Y\rangle \geq 0\}$ is ROG for any $M \in \mathbb{S}^{3}$.

Geometry of \mathbb{S}_{+}^{n} - Two LMIs

Interacting inside \mathbb{S}_{+}^{n}.
Non-interacting inside \mathbb{S}_{+}^{n}.

Geometry of \mathbb{S}_{+}^{n} - Non-interacting LMIs

If M_{1} and M_{2} are non-interacting, then every extreme ray of

$$
\mathcal{S}=\left\{Y \succeq 0:\left\langle Y, M_{1}\right\rangle \geq 0,\left\langle Y, M_{2}\right\rangle \geq 0\right\}
$$

is an extreme ray of either

$$
\left\{Y \succeq 0:\left\langle Y, M_{1}\right\rangle \geq 0\right\}
$$

or

$$
\left\{Y \succeq 0:\left\langle Y, M_{2}\right\rangle \geq 0\right\}
$$

Geometry of \mathbb{S}_{+}^{n} - Non-interacting LMIs

If M_{1} and M_{2} are non-interacting, then every extreme ray of

$$
\mathcal{S}=\left\{Y \succeq 0:\left\langle Y, M_{1}\right\rangle \geq 0,\left\langle Y, M_{2}\right\rangle \geq 0\right\}
$$

is an extreme ray of either

$$
\left\{Y \succeq 0:\left\langle Y, M_{1}\right\rangle \geq 0\right\}
$$

or

$$
\left\{Y \succeq 0:\left\langle Y, M_{2}\right\rangle \geq 0\right\}
$$

$$
\Rightarrow \mathcal{S} \text { is ROG. }
$$

Geometry of \mathbb{S}_{+}^{n} - Non-interacting LMIs

Non-interacting inside \mathbb{S}_{+}^{n} when:

- One LMI does not intersect \mathbb{S}_{+}^{n}, i.e. when $\pm M_{i} \succeq 0$.

Geometry of \mathbb{S}_{+}^{n} - Non-interacting LMIs

Non-interacting inside \mathbb{S}_{+}^{n} when:

- One LMI does not intersect \mathbb{S}_{+}^{n}, i.e. when $\pm M_{i} \succeq 0$.
- $\left\langle \pm M_{1}, X\right\rangle \geq 0$ is a consequence of $\left\langle \pm M_{2}, X\right\rangle \geq 0$ for $X \succeq 0$.

Geometry of \mathbb{S}_{+}^{n} - Non-interacting LMIs

Non-interacting inside \mathbb{S}_{+}^{n} when:

- One LMI does not intersect \mathbb{S}_{+}^{n}, i.e. when $\pm M_{i} \succeq 0$.
- $\left\langle \pm M_{1}, X\right\rangle \geq 0$ is a consequence of $\left\langle \pm M_{2}, X\right\rangle \geq 0$ for $X \succeq 0$.
- Using S-lemma, this is true when $\lambda\left(\pm M_{1}\right)-\left(\pm M_{2}\right) \succeq 0$ for some $\lambda \geq 0$.

Geometry of \mathbb{S}_{+}^{n} - Non-interacting LMIs

Non-interacting inside \mathbb{S}_{+}^{n} when:

- One LMI does not intersect \mathbb{S}_{+}^{n}, i.e. when $\pm M_{i} \succeq 0$.
- $\left\langle \pm M_{1}, X\right\rangle \geq 0$ is a consequence of $\left\langle \pm M_{2}, X\right\rangle \geq 0$ for $X \succeq 0$.
- Using S-lemma, this is true when $\lambda\left(\pm M_{1}\right)-\left(\pm M_{2}\right) \succeq 0$ for some $\lambda \geq 0$.
In sum, non-interacting when $\alpha M_{1}+\beta M_{2} \succeq 0$ for some $(\alpha, \beta) \neq(0,0)$.

Geometry of \mathbb{S}_{+}^{n} - Recap

- Non-interacting LMIs yield ROG cones.
- M_{1}, M_{2} are non-interacting if $\left\langle \pm M_{2}, Y\right\rangle \geq 0$ along with $Y \succeq 0$ implies $\left\langle \pm M_{1}, Y\right\rangle \geq 0$.

Proposition 1
If $\alpha M_{1}+\beta M_{2} \succeq 0$ has a nontrivial solution, i.e. $(\alpha, \beta) \neq(0,0)$ then \mathcal{S} is $R O G$.

Showing $Y \notin \operatorname{Ext}(\mathcal{S})$

Question

In general, how do we show that a cone is ROG?

Showing $Y \notin \operatorname{Ext}(\mathcal{S})$

Question
In general, how do we show that a cone is ROG?
Show that $Y \notin \operatorname{Ext}(\mathcal{S})$ when:

- $\operatorname{rank}(Y) \geq 2$.

Showing $Y \notin \operatorname{Ext}(\mathcal{S})$

Question

In general, how do we show that a cone is ROG?
Show that $Y \notin \operatorname{Ext}(\mathcal{S})$ when:

- $\operatorname{rank}(Y) \geq 2$.
- $\left\langle Y, M_{1}\right\rangle=\left\langle Y, M_{2}\right\rangle=0$.

Showing $Y \notin \operatorname{Ext}(\mathcal{S})$

Question

In general, how do we show that a cone is ROG?
Show that $Y \notin \operatorname{Ext}(\mathcal{S})$ when:

- $\operatorname{rank}(Y) \geq 2$.
- $\left\langle Y, M_{1}\right\rangle=\left\langle Y, M_{2}\right\rangle=0$.

Find $x \in \mathbb{R}^{n}$ such that $Y \pm x x^{\top} \in \mathcal{S}$.

Showing $Y \notin \operatorname{Ext}(\mathcal{S})$

Question

In general, how do we show that a cone is ROG?
Show that $Y \notin \operatorname{Ext}(\mathcal{S})$ when:

- $\operatorname{rank}(Y) \geq 2$.
- $\left\langle Y, M_{1}\right\rangle=\left\langle Y, M_{2}\right\rangle=0$.

Find $x \in \mathbb{R}^{n}$ such that $Y \pm x x^{\top} \in \mathcal{S}$.

- For $Y-x x^{\top} \succeq 0$, need $x \in \operatorname{Range}(Y)$.

Showing $Y \notin \operatorname{Ext}(\mathcal{S})$

Question

In general, how do we show that a cone is ROG?
Show that $Y \notin \operatorname{Ext}(\mathcal{S})$ when:

- $\operatorname{rank}(Y) \geq 2$.
- $\left\langle Y, M_{1}\right\rangle=\left\langle Y, M_{2}\right\rangle=0$.

Find $x \in \mathbb{R}^{n}$ such that $Y \pm x x^{\top} \in \mathcal{S}$.

- For $Y-x x^{\top} \succeq 0$, need $x \in \operatorname{Range}(Y)$.
- Since $\left\langle Y, M_{i}\right\rangle=0$, need $0=\left\langle x x^{\top}, M_{i}\right\rangle=x^{\top} M_{i} x$.

Quadratic Forms - Zero Sets

Fix a candidate extreme ray Y. Define

$$
\begin{aligned}
& \mathcal{N}_{1}:=\left\{x \in \mathbb{R}^{n}: x^{\top} M_{1} x=0\right\} . \\
& \mathcal{N}_{2}:=\left\{x \in \mathbb{R}^{n}: x^{\top} M_{2} x=0\right\} .
\end{aligned}
$$

When is Range $(Y) \cap \mathcal{N}_{1} \cap \mathcal{N}_{2} \neq\{0\}$?

Quadratic Forms

Start with $n=3$.
Consider $Y \in \mathbb{S}_{+}^{3}, \operatorname{rank}(Y)=2$.

Quadratic Forms

Start with $n=3$.
Consider $Y \in \mathbb{S}_{+}^{3}, \operatorname{rank}(Y)=2$.

- Range (Y) is a plane.

Quadratic Forms

Start with $n=3$.
Consider $Y \in \mathbb{S}_{+}^{3}, \operatorname{rank}(Y)=2$.

- Range (Y) is a plane.
- If $\mathcal{N}_{1} \cap \mathcal{N}_{2} \subseteq \mathbb{R}^{3}$ contains a plane, then it intersects every plane nontrivially.

Quadratic Forms

Start with $n=3$.
Consider $Y \in \mathbb{S}_{+}^{3}, \operatorname{rank}(Y)=2$.

- Range (Y) is a plane.
- If $\mathcal{N}_{1} \cap \mathcal{N}_{2} \subseteq \mathbb{R}^{3}$ contains a plane, then it intersects every plane nontrivially.

Observation
\mathcal{S} is ROG when $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contains a plane.

Quadratic Forms - $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contains a plane

Question

When does $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contain a plane?

Quadratic Forms - $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contains a plane

Question

When does $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contain a plane?

- $\left\{x \in \mathbb{R}^{3}: x^{\top} M x=0\right\}$ contains a plane when $\operatorname{rank}(M) \leq 2$ and M is indefinite.

Quadratic Forms - $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contains a plane

Question

When does $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contain a plane?

- $\left\{x \in \mathbb{R}^{3}: x^{\top} M x=0\right\}$ contains a plane when $\operatorname{rank}(M) \leq 2$ and M is indefinite.
- For any (α, β),

$$
\mathcal{N}_{\alpha, \beta}:=\left\{x \in \mathbb{R}^{3}: x^{\top}\left(\alpha M_{1}+\beta M_{2}\right) x=0\right\} \supseteq \mathcal{N}_{1} \cap \mathcal{N}_{2} .
$$

Quadratic Forms - $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contains a plane

Question

When does $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contain a plane?

- $\left\{x \in \mathbb{R}^{3}: x^{\top} M x=0\right\}$ contains a plane when $\operatorname{rank}(M) \leq 2$ and M is indefinite.
- For any (α, β),

$$
\mathcal{N}_{\alpha, \beta}:=\left\{x \in \mathbb{R}^{3}: x^{\top}\left(\alpha M_{1}+\beta M_{2}\right) x=0\right\} \supseteq \mathcal{N}_{1} \cap \mathcal{N}_{2} .
$$

In particular, $\mathcal{N}_{\alpha, \beta}$ contains a plane for all (α, β).

Quadratic Forms - $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contains a plane

Question

When does $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contain a plane?

- $\left\{x \in \mathbb{R}^{3}: x^{\top} M x=0\right\}$ contains a plane when $\operatorname{rank}(M) \leq 2$ and M is indefinite.
- For any (α, β),

$$
\mathcal{N}_{\alpha, \beta}:=\left\{x \in \mathbb{R}^{3}: x^{\top}\left(\alpha M_{1}+\beta M_{2}\right) x=0\right\} \supseteq \mathcal{N}_{1} \cap \mathcal{N}_{2} .
$$

In particular, $\mathcal{N}_{\alpha, \beta}$ contains a plane for all (α, β).
Answer*
When $\operatorname{rank}\left(\alpha M_{1}+\beta M_{2}\right) \leq 2$ for all (α, β).

Geometry of Quadratic Forms - Recap

- Y is not an extreme ray when $\operatorname{Range}(Y) \cap \mathcal{N}_{1} \cap \mathcal{N}_{2}$ has a nonzero element.

Geometry of Quadratic Forms - Recap

- Y is not an extreme ray when $\operatorname{Range}(Y) \cap \mathcal{N}_{1} \cap \mathcal{N}_{2}$ has a nonzero element.
- In \mathbb{R}^{3}, if $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contains a plane, no rank 2 extreme rays.

Geometry of Quadratic Forms - Recap

- Y is not an extreme ray when $\operatorname{Range}(Y) \cap \mathcal{N}_{1} \cap \mathcal{N}_{2}$ has a nonzero element.
- In \mathbb{R}^{3}, if $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contains a plane, no rank 2 extreme rays.
- $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contains a plane when $\operatorname{rank}\left(\alpha M_{1}+\beta M_{2}\right) \leq 2$ for all α, β.

Geometry of Quadratic Forms - Recap

- Y is not an extreme ray when $\operatorname{Range}(Y) \cap \mathcal{N}_{1} \cap \mathcal{N}_{2}$ has a nonzero element.
- In \mathbb{R}^{3}, if $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contains a plane, no rank 2 extreme rays.
- $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ contains a plane when $\operatorname{rank}\left(\alpha M_{1}+\beta M_{2}\right) \leq 2$ for all α, β.

Proposition 2

\mathcal{S} is $R O G$ when $\operatorname{rank}\left(\alpha M_{1}+\beta M_{2}\right) \leq 2$ for all (α, β), Span $\left\{\operatorname{Range}\left(M_{1}\right) \cup \operatorname{Range}\left(M_{2}\right)\right\}$ has dimension 3 , and $\alpha M_{1}+\beta M_{2} \succeq 0$ has only the trivial solution $(\alpha, \beta)=(0,0)$.

Main Result

Theorem 3 (A, Kılınç-Karzan, '17)
$\left\{Y \succeq 0:\left\langle M_{1}, Y\right\rangle \geq 0,\left\langle M_{2}, Y\right\rangle \geq 0\right\}$ is ROG iff one of the following holds
(i) $\alpha M_{1}+\beta M_{2} \succeq 0$ for some $(\alpha, \beta) \neq(0,0)$.
(ii) $\operatorname{rank}\left(\alpha M_{1}+\beta M_{2}\right) \leq 2$ for all (α, β) and Span $\left\{\operatorname{Range}\left(M_{1}\right) \cup \operatorname{Range}\left(M_{2}\right)\right\}$ has dimension 3 .

Proving Necessity (Sketch)

First consider the case of \mathbb{S}^{3}.
Suppose that:
(i) $\alpha M_{1}+\beta M_{2} \nsucceq 0$ for any $(\alpha, \beta) \neq(0,0)$.
(ii) $\operatorname{rank}\left(a M_{1}+b M_{2}\right) \geq 3$ for some (a, b).

Proving Necessity (Sketch)

First consider the case of \mathbb{S}^{3}.
Suppose that:
(i) $\alpha M_{1}+\beta M_{2} \nsucceq 0$ for any $(\alpha, \beta) \neq(0,0)$.
(ii) $\operatorname{rank}\left(a M_{1}+b M_{2}\right) \geq 3$ for some (a, b).

Need to construct an extreme ray Y of rank 2 .

Proving Necessity (Sketch)

First consider the case of \mathbb{S}^{3}.
Suppose that:
(i) $\alpha M_{1}+\beta M_{2} \nsucceq 0$ for any $(\alpha, \beta) \neq(0,0)$.
(ii) $\operatorname{rank}\left(a M_{1}+b M_{2}\right) \geq 3$ for some (a, b).

Need to construct an extreme ray Y of rank 2 .

- $\operatorname{rank}\left(a M_{1}+b M_{2}\right)=3$ implies that $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ is "sparse."

Proving Necessity (Sketch)

First consider the case of \mathbb{S}^{3}.
Suppose that:
(i) $\alpha M_{1}+\beta M_{2} \nsucceq 0$ for any $(\alpha, \beta) \neq(0,0)$.
(ii) $\operatorname{rank}\left(a M_{1}+b M_{2}\right) \geq 3$ for some (a, b).

Need to construct an extreme ray Y of rank 2 .

- $\operatorname{rank}\left(a M_{1}+b M_{2}\right)=3$ implies that $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ is "sparse."
- Get a vector z that is not spanned by any two vectors of $\mathcal{N}_{1} \cap \mathcal{N}_{2}$.

Proving Necessity (Sketch)

First consider the case of \mathbb{S}^{3}.
Suppose that:
(i) $\alpha M_{1}+\beta M_{2} \nsucceq 0$ for any $(\alpha, \beta) \neq(0,0)$.
(ii) $\operatorname{rank}\left(a M_{1}+b M_{2}\right) \geq 3$ for some (a, b).

Need to construct an extreme ray Y of rank 2 .

- $\operatorname{rank}\left(a M_{1}+b M_{2}\right)=3$ implies that $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ is "sparse."
- Get a vector z that is not spanned by any two vectors of $\mathcal{N}_{1} \cap \mathcal{N}_{2}$.
- Use infeasibility of $\alpha M_{1}+\beta M_{2} \succeq 0$ for $(\alpha, \beta) \neq(0,0)$ to get w such that $Y=z z^{T}+w w^{T}$ is tight for both LMIs $(w \neq \lambda z$ for $\lambda \in \mathbb{R})$.

Proving Necessity (Sketch)

First consider the case of \mathbb{S}^{3}.
Suppose that:
(i) $\alpha M_{1}+\beta M_{2} \nsucceq 0$ for any $(\alpha, \beta) \neq(0,0)$.
(ii) $\operatorname{rank}\left(a M_{1}+b M_{2}\right) \geq 3$ for some (a, b).

Need to construct an extreme ray Y of rank 2 .

- $\operatorname{rank}\left(a M_{1}+b M_{2}\right)=3$ implies that $\mathcal{N}_{1} \cap \mathcal{N}_{2}$ is "sparse."
- Get a vector z that is not spanned by any two vectors of $\mathcal{N}_{1} \cap \mathcal{N}_{2}$.
- Use infeasibility of $\alpha M_{1}+\beta M_{2} \succeq 0$ for $(\alpha, \beta) \neq(0,0)$ to get w such that $Y=z z^{T}+w w^{T}$ is tight for both LMIs $(w \neq \lambda z$ for $\lambda \in \mathbb{R})$.

We reduce the general case of \mathbb{S}^{n} to the case of \mathbb{S}^{3}.

Extensions/Questions

- Necessary and sufficient conditions for more than 2 LMIs.
- Use results to analyze conic constraints.
- Alternate analysis of Burer's work on extensions of the Trust Region Subproblem.
- Necessary and sufficient conditions for more general conic constraints.

Thank you!

cargue@andrew.cmu.edu

Further Reading

Samuel Burer (2015).
A Gentle Geometric Introduction to Copositive Optimization.
Mathematical Programming, June 2015, Volume 151, Issue 1, pp 89-116.
國 Roland Hildebrand (2016).
Spectrahedral Cones Generated by Rank-1 Matrices
Journal of Global Optimization, Feb. 2016, Volume 64, Issue 2, pp 349-397.
軎 Grigoriy Blekherman et al. (2016).
Do Sums of Squares Dream of Free Resolutions?
SIAM J. Appl. Algebra Geometry, 1(1), 175-199.

